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The promise of the compute continuum is to present applications with a

flexible and transparent view of the resources in the Internet of Things–

Edge–Cloud ecosystem. However, such a promise requires tackling complex

challenges to maximize the benefits of both the cloud and the edge. Challenges

include managing a highly distributed platform, matching services and resources,

harnessing resource heterogeneity, and adapting the deployment of services to

the changes in resources and applications. In this study, we present SmartORC,

a comprehensive set of components designed to provide a complete framework

for managing resources and applications in the Compute Continuum. Along with

the description of all the SmartORC subcomponents, we have also provided the

results of an evaluation aimed at showcasing the framework’s capability.
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1. Introduction

The proliferation of mobile devices and the growth of mobile networks have led

to a significant increase in the demand for edge computing applications (Korontanis

et al., 2020). These applications require processing to be performed closer to the data

source and end users, which has led to the emergence of the compute continuum. The

compute continuum is a distributed computing ecosystem that encompasses a wide range

of heterogeneous computational and network resources, ranging from large supercomputers

and high-performance computing clusters to smaller, localized edge devices.

The compute continuum presents many challenges, including the need for efficient

resource discovery, monitoring, and management, as well as the need to coordinate the

execution of applications across a diverse range of resources and environments. To address

these challenges, orchestration plays a critical role in managing and coordinating the

execution of applications in the compute continuum (Youn et al., 2017).

Efficient orchestration requires both proactive and reactive processes to support the

application’s runtime and adapt its deployment according to changes in the application

workload and resource availability. Proactive processes involve predicting future resource

demands and making appropriate allocation decisions in advance, while reactive processes

involve responding to changes in resource availability and workload, such as scaling up or

down resources or migrating applications to different devices.
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To support efficient orchestration in the compute continuum,

we present SMARTORC, a comprehensive orchestrator designed to

manage different computational resources and provide allocation

plans for deploying applications. The SMARTORC architecture is

highly modular and based on several core macro services, including

application description and manipulation, resource discovery and

monitoring, matchmaking solver, user management, and object

storage. These services work together to support the orchestration

of applications in the compute continuum.

In addition to its modular architecture, SMARTORC supports

hierarchical and distributed orchestration approaches, which are

essential for managing the compute continuum. Hierarchical

orchestration involves organizing devices into groups or clusters

based on their capabilities and location, enabling efficient

management of resources and delegation of responsibilities. This

approach allows for the creation of a hierarchical structure in

which each group is responsible for managing a subset of devices.

The hierarchical structure allows for the efficient management of

resources and enables the delegation of responsibilities to lower

levels of the hierarchy, thus reducing the complexity and workload

of higher levels.

Distributed orchestration involves distributing orchestration

tasks across the compute continuum, enabling each device

to act as an orchestrator and contribute to the orchestration

process. This approach offers several benefits, including increased

fault tolerance, reduced latency, and improved scalability. By

distributing orchestration tasks across the compute continuum,

SMARTORC can take advantage of the resources available on each

device, making it easier to manage a large number of devices.

Combining hierarchical and distributed orchestration

approaches provides a powerful solution for managing the

compute continuum. By organizing devices into hierarchical

clusters and distributing orchestration tasks across the clusters,

SMARTORC can efficiently manage a large number of devices while

ensuring scalability, fault tolerance, and low latency. This approach

is particularly useful in environments where devices have varying

capabilities and connectivity, making it difficult to manage them

using traditional centralized orchestration approaches.

To support hierarchical and distributed orchestration,

SMARTORC’s architecture is designed to be highly modular and

scalable. The core macro services of SMARTORC are designed

to be distributed and can be deployed on different devices in

the compute continuum. This design enables orchestration tasks

to be distributed across devices and clusters while ensuring

efficient communication and coordination between the different

components of the system.

The article is organized as follows: Section 2 sheds light on

the scientific literature that relates to this topic and motivates

this research. Section 3 introduces the optimization model for

deploying application components in SMARTORC considering

their QoS requirements and resource constraints. Section 4

discusses the architecture of SMARTORC from both a conceptual

perspective and a system viewpoint in which the design of all

the subsystems is discussed in full detail. Section 5 provides

information about the current prototype of SMARTORC, which is

currently used in two European Research projects. This section

also provides information about the hierarchical version of the

tool along with the description of the fully decentralized version,

currently in development. Section 6 presents some figures on the

performance achieved by both the current prototype and the one

under development (representing the next release of SMARTORC,

which focuses on application placement using highly decentralized

approaches). Finally, Section 7 concludes the paper by summarizing

the actual extent of its contribution and outlining future research

activities related to and allowed by SMARTORC.

2. Background

Orchestration is the automated management and coordination

of applications and services. Our present study focuses on the

orchestration of applications, where the services and components

of each application are mapped for deployment and to be

dynamically managed on infrastructure resources. Orchestration is

applied to the basic units of execution that support applications. As

continuum platforms become increasingly exploited, application

components are progressively shrinking from Virtual Machines

(VMs) to containers down to Unikernel (Madhavapeddy

et al., 2013) instances and serverless functions. Our target, the

compute continuum, poses several additional challenges to

orchestration (Vaquero et al., 2019) when compared with those

already impacting cloud orchestration (Cascella et al., 2013;

Casalicchio, 2017).

The heterogeneity and scale of the problem are just the most

striking issues to be tackled.Heterogeneity is typically higher toward

the edge of the continuum, populated by resources that vary in

their hardware capabilities, access methods, and protocols and

possibly belong to distinct administrative domains. The scale of

the continuum also poses a significant challenge: composed of a

higher and higher number of resources. This makes it difficult for

the orchestrator to make optimal decisions. Among the techniques

reviewed by Vaquero et al. (2019), those in the class of eventually

consistent/probabilistic orchestration methods iteratively improve

the initial solution found, which is likely to be suboptimal. The

initial deployment is improved after refining its evaluation, and

the migration/redeployment of parts of the application can happen

based on updated information. Late calibration (Wen et al., 2017)

is one such technique. Many current orchestration frameworks

employ similar incremental techniques to take the system closer to

the desired state progressively. The base idea for these techniques,

asymptotic configuration, dates back to 1998 (Pollock et al., 1998).

Several orchestration solutions in the literature work offline

and need complete knowledge of the set of potential applications

and computing nodes, i.e., a scenario with stronger assumptions

than the dynamic edge/cloud continuum can uphold. One study

that approaches these simpler settings is Maia et al. (2019). They

explore two different methods to develop an orchestration; the first

one based on genetic algorithms and the second one based on

employing a mixed-integer linear programming (MILP) heuristic.

To improve the scalability of the platform, several research

studies attempted to optimize the overall performance of a system

by limiting the communications with centralized clouds (Altmann

et al., 2017; Salaht et al., 2020; Ahmed et al., 2022). The rationale

is that data exchanges between cloud and edge systems introduce

significant overheads and can degrade the performance of those
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applications running on the edge systems that need strong locality

and rely on context-based services.

A well-known approach to overcome the scalability limit

due to centralized management is the adoption of decentralized

and/or self-organizing solutions (Toffetti et al., 2015; Carlini

et al., 2016; Mordacchini et al., 2020). These solutions achieve

their goal by moving the orchestration logic closer to users and

data (Maia et al., 2019; Dazzi and Mordacchini, 2020; Ning

et al., 2020). In decentralized orchestration approaches, many

independent entities, each one controlling a set of resources,

recognize resources based on predefined ontologies and execute

deployment requests by negotiating among themselves (Sim, 2012).

Even though distributed orchestration was proposed more than 15

years ago (Chafle et al., 2004), the technique was not immediately

successful. Beraldi et al. (2017) propose CooLoad, a scheme in

which edge data centers redirect their requests to other adjacent

data centers whenever they become congested. Carlini et al. (2016)

propose a decentralized system in which autonomous entities

in a Cloud Federation communicate to exchange computational

services, attempting tomaximize the profit of the whole Federation.

