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A B S T R A C T

In this work, we investigate the performance of a proximity detection system for visitors in an indoor museum
exploiting data collected from the crowd. More specifically, we propose a CrowdSensing-based technique for
proximity detection. Users’ smartphones can collect and upload RSS (Received Signal Strength) values of nearby
Bluetooth tags to a backend server, together with some context-information. In turn, the collected data are
elaborated with the goal of calibrating two proximity detection algorithms: a range-based and a learning-based
algorithm. We embed the algorithms with R-app, a visiting museum application tested in the Monumental
Cemetery’s museum located in Piazza dei Miracoli, Pisa (IT). We detail in this work an experimental campaign
to measure the performance improvements of the CrowdSensing approach with respect to state-of-the-art
algorithms widely adopted in the field of proximity detection. Experimental results show a clear improvement
of the performance when data from the crowd are exploited with the proposed architecture.
1. Introduction

The last ten years have been showing an increasing attention to
location-based services (LBS), exploiting the current user’s location to
deliver an enriched user experience. This is the case of many popular
mobile applications exploiting the user’s position to deliver location-
aware services. The performance of such systems is rapidly increas-
ing also when considering indoor environments, thanks also to the
combined use of heterogeneous sensing units and learning-based algo-
rithms [1–3].

Nevertheless, an increasing number of scenarios do not require
accurate knowledge of the user’s position, rather it is sufficient deter-
mining the proximity of a person with respect to a point of interest
(POI). This is the case of contact tracing applications which are de-
signed to track proximity between people [4]. Many technologies have
been successfully tested in this context. Among them, we refer to the
family of RF (Radio-Frequency) technologies such as Wi-Fi, UltraWide
Band (UWB), Infrared (IR) and Bluetooth. The latter, in particular, has
demonstrated successful in many contexts. Two main reasons drive the
diffusion of Bluetooth for proximity detection. On the one hand, Blue-
tooth is widely diffused with commercial devices, e.g. smartphones,
wristbands and smart watches. On the other hand, the Bluetooth Low
Energy specification and the recent Bluetooth 5.x specification, reduce
the energy consumption of such communication protocol. However, the
accuracy of proximity detection algorithms based on Bluetooth is still
affected by environmental and hardware constraints as studied in [5].
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In this work, we investigate a promising approach to improve
the accuracy of proximity detection based on Bluetooth. We propose
a CrowdSensing-based technique according to which the crowd can
collect data through commercial devices useful to (re)calibrate an
existing algorithm. To the best of our knowledge, this approach has
been never adopted to detect proximity between people and POI.
We first propose a software architecture according to which user’s
devices can collect RSS values of received Bluetooth tags, together
with some context-information. Such data are required to determine
the Ground Truth. In turn, the collected data can be uploaded to a
backend server, where data are processed to calibrate two state-of-
the-art algorithms: a threshold-based and a learning-based algorithm.
It is worth to notice that our goal is showing how a CrowdSensing
approach can improve the performance of state-of-the-art algorithms,
commonly adopted to solve the problem described in this work. We test
the proposed approach in a challenging environment: the Monumental
Cemetery located in the famous Piazza dei Miracoli of Pisa (IT). To
this end, we design and implement a mobile application, named R-app,
built to automatically detect proximity of visitors with respect some
artworks. The application offers to visitors some multi-media contents,
such as artworks’ description, an image gallery and info-graphics. Dur-
ing our tests, we monitor a number of artworks and we execute several
museum’s visits with commercial smartphones. In the paper we detail
the followed methodology to organize a data collection campaign,
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whose goal is the performance assessment of the two algorithms with
and without the use of the CrowdSensing approach. All the collected
data are available to the community as a public repository [6].

Our experimental tests include three settings of increasing complex-
ity: (i) we vary the adopted smartphone, (ii) we modify the visiting
order of the monitored artworks and, (iii) we combine the two previous
settings together. From our results, it is clearly possible to observe the
performance improvement of the algorithms when data collected from
the crowd are exploited, with a net improvement of the Accuracy metric
up to 30% with respect to the state-of-the-art. In summary, the novel
contributions of this paper are the following:

• we propose a proximity detection architecture based on the
CrowdSensing approach;

• we compare the performance of two state-of-the-art algorithms
with and without the CrowdSensing approach;

• we test our solution in a realistic indoor museum. Moreover, We
conduct a data collection campaign with commercial Bluetooth
tags and smartphones;

• we release the collected dataset to the community for further
experimental testing, [6].

he remainder of this work is organized as follows: Section 2 describes
he state-of-the-art of proximity solutions based on the Bluetooth tech-
ology with a summarizing table. Such section also provides the back-
round information for proximity detection based on RSS analysis. The
rowdSensing-based architecture is described in Section 3 as well as
he proposed algorithms. Section 4.3 describes the data collection cam-
aigns and the architectural information of the indoor museum. Results
re finally discussed in Section 5 in which we compare the proposed
olution with a baseline proximity algorithm. The paper concludes with
discussion about new research lines.