The viewpoint of our study is closer to solutions that aim

at placing the applications close to the data they access or

moving the application services close to their users. An example

is given by Ning et al. (2020). They propose an online and

distributed solution for service placement at the edge based on

a probabilistic optimization method. Their approach computes

the utility of service migration and placement. This evaluation

is done by considering the cost, storage capability, and latency

of service migration to determine the optimal service placement

configurations. Several of the distributed orchestration solutions

target specific subroblems. Aral and Ovatman (2018) is an example

of the distributed strategies that can be applied for data placement

and replication at the edge. The aim of our study differs from these

solutions, as we are concerned with computing requests and the

related optimal placement and selection of service instances at the

edge.

Recently, research started about applying machine learning

(ML) techniques to different orchestration-related tasks. As it is

difficult to find enough quality data of general significance and

train a model complex enough to cover all orchestration activities,

current research is experimenting with the combination of simpler

models (Talagala et al., 2018).

In the next section, we have addressed the optimization

problem that we have solved to deploy next-gen applications on the

heterogeneous and sparse pool of resources typical of the compute

continuum, by giving a high-level linear programmingmodel. Such

a model aims to orchestrate different kinds of services and devices,

including, for example, Internet of Things (IoT) devices such as

sensors or actuators for smart homes and cities, or storage, either

as a device features or as permanent services that the application

needs to access.

The SMARTORC architecture is designed to easily implement

and plug-in different orchestration strategies and optimization

techniques. In our current prototype, an MILP solver plug-in

was exploited to solve the optimization problem in an exact

way, implementing a centralized solution based on a unique

instance of SMARTORC: such an instance has complete knowledge

about the availability of resources and placement of all deployed

applications. We plan to exploit decentralized, approximated

techniques and algorithms based on distributed/local knowledge

in the next prototype, which will fully exploit the architecture we

present in this study. By sacrificing optimality for computational

efficiency, approximated algorithms enable the deployment and

orchestration of applications in large-scale and geographically

distributed systems such as the compute continuum. In the

studies of Ferrucci et al. (2020) and Mordacchini et al. (2021),

self-organizing distributed algorithms were developed and tested.

The behavior of those methods is relevant as they can be

applied within SMARTORC and is discussed in Section 6.2. The

efficient exploitation of the resources of the compute continuum

is obtained while also optimizing the energy consumption of

the system as a whole by exploiting point-to-point interactions

between edge entities, known as edge mini-clouds (EMs). As we

discussed later in the article, the combination of local sensing

and distributed information exchange allows for improving the

execution cost parameters (e.g., energy, number of active resources)

while respecting the boundaries set forth by application quality-of-

service (QoS) constraints.

3. Optimization problem definition
and modelization

In the context of this article, where the IoT–edge–loud

ecosystem is taken into consideration, we consider a system as

being made of multiple entities, either EMs or central clouds

(CCs). Both of these entity types are aggregations of heterogeneous

resources, but they differ in other main features such as size

and resource granularity. CCs, usually, have a great abundance of

computing, memory, and storage resources, which are centralized

and placed in geographically distant data centers. The elasticity

property of CC sites gives users the illusion of ideal availability,

enjoying an “infinite” quantity of resources. However, solely relying

on running application components within CCs can negatively

impact some important features of modern applications. Increasing

latency and hindered scalability when the size of the infrastructure

increases are critical issues for, e.g., data streaming applications and

Augmented Reality/Virtual Reality (AR/VR) ones.

Edge computing is an attempt to overcome these limitations.

It is a service computing paradigm that aims at bringing the

computation as close as possible to the data producers and/or

consumers (e.g., end users). This can be achieved by placing

applications and application components on a potentially large

number of edge resources that are geographically distributed and

uniformly scattered over a broad area. An EM is a set of such

resources, often very constrained in their features, sometimes

power-constrained, with a common tenancy and geographically

located in a certain area. EMs may be internally heterogeneous and

usually are heterogeneous with respect to each other.

In this section, we provide an MILP model for the optimization

problem of deploying a set of components of a given application

onto the available resources of a set of data centers containing a

mixture of EMs and CCs.

In our model, an application A is represented by an undirected

graph GA =< C,E >, where C represents a set of N vertices

and E represents the set of M edges connecting the vertices. Each

Frontiers inHighPerformanceComputing 03 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1164915
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Carlini et al. 10.3389/fhpcp.2023.1164915

vertex ci ∈ C with i ∈ {1, . . . ,N} embodies a single component

of the application that offers a distinct service for the application,

following the microservice paradigm. Different applications can be

deployed on distinct EMs or CCs based on the application’s QoS

requirements.

Each edge ei,j ∈ E represents an undirected communication

path connecting application components vi and vj, with i, j ∈

{1, . . . ,N} : i 6= j.

Every vertex (an application component) and every edge (a

communication link) can be labeled with a set of QoS attributes or

requirements Q = {q1, . . . , qS} that are associated with it and can

be classified in two categories, similar to what is defined in the study

by Ye et al. (2011):

• ascending/descending QoS attributes, where either higher or

lower values of the attribute are better for the application

performance;

• equal QoS attributes, in which only equality or inequality is

meaningful.

Examples of ascending/descending QoS attributes are the

minimum number of Central Processing Unit (CPU) cores, and

the quantity of memory or disk space, while examples of equal

QoS attributes are the presence/absence of a particular software

feature, e.g., an operating system (OS) or a software license, or

the availability of a hardware feature, e.g, a graphic processing

unit (GPU). Previous examples of QoS requirements are in the

class of so-called intra requirements since they are associated

with a single vertex or application component and are modeled

as constraints over the resources of a single data center (EM or

CC). Conversely, maximum latency or minimum bandwidth are

examples of inter QoS attributes as they are associated with an

edge. The inter attributes are modeled as constraints over a set of

resources belonging to different vertices (i.e., possibly located in

distinct data centers after the orchestration is done).

Some requirements imply the allocation of resources that

cannot be shared. We call numerical a metric requirement that

refers to a resource that cannot be shared between different

components or communication channels. The required value

reduces the available amount of the resource, as is the case for

the number of (exclusive) cores, the amount of disk space, or the

consumed bandwidth of a channel over a link. An example of a

QoS requirement that is non-numerical (or can be assumed to be

in ordinary working conditions) is the maximum latency induced

by a communication channel.

As part of our modelization effort, we need to model the

available portion of the compute continuum, which we do

following the approach detailed earlier. The compute continuum

is represented as an undirected graph GCont =< D, L >, where

D represents a set of P vertexes and L represents the set of V

edges connecting the vertices. Each vertex di ∈ D, with i ∈

{1, . . . , P} representing a single data center (an EM or CC) of

the continuum. The resources associated with each data center

are the sum of all the resources available among the devices,

servers, and other commodities that the data center supervises.

Each edge li,j ∈ L represents an undirected communication link

between two different data centers labeled as di and dj, with

i, j ∈ P : i 6= j.

As it is for applications, each data center Dd and each

communication link Lv is associated with a limited amount of

intra-data center (intra) and inter-data center (inter) resources R =

{r1, . . . , rT}, i.e., the maximum number of CPU nodes, memory

size, or disk space or the minimum latency and the maximum

bandwidth over links.

A first set of constraints in the model comes from the fact

that the application components in execution at any point in time

cannot exceed the currently available capacity of such resources,

indicated as Cri ,j, where ri ∈ R and j ∈ {1, . . . ,M} for intra

resources but j ∈ {1, . . . ,V} for inter resources. 1

For every type of QoS requirement qi ∈ Q, there is a

corresponding resource ri ∈ R against which the requirement

has to be satisfied. When attributes are used in specifying the

application, they define constraint values to be respected by the

corresponding resource allocated within the compute continuum.

For instance, the QoS requirement of a component about the

number of cores needed to reach an expected performance level

must be satisfied by the number of cores of the data center di on

which it will be deployed. Requirements over edges are analogous,

that is, e.g., the maximum latency stipulated by a communication

channel between two different components must be satisfied by

the minimum latency associated to the communication link li ∈

GCont connecting the two data centers di and dj, where the two

components are deployed. An inter constraint on networking is

assumed to be trivial, and we ignore it if i = j, i.e., if the components

are deployed on the same data center di.

To express our constraints, we employed a set of auxiliary

functions characterizing the set of QoS requirements. The first such

function will be used to distinguish between intra and inter QoS

requirements:

finter(qi) =

{

1, if qi ∈ Q is an inter QoS requirement

0, if qi ∈ Q is an intra QoS requirement

A second characterization function will be used to distinguish

between ascending/descendingQoS requirements and strictly equal

QoS requirements:

feq(qi) =















1, if qi ∈ Q is an equal QoS requirement

0, if qi ∈ Q is an ascending/descending

QoS requirement

Finally, we have to take into consideration numerical QoS

requirements, which imply using up a measurable quantity of an

available resource. It is worth noting that numerical requirements

in our modelization can be ascending or descending but not

of the equal type. For this purpose, we introduce the last

characterization function, qualifying numerical vs. non-numerical

QoS requirements:

fnum(qi) =















1, if qi ∈ Q is an ascending/descending numerical

QoS requirement

0, otherwise

1 When applying the model to real resources, such instantaneous values

are retrieved by querying the Resource Discovery, Indexing and Monitoring

module, described in Section 4.2.1.

Frontiers inHighPerformanceComputing 04 frontiersin.org

https://doi.org/10.3389/fhpcp.2023.1164915
https://www.frontiersin.org/journals/high-performance-computing
https://www.frontiersin.org


Carlini et al. 10.3389/fhpcp.2023.1164915

In defining our MILP model, we did not include constraints

on the order of the deployment of different components of the

Application A. Hence, our model solution does not cover the

scheduling of application components but only the needed resource

orchestration.
Using the notation introduced in this section, we have the

following optimization problem:

max
x, y

Fu(x, y)

s.t. (1)

P
∑

d=1

xi,d = 1, ∀i

(2)
(

1− finter(qj)
)

∗ fnum(qj) ∗

(

N
∑

i=1

(

xi,d ∗ qj
)

− Crj ,d

)

≤ 0, ∀d, j

(3) (1− finter(qj)) ∗ (1− feq(qj)) ∗
(

(

xi,n ∗ qj
)

− Crj ,d

)

≤ 0, ∀i, d, j

(4) (1− finter(qj)) ∗ feq(qj) ∗
(

(

xi,n ∗ qj
)

− Crj ,d

)

= 0, ∀i, d, j

(5) xi1 ,d1 + xi2 ,d2 − yi1 ,d1 ,i2 ,d2 − 1 ≤ 0, ∀i1, i2 : i1 6= i2, ∀d1,

d2 : d1 6= d2

(6) yi1 ,d1 ,i2 ,d2 ≤ xi1 ,d1 , ∀i1, i2 : i1 6= i2, ∀d1, d2 : d1 6= d2

(7) yi1 ,d1 ,i2 ,d2 ≤ xi2 ,d2 , ∀i1, i2 : i1 6= i2, ∀d1, d2 : d1 6= d2

(8) finter(qj) ∗ fnum(qj) ∗





N
∑

i1=1





N
∑

i2=1

(

yi1 ,d1 ,i2 ,d2 ∗ qj
)

− Crj ,l









≤ 0, ∀d1, d2 : d1 6= d2, ∀j, l

(9) finter(qj) ∗ (1− feq(qj)) ∗
(

(

yi1 ,d1 ,i2 ,d2 ∗ qj
)

− Crj ,l

)

≤ 0, ∀d1, d2 : d1 6= d2, ∀i1, i2 : i1 6= i2, ∀j, l

(10) finter(qj) ∗ feq(qj) ∗
(

(

yi1 ,d1 ,i2 ,d2 ∗ qj
)

− Crj ,l

)

= 0,

∀i1, i2 : i1 6= i2, ∀d1, d2 : d1 6= d2, ∀j, l

(11) xi,d ∈ {0, 1}

(12) yi1 ,d1 ,i2 ,d2 ∈ {0, 1}

(1)

In the preceding definition, we introduced a set of integer binary

decision variables xi,j. Each one represents whether the component

ci, i ∈ {1, . . . , P} of application A has been deployed on the data

center dj, j ∈ {1, . . . ,M}:

xi,j =

{

1, if ci ∈ C has been deployed on the data center dj

0, otherwise.

Our problem has 12 groups of constraints. The constraints

of group (1) force each valid solution to unequivocally deploy

each component of the application A on exactly one datacenter.

Constraints in groups (2), (3), and (4) ensure that any component

allocation shall not exceed the resource limits of the data center

on which it will be deployed; they differ in the type of QoS

and resources they model. In constraint group (2), we deal

with numerical (ascending or descending) requirements: the

characterization functions fnum and finter are applied to each

QoS requirements and multiplied with each other such that the

contraint is ignored when the result is zero, since, in this case, it

is always satisfied independently from the value assigned to the

decision variable. Constraints in group (3) handle non-numerical

(ascending or descending) requirements, while constraints in group

(4) apply to non-numerical requirements of the equal kind (i.e., the

presence of a certain OS or graphics card, codifying a specific card

model or OS with a unique integer value).

Constraints on requirements and resources defined over

communication links are encoded by equation groups (8), (9),

and (10) that, in a similar way to constraint groups (2),

(3), and (4), model, respectively, numerical (i.e., bandwidth),

ascending/descending (i.e., latency), and equal requirements. We

need to check the requirement over a certain communication

channel between two different components i1 and i2 of application

A iff these components are deployed on different data centers d1
and d2 and a network link exists between d1 and d2.

Some constraints of our model result from applying standard

techniques to turn the initial formulation into one suitable for

MILP optimization. In the straightforward modelization of the

optimization problem, which we have not shown here, each

inter requirement is modeled by multiplying the two decision

variables xi1 ,d1xi2 ,d2 iff a network link exists between d1 and

d2. However, this approach leads to a non-linear programming

problem. We linearize such constraints by introducing a new set of

auxiliary binary decision variables yi1 ,d1 ,i2 ,d2 such that yi1 ,d1 ,i2 ,d2 =

xi1 ,d1xi2 ,d2 , ∀i1, i2 ∈ {1, . . . ,N} and d1, d2 ∈ {1, . . . , P} : i1 6= i2 and

d1 6= d2.

To restrict the new problem to the same set of solutions of

the first modelization, we also need to introduce the new sets of

constraint, (5), (6), and (7). The constraints in groups (6) and (7)

ensure that yi1 ,d1 ,i2 ,d2 = 0 if xi1 ,d1 = 0 or xi2 ,d2 = 0. However, the

constraints in group (5) ensure that yi1 ,d1 ,i2 ,d2 = 1 iff xi1 ,d1 = 1 and

xi2 ,d2 = 1.

Constraint groups (11) and (12) restrict Boolean values to

our decision variables x and auxiliary variables y. Descending

numerical or non-numerical requirements are modeled by

changing the sign of both the requirement and the corresponding

resource; i.e., the latency requirement is an ascending non-

numerical requirement of the type qlat ≥ Crlat ,l, which could be

transformed in the constraint −qlat ≤ −Crlat ,l., omitting the rest of

the groups.

The objective function is indicated as a general utility function

over the two vectors of the decision variables of the optimization

problem, x and y. Such a utility function represents a utility value

specified by the owner of the application and embeds the policy

metrics that need to be optimized in the specific orchestration

problem. In our first prototype, we use the following objective

function:

Fu(x, y) = (1− finter(qj)) ∗ fnum(qj) ∗

P
∑

d=1



Cri ,d −

N
∑

j=1

(

xj,d ∗ qi
)





This function attempts to maximize the availability of the

numerical inter resources of all the data centers. It is also possible

to apply more complicated functions or add a resource cost model.

It is possible to prove that the optimization problem described

in group (1) is NP-hard by observing that it contains the

minimization version of the generalized assignment problem
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(Min-GAP), described by Ross and Soland (1975), Nauss (2003),

Kundakcioglu and Alizamir (2009), as a particular case.

4. SmartORC architecture

This section presents the architecture of SMARTORC adopting

an incremental approach. Section 4.1 presents the main design

objectives of SMARTORC along with a brief description of its

main modules. Conversely, Section 4.2 discusses the architecture

of SMARTORC with full details by adopting the Archimate

specification.

4.1. Conceptual architecture

The objective of SMARTORC is to provide a complete

orchestration framework to manage EM and CC resources,

enacting the hosting of applications into the set of resources

belonging to the continuum.

The main challenge, the one that we plan to address, is

to match application QoS requirements and users’ quality-

of-experience (QoE) constraints while achieving efficient

exploitation of resources. SMARTORC development began

within the ACCORDION H2020 project (Korontanis et al.,

2020) with the explicit goal of dealing with both QoS and QoE

constraints. The definition of QoE depends, however, on many

factors, including the actual kind of application and the type of

user interface. As a very informal example, the QoE in interactive

simulations is often subject to constraints on server-to-client

latency, as well as on desynchronization among separate users,

while QoE for immersive three-dimensional VR/AR simulations

is much more strongly linked to the round-trip latency between

the physical user and the simulated environment presented by the

immersive device.

QoE targets are often defined indirectly via user surveys and

studies and are generally linked to QoS constraints in non-trivial

ways. For example, interactive services such as mobile games, in

which no video is streamed over the network, are most prone to

network depredations, including delay, packet loss, and jitter. A

proper prediction of these values, and the consequent QoE-aware

orchestration, is still an ongoing challenge (Schmidt et al., 2021).

Since a complete QoE discussion would bring us far from the

article’s focus on orchestration, we have restricted the following

discussion to QoS parameters on the tacit assumption that an

analytic model of the expected QoE for an application can be

assessed starting fromQoS parameters, those that the orchestration

can control. We have discussed the following examples of QoS

constraints and strategies tomatch themwithout wasting resources.

Such potentially conflicting objectives are particularly complex

in a highly dynamic, distributed, and heterogeneous continuum

of edge and cloud devices. To be properly instrumented to

manage such complexity, SMARTORC is a resource orchestration

framework whose main functionalities are

• to allow the allocation of resources to various types of

applications, taking into account both the associated QoS

requirements and the structural topologies;

• to define a deployment plan for all the components of an

application; and

• to amend (or compose a brand-new) deployment plan when

one or more application requirements are violated, while

attempting to minimize the number and cost of the changes;

SMARTORC is organized into five distinct modules, as depicted

in Figure 1, presenting the conceptual architecture of our proposed

framework. These modules are briefly presented in the current

section and illustrated more in detail in Section 4.2:

• Resource discovery, indexing, and monitoring: This

module aims to collect, index, and keep all the relevant

information about the resources managed by a specific

instance of SMARTORC. The main challenge is to provide

such information in a scalable way while guaranteeing the

value of the information provided.

• The SMARTORC solver: This is the core module of

SMARTORC. It is aimed at solving the matchmaking problem

between the available resources and the functional and non-

functional requirements of a given application; in particular,

the focus is on the QoS requirements of the application. The

main challenge is to provide this result in a scalable way

while preserving high-quality results in terms of cost/benefit

trade-off.

• Application description and manipulation: This module’s

goal is to manipulate and translate the native description of

the applications along with their topology and requirements.

SMARTORC exploits an internal representation. The main

challenge in designing such a representation is to provide

enough flexibility while keeping the semantics of the

application and its requirements during the translation

process.

• User management: This module provides registration and

authorization mechanisms for end users and administrators.

In particular, administrators could perform tasks such as

manipulating the set of end-users, adding or removing

edge data centers and resources, or performing system

configuration.

• Object store: This module is aimed to store dynamic or static

data about users, the status of applications, and the (almost)

real-time availability of resources collected by monitoring

applications on EMs and CCs.

4.2. System architecture

The SMARTORC2 architecture has been designed and formatted

using the Archimate standard (TheOpenGroupStandard, 2019).

The diagrams presented in this subsection comply with the

Archimate Core Language specification v.3.1. As previously

mentioned in Section 4.1, from a conceptual architecture

perspective SMARTORC encompasses five subsystems. This section

describes them, with each subsection providing details concerning

the actual design of one subsystem. Section 4.2.3 also provides

2 SmartORC website: https://www.smartorc.org.
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FIGURE 1

SMARTORC conceptual architecture Application Programming Interface (API).

FIGURE 2

Architecture of the module performing resource discovery, indexing, and monitoring.

examples about the Topology and Orchestration Specification for

Cloud Applications (TOSCA) format that we use to describe

applications’ QoS and deployment constraints.

4.2.1. Resource discovery, indexing, and
monitoring

The Resource discovery, indexing, and monitoring subsystem

(RID) is a critical component that supports SMARTORC in its

process of finding the best resources for an application, given a

set of QoS and QoE requirements, and is aimed at providing the

Solver subsystemwith up-to-date information about computational

resources that can be used for hosting application instances. The

challenge is to provide such information in a scalable and precise

way, a well-known problem in the scientific literature (Albrecht

et al., 2008; Zarrin et al., 2018). Figure 2 depicts the breakdown

of the RID structure. The design is quite articulated and embeds

two interfaces, one for the management of infrastructure resources

(Resource Management) and one for gaining access to the available

resources (Resource Listing).

The Resource Management interface is used and accessed by

SMARTORC administrators and is provided by the Edge Datacenter

Management service. Such a service is an active entity responsible

for providing the mechanisms for adding (Add Edge) or removing

(Delete Edge) edge data centers to the set of resources that

SMARTORC can consider in the application placement process. The

Resource Listing interface is instead dedicated to SMARTORC end

users. It is the access point to the Resources Information Access

(RIA) service, which is the entity enabling providing information

about the resources from the edge data centers that SMARTORC

can exploit to host applications. The RIA provides mechanisms for

resource querying that are used by the Application Placement and

Runtime Application Management processes.

Both the Edge Datacenter Management and the Resources

Information Access services are implemented by the Resource

Indexing and Discovery module. The Resource Indexing and

Discovery is the entity in charge of providing most of the

business logic of the entire subsystem. It keeps an up-to-date

index of the resources stored in the SMARTORC Object Store. It

collects monitoring information from the many different interfaces
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provided by the edge data centers indexed by SMARTORC,

employing the embeddedMonitoring Data Aggregatormodule. The

module behaves both as an aggregator and as a homogenization

and abstraction layer toward the (potentially different) monitoring

mechanisms offered by the edge data centres. Resource information

is periodically refreshed, but a “forced” update can also be triggered

by custom policies defined by SMARTORC administrators. A

detailed discussion of the technologies that ensure secure, scalable,

and reliable data management is beyond this article’s objective.

4.2.2. The SmartORC solver
The core of SMARTORC is represented by the Solver subsystem,

conducting the matchmaking activities for finding the best

resources for a given application, depending on QoE and QoS

requirements. This is a well-known and largely studied NP-

hard problem (Cattrysse and Van Wassenhove, 1992). Figure 3

presents the system architecture of the SMARTORC Solver

subsystem. Its functionalities are provided through the Application

Mapping and Re-mapping service. The service is used by two

main SMARTORC processes: Application Placement and Runtime

ApplicationManagement. The mechanisms provided by this service

are the ones needed to Compute Mapping and the ones needed

to Adapt Mapping that is already computed, which are amended

without triggering a complete remapping. The software module

encapsulating the business logic for determining the best mapping

plans is Mapping Planner, designed to be flexible enough to

exploit different solutions and algorithms for selecting the best

matchmaking between resources and applications.

The current design of SMARTORC allows to leverage different

strategies for solving the placement problem. Both mixed-integer

linear mapping solutions (MILP Solver) and AI-based approaches

[Artificial Intelligence (AI) Solver] can be adopted. In this article,

the former approach is presented in full detail in Section 3. We also

conducted a few preliminary evaluations using the AI Solver but

the results are not conclusive; thus, we decided to keep an in-depth

evaluation of such an approach for future studies.

Once computed, the mapping plans are stored in the

SMARTORC local storage, the Object Store that SMARTORC Solver

shares with the other subsystems.

4.2.3. Application description and manipulation
SMARTORC has been designed to work with applications

described using the TOSCA (Binz et al., 2014) standard.

TOSCA is a human-readable, extendable, template-based, and

self-documenting description format that allow to express a

large selection of application constraints on the Hardware (HW)

and Software (SW) resources, as well as the required QoS on

resources and services. In this section, we have mainly focus

on the features of TOSCA we exploit, with the architecture of

the Application Description and Manipulation subsystem following

from it.

4.2.3.1. The TOSCA language

The TOSCA standard provides a structured declarative

language (XML-based) to describe service components and

their relationships using a service topology, and it provides the

XML-based language for describing the management procedures

that create or modify services using orchestration processes.

The TOSCA language defines service templates by means of

Topology Templates, which describe what needs to be preserved

across deployments in different cloud/edge environments, as well

as related management plans. A Topology Template defines the

structure of a service; it consists of a set of Node Templates and

Relationship Templates that together define the topology model of a

service as a directed graph.

In Figure 4, it is possible to see an example of a TOSCA

template for deploying a single WordPress web server, defined in

Yet Another Markup Language (YAML) using the TOSCA Simple

Profile for YAML v1.3 (OASIS, 2020). The application template

contains a simple topology template with a single Compute node

template named wp_server. The node declares some basic values

for properties by relying on the set of capabilities provided by the

Compute node type definition. In the case of WordPress, which is a

software that needs to be installed or hosted on a compute resource,

the underlying node type is named tosca.nodes.SoftwareComponent

(it is not visible in Figure 4 but is defined internally in the

definition of the type tosca.nodes.WebApplication.Wordpress), and

has a predefined requirement called host, which needs to be fulfilled

by pointing to a node template of type tosca.nodes.Compute: in

this example, it is the wp_server node template. The underlying

TOSCA tosca.nodes.SoftwareComponent node type also assures that

a HostedOn predefined TOSCA relationship will automatically be

created and will only allow a valid target host node of typeCompute.

The capabilities file section contains properties that allow

application developers to optionally supply the number of CPUs,

memory size, and disk size they believe they need when the

Compute node is instantiated to run their applications. Similarly,

the os capability is used to provide values to indicate what host

operating system the Compute node should have when it is

instantiated. In the example, input parameters defined in the inputs

section can be assigned to properties of node template within the

containing topology template, as for themem_size property.

Figure 5 shows an example of the definition of an inter-

requirement between different applications. In this example, we

added a new software, a MySql database, to which the WordPress

application needs to connect to obtain database services. The

two applications are described by the topology node templates

named, respectively, wordpress and wordpress_mysql_db,

hosted, respectively, on the two tosca.nodes.Compute type nodes

named wp_server and mysql_server. The node-type definition

for the WordPress application node template declares the

complete database_endpoint TOSCA predefined requirement

definition. This database_endpoint declaration indicates

that it must be fulfilled by any node template that provides

an Endpoint.Database Capability Type using a ConnectsTo

relationship. Thewordpress_mysql_db node template’s underlying

MySQL type definition indeed provides the Endpoint.Database

Capability type. The connection between the two applications is

provided by the relationship template named wp_db_connection,

which adds the inter application property named latency to

the default ConnectsTo TOSCA type; the presence of such a

relathionship between the requirements of the wordpress node

template means that a latency of 20ms is required in the connection

between the two applications.
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FIGURE 3

Architecture of the solver module, performing the actual orchestration according to the selected optimization plugin. MILP, mixed-integer linear

program; AI, artificial intelligence.

4.2.3.2. The application description and management

subsystem

Once received, the application definition provided in TOSCA

is parsed. SMARTORC uses an internal representation to work with

the applications. Applications can thus be rendered using different

formats and models to adapt to different deployment backends.

This subsystem must also support changing the application

structure during the orchestration process and its potential

reenactment during the application lifetime, e.g., to increase the

number of instances of some of the (micro-)services composing it

and perform a scale-up.

The structure of the subsystem integrating all the functionalities

needed for the management of application descriptors is presented

in Figure 6. The Application Description and Manipulation

subsystem exposes a single interface called Application Upload

devoted to the upload of the application descriptor on SMARTORC.

SMARTORC supports CRUD (Create, Read, Update, Delete)

operations on the applications uploaded, the parsing of such

applications and, eventually, the rendering into the target

representation format (e.g., Kubernetes deployments). Each

functionality is provided by distinct software modules, namely,

Application Descriptor Manager, Application Model Parser,

Application Model Renderers. Altogether, these software modules

realize the Application Model Management. The functionalities

and the capabilities implemented by the Application Model

Management software are provided by SMARTORC through the

Application Descriptor Manipulation service. Such a service is

involved in two processes: Application Placement and Runtime

Application Management.

4.2.4. User management
SMARTORC has been designed to manage requests from

two different kinds of user roles: end users and administrators.

Administrators perform tasks typical for this kind of role, e.g.,

system management, user management, system configuration, and

so on. In addition, in SMARTORC, administrators’ activities are

also related to adding or removing edge data centers to the list

of those used for application placement. SMARTORC embodies

a dedicated subsystem devoted to user management. Figure 7

depicts the actual structure of the User Management subsystem.

The subsystem exposes two interfaces, one forUser Registration and

another for User Login. These interfaces relate to two processes,

allowing for User Registration and User sign-on, respectively. The

activities conducted by these two processes are provided through

the Authentication service, whose functionalities enable CRUD

operations on users. The Authentication service is also designed

to support login through external credentials. The software that

implements all the functionalities of User Management is called

Security Management. It does interface with the data stored into the

User Registry.

4.2.5. Object store
To perform its activities, SMARTORC needs to store and access

data of various kinds, ranging from monitoring information to

application requirements, including user identification data as well

as application status information. All the information needed by

SMARTORC to orchestrate andmanage applications is encapsulated

within the SMARTORCObjectStore, which is a software component
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FIGURE 4

TOSCA simple node and hosted application definition.

that provides a flexible solution for the management of data

within SMARTORC. Its interfaces address the actual needs of the

tasks undertaken by the various SMARTORC subsystems. The

ObjectStore abstraction is also a tool to encapsulate the different

needs of SMARTORC components in such a way that initially a

simple, off-the-shelf, and portable storage solution can be used

to speed up the development. More complex and feature-laden

solutions can be swapped in later to tackle higher performance

and scalability of the orchestrator, as well as exploit decentralized

storage management.

Figure 8 depicts the ObjectStore subsystem, the three main

categories of information it manages and the modules accessing

those information categories. The User registry keeps track of

all the information concerning users for the needs related to

authentication and authorization. It is accessed by the Security

Management module. The Application Repository stores all the

representations (both internal and external) of the applications

managed by SMARTORC. The software module that has read/write

access to these data is Application Model Management. Finally,

the Resource Index manages data related to the resources that

can be used in the application placement process and runtime

application management. Resource Indexing and Discovery feeds

this data repository with information concerning the edge data

centers that can be used to host application instances. Last but

not least, the Mapping Planner software module is the one module

of SMARTORC fully exploiting the ObjectStore, having read/write

access to the entire set of information it manages.

4.2.6. Interfaces and processes
The SMARTORC system comprises several interfaces, processes,

and services that collectively embody its functionalities and

capabilities. The illustration in Figure 9 provides a bird’s-eye view

of the architecture. It highlights the mechanisms exposed, the

processes activated by these mechanisms, and the services that

implement the business code for these mechanisms.

It is worth noting that almost all processes and services are

initiated by an interface mechanism, with the sole exception of

the Runtime Application Management process, which is activated

autonomously through active monitoring and observation of an

application.

5. SmartORC prototype

In this section, we present the key technologies and provide

details about the current prototype of SMARTORC. However, we

do not provided a comprehensive description of all SMARTORC
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FIGURE 5

TOSCA example of a two-tier application with the latency inter requirement definition.

modules, as it goes beyond the scope of this article. The current

prototype of SMARTORC primarily stems from the prototype used

in the H2020 ACCORDION and H2020 CHARITY projects. It was

developed in Python and follows a mostly centralized structure,

incorporating many of the modules described in Section 4.

The prototype manages both requests from application owners

(the end users) and requests concerned with the addition or

removal of edge data centers (performed by administrators).

Such a prototype is based on an HTTPS RESTFul interface

defined using the OpenAPI 3.1 standard (OpenAPI, 2021), a
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FIGURE 6

Architecture of the module supporting application description and manipulation.

FIGURE 7

Architecture of the user management module. CRUD, create, read,

update, delete.

YAML-like declarative language-agnostic interface to HTTP

APIs, to allow for easier management and modification of the

interface itself. SMARTORC has been designed to work with

applications described utilizing the TOSCA description language,

using the TOSCA Simple Profile for YAML 1.3 (OASIS, 2020)

specifications; such a description mainly provides information

about (1) the application components and the associated topology;

(2) the requirements, for each application component, in terms

of resources as well as QoS/QoE parameters; and (3) the recovery

actions needed to be performed by the orchestrator when

FIGURE 8

Architecture of the object store module.

any QoS/QoE requirement of a component is violated. The

application description is provided through the interfaces,

together with the required operations (i.e., deployment,

undeployment, scale-up, scale-down, etc.) and additional

optional parameters, using the JavaScript Object Notation

(JSON) format for the request message. The TOSCA application

description is parsed using the OpenStack project’s parser,3 a

3 https://wiki.openstack.org/wiki/TOSCA-Parser
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FIGURE 9

Overall representation of the SMARTORC interfaces, processes, and services.

well-documented parser developed by the OpenStack Community

that is easy to use, highly maintained, and adherent to the

TOSCA Simple Profile for YAML specification. After parsing the

application requirements, specified by the TOSCA description,

these requirements are translated into an internal representation,

and the status of the compute continuum resources is retrieved

from the ObjectStore module. Such information is stored in

an SQL-based database (currently SQLite) and provided by the

RIDmodule.

As described in Section 4, the main objective of the RID is

to retrieve updated information about the availability of resources

belonging to the continuum in a scalable and reliable way:

such a result is achieved by exploiting a Distributed Hash Table

(DHT)-based Peer-To-Peer (P2P) overlay network. In the current

prototype, RID is based on an implementation of the well-known

Kademlia network (Maymounkov and Maziueres, 2002), where

each key represents the name of a monitored resource. Each

agent of the Kademlia overlay network is distributed and deployed

on each compute continuum data center. The local RID agents

periodically collect up-to-date information about resources from

(potentially different) local monitoring mechanisms offered by

the edge data centers or triggered by custom policies exploiting

the query mechanism provided by the Kademlia DHT. In the

actual implementation, the local agent can be interfaced with

Prometheus,4 largely diffused in edge/cloud environments.

Application descriptions, the list of users and their roles, and

the status of the resources belonging to edge data centers are stored

by the ObjectStoremodule in an SQLite database. The SMARTORC

solver is based on the Python-MIP library,5 a collection of Python

tools for modeling and solving MILPs. It executes a Branch-&-Cut

(BC) algorithm that will provide the exact optimal solution in a

finite time. Python-MIP was written to be deeply integrated with

4 https://prometheus.io

5 https://www.python-mip.com

the C libraries of the open-source COIN-OR Branch-&-Cut (CBC)

solver.6

Finally, recovery actions and the result of the matchmaking

for deployment and undeployment actions are converted into a

set of K3S/K8S Kubernetes configuration files. Kubernetes is a

largely used, well-documented open-source framework leveraged

to orchestrate and manage the local resources of edge data centers

efficiently. All the implemented modules have been packaged as a

unique service accessible by the front-end REpresentational State

Transfer (REST) interface and released as a Linux-based Docker 7

container to be easily deployed and integrated into a preexisting

environment.

5.1. Scalability concerns with MILP and
mitigation

Despite having the ability to find optimal allocation solutions,

MILP-based approaches do not scale well when the size of the

problem grows and possibly result in significant delay when

searching for viable matches. The growth in size of the MILP

problem instance and the correspondingly increasing algorithm

execution time are well-known limitations of these kinds of

optimization approaches. To address the issue, we selected two

approaches: a hierarchical one, which is being adopted in the

current version of the prototype, and a fully decentralized approach

that is currently under development and will be the core of the next

version of SMARTORC. The details of the two version are give in

Sections 5.1.1 and 5.1.2, respectively.

5.1.1. Hierarchical structure
To address the scalability issues that affect MILP-based

approaches, we adopted a solution that is inspired by the ETSI

Zero touch network and Service Management (ZSM)8 standard

6 https://github.com/coin-or/Cbc

7 https://www.docker.com
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FIGURE 10

Hierarchical SMARTORC API.

and, more specifically, its decomposition in End-To-End (E2E)

and domain-specific orchestrators. The E2E orchestrator focuses on

the overall systems (or, in other terms, having a bird’s-eye view of

the resources belonging to the entire systems), while the domain-

specific onemanages the physical resources that will materially host

the applications.

We advocated this perspective in developing the hierarchical

SMARTORC: a higher level module, called Sauron, behaving as

an E2E orchestrator, receives all the requests and aggregates these

requests in batches of configurable size. The E2E orchestrator

does not directly manage resources but interacts with SMARTORC

instances (see Figure 10). It does not work at the granularity of

a single application, operating instead on batches of applications,

checking the viability of the proposed assignment only in an

aggregate form (i.e., if the sum of the application requirements in

a batch is satisfied by the aggregate set of resources managed by a

given SMARTORC instance).

This solution trades off some efficiency in resource usage and

some efficacy of the orchestration to achieve a better scalability. The

approach could in principle lead to a suboptimal exploitation of

resources, from the viewpoint of some of the applications. Besides,

by keeping the decision process at an aggregated level, it may

happen that a batch cannot be allocated as a whole to the resources

managed by a SMARTORC instance, e.g., because the aggregation

of requirements results in too many constraints over the same set

resources. Working on aggregates of requests can thus trigger an

error at deployment time.

8 https://www.etsi.org/technologies/zero-touch-network-service-

management

5.1.2. Fully decentralized structure
We are also devising a completely decentralized structure

for SMARTORC. The main idea behind this approach is to reduce

the size of MILP problems by restricting the application of

MILP-based solvers to small amount of resources. In practice,

we assume that the compute continuum at the edge comprises

many small collections of resources. These entities can manage and

carry out direct requests for the execution of applications. They

can assign computational duties to their internal resources using

their MILP solver components. Since MILP problems will have a

limited dimension and size, the approach can result in an optimal

assignment with acceptable computational overhead. However,

to avoid unbalanced scenarios, such a system should implement

mechanisms for harmonizing the overall exploitation of the system

resources as a whole. To be effective, we decentralized the

intelligence of the system, allowing each of its single components to

communicate, collaborate, and coordinate with each other. We aim

at optimizing the distribution of the applications executions with

respect to both their functional and non-functional requirements.

These results can be obtained by decoupling the activities

of the Solver component. On the one hand, the Solver manages

and takes decisions about application execution assignments that

remain inside a single SMARTORC instance. On the other hand,

it has to manage the communication and coordination phases for

taking collaborative decisions with other SMARTORC instances.

More specifically, the RID component is used to let each entity

become aware of the characteristics and feature of other entities

in the system. In case of limited resources, a SMARTORC entity

uses a function for ranking the other entities (e.g., the closer ones

in term of latency), thus selecting and keeping the information
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of its top-k neighbors. Coordination with other entities happens

in time either periodically or as triggered by need (e.g., an entity

has exhausted its resources and cannot process any more incoming

requests). Using the descriptions, a SMARTORC entity can select

what other SMARTORC instances to communicate with. In their

respective Solver components, the SMARTORC instances exploit a

proper consensus-based evaluation and coordination scheme that

allows them to exchange the applications they are executing to

realize an optimized allocation of workloads. Such a scheme should

work on the resources of the involved instances and the QoS/QoE

limits posed by the associated applications.

While the final configuration could be less precise than a

MILP-based application assignment, the decentralized nature of the

decision-making process makes it far more scalable and adaptive,

allowing a SMARTORC-based decentralized solution to efficiently

and effectively manage large-scale scenarios of edge resources.

6. SmartORC assessment

As mentioned above, a prototype of SMARTORC is currently

used in theH2020ACCORDION9 andH2020 CHARITY10 projects

that are still actively developing their technological frameworks. In

such contexts, SMARTORC deeply interacts with (and is tailored

to) other modules specific to each project (e.g., life-cycle manager,

monitoring subsystem, etc.). In this article, we have assessed

the SMARTORC prototype in isolation. As a matter of fact, a

number of amendments to the prototype were needed and have

been already implemented to integrate it within the projects’ SW

infrastructures. However, an evaluation of those projects is beyond

the scope of this article, which is mainly focused on the design

of SMARTORC. We thus considered the synthetic benchmark

approach the only one viable for the assessment of SMARTORC

on its own. The main objective of the experiments described

in this section is the validation of the overall design and the

key architectural choices underpinning SMARTORC and is not to

provide a comprehensive demonstration of the efficacy of the Solver

in the current SMARTORC prototype (e.g., quality of the solution to

the matchmaking problem).

To validate SMARTORC concerning its ability to be a viable

solution in the context of a large set, dispersed set of resources

available at the edge, we conducted a number of experiments on the

“amended” prototype. In particular, we conducted distinct sets of

experiments to validate both the hierarchical version of the current

prototype and the fully decentralized solution that will be the next

release of SMARTORC.

Section 6.1 discusses the results of the evaluation conducted

on the hierarchical version of our proposed orchestrator in two

different scenarios and reports on the results achieved, highlighting

the differences in terms of time spent (thus its potential scalability)

to calculate the solution between a flat version of SMARTORC and

a two-layer version.

In Section 6.2, we present some figures on the performance

achieved by key algorithms that will be part of the next fully

9 ACCORDION on CORDIS https://cordis.europa.eu/project/id/871793.

10 CHARITY on CORDIS https://cordis.europa.eu/project/id/101016509.

decentralized release of SMARTORC, which focuses on application

placement without relying on centralized components, to improve

the scalability even further. The assessment has been performed

using the PureEdgeSim simulator (Mechalikh et al., 2019). To

investigate the potential and flexibility of SMARTORC, we evaluated

it under challenging conditions.

6.1. Evaluation of hierarchical SmartORC

To assess the viability of a multilayered version of

SMARTORC in its attempt to overcome the limitation of

MILP-based matchmaking processes in terms of scalability,

we conducted two sets of experiments, each set run using a

different scenario.

One scenario considers a larger set of different edge data centers

(70 EMs) but lower contention (500 app instances); the other

considers a smaller set of data centers (50 EMs) but with higher

contention (400 app instances).

The requirements declared by each application, in terms of

resources, are the following:

• CPU cores: randomly generated in the range [1,8]

• Random Access Memory (RAM): randomly generated in the

range [128, 1,024] MB

• Storage: randomly generated in the range [10, 128] GB

Concerning the resources, all the experiments were performed

using an homogeneous set of resources, but the capabilities change

experiment by experiment. In all our experiments, we fixed the

number of nodes managed by each EM to 10.

More in detail, for the generation of resources, the parameters

employed are the following for each node and resource type:

• CPU cores: randomly generated in the range [20, 100]

• RAM: randomly generated in the range [2,048, 4,096] MB

• Storage: randomly generated in the range [200, 1,000] GB

Both scenarios were simulated by running an instance

of SMARTORC on a local Intel 4-cores i7600K CPU machine,

with 16 GB of RAM and feeding it with a TOSCA file describing

each application instance. SMARTORC processes the requirement

file, performs the matchmaking using the internal MILP-based

solver, and produces an output file with the final deployment

plan, composed of a series of couples of the form (AppID,EMID),

where the first is the unique ID of a certain application and

the second is the unique ID of the EM on which deployment

of the application will be attempted and the time, in seconds,

needed to perform the matchmaking process. Available resources

of EMs are also described into a file submitted to the RID

subsystem interface, depicted to add edge data centers. Taking

into account that each EM represents an administrative domain

with the responsibility to manage 10 nodes, the “flat” version

of the SMARTORC orchestrator, namely, the one that manages

each single application and resource directly, attempts to solve

the matchmaking problem over 700 ∗ 10 = 7, 000 different
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FIGURE 11

Hierarchical orchestration—experimental results with configurations of 50 and 70 EMs with 10 nodes each EM. (A) Execution time (50 EMs, 10 nodes

each). (B) Standard deviation (50 EMs, 10 nodes each). (C) Execution time (70 EMs, 10 nodes each). (D) Standard deviation (70 EMs, 10 nodes each).

nodes. However, to simulate the hierarchical scenario, the single

instance of SMARTORC have been invoked multiple times: once to

represent execution of Sauron, the E2E higher level orchestrator;

Sauron is the entry point for users, receiving the request to deploy

all the applications of a certain scenario. Then, Sauron attempts

to solve the matchmaking process between the applications and

EMs by aggregating their resources as reported in Section 5.1.1.

After Sauron has produced its deployment plan in output, all

the applications proposed to be deployed on the same EM are

grouped together in a single batch, and a unique deployment

request for each batch of applications is communicated by Sauron

to the domain-specific SMARTORC instance of that EM; in our

tests, the communication time is considered to be negligible with

respect to the time spent by the Solver. Then, we invoked again

the single instance of SMARTORC a number of times equal to

the number of EMs involved in the requests produced by Sauron,

simulating their domain-specific orchestrators. Later, we submitted

a different request and the file describing the specific resources

managed by the corresponding EM to each instance separately.

Finally, each invocation produced an output file with the final local

deployment plan, which could also be emptied in case the local

optimization problem could not be solved as observed at the end of

Section 5.1.1.

Figure 11 depicts the results achieved by SMARTORC in the

two sets of experiments we conducted. Specifically, Figures 11A, C

present the comparisons involving the flat version of the

SMARTORC orchestrator with the hierarchical one that employs its

multilevel architecture (involving Sauron as the E2E higher level

module and domain-specific modules for each EM). The figures

illustrate the amount of time (on logarithmic scale) requested

to perform the matchmaking process. For the hierarchical

version, we summed up the time spent by Sauron plus the

mean of the time spent by the domain-specific modules; it

is possible to note that each domain-specific module runs

concurrently with the other ones in parallel on different EMs.

As can be noticed, the multilayer version requires an amount

of time that is two orders of magnitude smaller than the

“flat” version.
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TABLE 1 Hierarchical and flat orchestration—estimation of the number of

decision variables and constraints.

Version P #xi,d #(1) #(2)

Flat 700 350,000 500 2,100

Hierarchical (Sauron) 70 35,000 500 210

Hierarchical (Dom-spec) 10 5,000 500 30

We can note that these results were obtained by reducing the

dimension and size of the MILP problem performed separately

by Sauron and each domain-specific orchestrator, with respect

to the “flat” version. We have not applied any particular

technique to approximate the optimization problem reported in

Section 3, so we attempted to estimate the dimension of the

problem in the “flat” version and in the hierarchical version,

respectively, given the scenario with lower contention (the other

scenario is similar), by calculating the number of decision

variables and constraints to be solved by the Solver. Taking into

consideration the model reported in Section 3, we can observed

that the following list of parameters have the same values in

both version:

• the number of applications: P = 500

• the number of resource types, Q = 3; furthermore, we

can note that for each resource type, it is always true that

finter(qj) = 0 and fnum(qj) = 1 with j ∈ {1, . . . ,Q}.

For the second point, we can simplify the MILP problem

by avoiding to calculate the constraints from groups (3) to (10)

since there are no inter resources and all the resources are

numerical. In this way, we can reduce our estimation, calculating

only the number of decision variables xi,d with i ∈ {1, . . . ,N}

and d ∈ {1, . . . , P} and the number of constraints of sets (1)

and (2).

Table 1 shows the parameters’ estimation for theMILP problem

in the case of the “flat" version, in the first row, and the

hierarchical one; the second row is about the MILP problem

solved by Sauron, while the third row is about the MILP problem

solved by a domain specific orchestrator in the worst case,

where all the applications have to be deployed on the same EM.

The results show that the hierarchical version will lead to an

optimization problem that is about ten times reduced in dimension

respect to the “flat” version, validating the effectiveness of the

hierarchical approach.

Figures 11B, D provide insights on the standard deviation

concerning the time requested to perform the matchmaking by

the domain-specific orchestrators running inside EMs. As can be

noticed, the values vary considerably as the amount of application

assigned by Sauron to each EM is different and depends on the

decision taken by the Solver running inside the E2E orchestrator.

The results showed that, in spite of the relatively high values of

standard deviation, in any case, the time employed by the domain-

specific orchestrator is far smaller than the one requested by the

“flat” version of SMARTORC.

Whenever the E2E orchestrator becomes a bottleneck, it is

possible to introduce further layers or increase the granularity

of resources and application, letting each orchestrator work on a

smaller set of items. A generalization of this approach is something

that we did not consider in this article, but we plan to study it in

future works.

6.2. Evaluation of decentralized SmartORC

As detailed in Section 5.1.2, we are investigating how the overall

architecture of SMARTORC can be used in a purely decentralized

environment. We refer the interested reader to Mordacchini et al.

(2021) for a thorough description and an extensive evaluation of

this scenario.We summarize here the main findings of those results

to show the flexibility of SMARTORC and its effectiveness in such a

difficult scenario. Indeed, the lack of complete knowledge and the

potential limits in the communication range make this scenario

far more challenging than an environment with a centralized

orchestrator.

In the following experiments, we considered a setting with four

distinct SMARTORC instances placed in a 200× 200m-square area.

The applications present in the system are of four different types:

computational intensive, memory intensive, network intensive, and

applications, where all the previous aspects are balanced. All the

applications require that any deployment plan has to ensure that

the served users are within a maximum allowable latency, a QoS

constraint needed to guarantee a given application-specific QoE.

For the experimental evaluation, we used 60, 120, and 180 different

users randomly placed in the system. The users generate requests

for applications. Such requests are uniformly divided among the

available applications. In our scenario, a user ui initially requests

an application Aj to the closest SMARTORC instance. In case

the requested application is already running on that SMARTORC

instance, the user is simply added to Aj users on that SMARTORC

instance. If the SMARTORC instance does not have the requested

application, we assume that it takes the requested application image

from a remote repository before running it. This mechanism is

very simple, and it initially ensure to limit of the latency between

a user and the SMARTORC instance that is hosting the user’s

application. However, it could also lead to creating a plethora

of replicated images of the same application running in different

parts of the system. It is easy to imagine that it is possible

to reduce these replicated applications by grouping their users

on fewer SMARTORC instances without violating their QoS/QoE

limits. As a consequence, the number of running applications can

be reduced, thus saving resources and limiting the energy required

to serve the same amount of users.

In the following problem, we assumed that the SMARTORC

instances collaborate, using point-to-point communications.

In case the instances run the same application Aj, the

involved SMARTORC instances attempted to understand whether

they can stop one of the two running images by referring all their

users to just one of the SMARTORC instances. In doing this, they

evaluated their respective computational loads, the computational

requirements of Aj, and its QoS limits.
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TABLE 2 Decentralized orchestration—relative energy consumption

(footprint).

Time 60 Usr. 120 Usr. 180 Usr.

5 0.712 0.877 0.924

10 0.644 0.692 0.848

20 0.627 0.662 0.797

25 0.627 0.662 0.797

TABLE 3 Decentralized orchestration—users’ average latency (in

seconds).

Time 60 Usr. 120 Usr. 180 Usr.

0 0.356 0.363 0.367

5 0.370 0.387 0.391

10 0.381 0.388 0.415

20 0.384 0.389 0.433

25 0.384 0.389 0.436

Table 2 shows how this coordination mechanism is able to

reduce the overall amount of energy consumed in the system.

The table shows the evolution over time of the energy required

by the entire system, including the energy needed for inter-

communications between SMARTORC instances. The results are

presented as the ratio between the energy needed at a time t > 0

and the energy consumed by the system at the beginning of the

simulation at time t0.

It is possible to observe that the decentralized approach

achieves a remarkable reduction of the energy consumed by the

system, with more than a 20% reduction in the worst case. To

do so, some users should refer to an application image placed in

a SMARTORC instance that is different from the one they were

originally assigned to. This fact could imply an increase in the

latency experienced by the users. However, as shown in Table 3,

this is a very limited variation. The table presents the ratio between

the average user latency and the maximum latency admitted

by their applications’ QoS and QoE limits. Only a marginal

increment occurs with respect to the initial situation. Therefore,

this fact further confirms the ability of the proposed collaborative

schema to optimize the placement of the applications in

the system.

7. Conclusion

The placement of applications on resources belonging to the

compute continuum is a challenging task. Several approaches

have been proposed in an attempt to solve this problem in

an efficient and scalable way. SMARTORC aims at realizing

these goals, stemming from research about supporting large-scale,

interactive next-gen applications in the continuum. We discussed

the design of SMARTORC and its key architectural choices along

with some details of the prototype currently employed in two

European research projects. In its current form, SMARTORC

has a comprehensive component design that provides resource

management capabilities on top of compute continuum resources.

It is characterized by an intuitive and flexible architecture that can

exploit several of the referenced approaches to orchestration in

the compute continuum, including decentralized and hierarchical

ones. We have also presented some promising preliminary

results concerning the validation of the architectural choices. The

experiments demonstrated that SMARTORC is a suitable solution

for environments that need high levels of scalability and works with

a large, dispersed set of resources.

Due to the modular and extendable design of SMARTORC,

several improvement directions are already apparent, which pave

the way for a complete framework implementation, for the

introduction of additional capabilities, and for further research on

management techniques, orchestration algorithms, and heuristics.

One of the next steps is the complete definition of the interfaces

between components, in terms of both technologies and the actual

information that is passed along. This effort will systematize the

implementation results from different projects and experimental

activities, tying them into a common framework. Based on

current design and implementation activities, more research

opportunities will eventually emerge. We are currently planning

the introduction of a “feedback channel,” where applications

can provide structured information to SMARTORC to drive

resource management, e.g., runtime values of application-specific

metrics of QoS and QoE that are influenced by the dynamic

resource allocation.
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