. Background and related work

.1. Proximity detection in indoor museums

In this section, we report the most relevant works addressing the
roximity detection problem. We restrict the analysis to museum’s
nvironments and to the Bluetooth technology, so that to highlight the
ovel contribution of our work with respect to current literature.

The BLE (Bluetooth Low Energy) technology implements features
uitable for proximity detection with commercial devices [7,8]. Under
his respect, it is important to mention the Google’s Exposure Notifica-
ion APIs.1 Such framework allows detecting devices in proximity by
xploiting RSS values, modified with an attenuation factor. Such factor
s designed to compensate the differences of RSS values between the
ransmitting and the receiving devices. Although the attenuation factors
ffer cross-compatibility between Android and iOS devices, such APIs
ely on a static list of attenuation factors estimated with a number of
evices.2 Differently from the static list proposed with the Exposure
otification APIs, our approach also includes a reference architecture

o collect, store and elaborate data provided by the crowd.
In [9], the BLE beacons are used to develop an efficient localization

ystem inside the Expo Museum at Postojna, Slovenia. The improve-
ents are implemented by storing the signal measurement’s history to
itigate the RSS fluctuations. Such work proposes a method to estimate

he nearest transmitter, by analyzing the strongest RSS value. However,
ue to the significant RSS fluctuations, false positives and negatives
ay occur. In order to overcome such inaccuracies, authors propose

1 https://developers.google.com/android/exposure-notifications/ble-
ttenuation-overview?hl=en

2 The CSV list of attenuation factors, last version available at the time of
riting this paper is Dec. 2020: https://developers.google.com/static/android/

xposure-notifications/files/en-calibration-2020-08-12.csv.
2

storing the RSS signals collected in a dynamically set interval from
every transmitter in a manually-fixed-length array, where the average
RSS value is calculated. The choice of the strongest signal is made by
comparing all averages of all detected transmitters in a specific area.
Moreover, the user’s position is estimated by also fusing data obtained
from inertial sensors, such as the accelerometer, and by adopting a
threshold-based mechanism.

Authors of [8] analyze the Bluetooth signals with fingerprinting and
machine-learning approaches in order to improve the accuracy in a
mixed indoor–outdoor environment. The paper describes a new BLE
RSS database composed of raw measurements from different smart-
phones.

In [10], authors propose an approach based on neural networks,
namely MLP NN — Multilayer Perceptron Neural Network. This ap-
proach allows authors to re-build with high accuracy the visitor’s paths.
In [11], authors assume that visitors bring a BLE devices during the
museum’s visits. The device emit beacons collected by BLE receivers
with a known position. In turn, the collected beacons are forwarded
to a server computing the visitors’ location. The location is estimated
running a pre-trained neural network.

The ‘‘Ghosts!’’ project [12] is focused on the development of a game
application based on BLE technology for the Cambridge museums.
To overcome RSS fluctuations, authors exploit a map reporting the
positions of BLE tags deployed in the museum. Through such map,
visitors are guided to reach their destination.

In Trowulan Museum [13](Indonesia) visitor’s smartphones are
used to collect information extracted from the Bluetooth tags. In partic-
ular, smartphones upload the tag’s identifier and the coordinates of the
tag. In turn, such information are elaborated by a backend server and
the visitor’s position is estimated with a trilateration-based technique.
Authors of [14] study the visitor’s behavior in the Louvre Museum.
More specifically, museum’s rooms are equipped with Bluetooth tags
to track the time spent by visitors in rooms. Through this process,
it is possible to construct the visiting path of visitors. Note that the
deployed tags are not linked to artworks, rather they are deployed in
the environment with the objective of reconstructing the followed paths
of visitors.

In [15], authors implement a localization system in MUST museum,
Lecce (IT). Authors exploit user’s wearable devices to collect RSS values
from BLE devices deployed in the museum. The localization system
is deployed on board of wearable devices and it estimates the user’s
location with a path-loss model. The adopted model, combined with an
image-based technique, allows authors to detect the proximity between
visitors and artworks. The same path-loss model has been also adopted
in [16]. In this case, authors use such model to compute the distance
between tags and visitors’ smartphones. In turn, the obtained distances
are combined with a trilateration technique to estimate the visitors’
positions.

Similarly to the two previous works, also in [17], authors adopt a
path-loss model. This work describes how the transmitting power of
tags affects the proposed method. In [18], authors adopt a Raspberry
PI unit to localize museum’s visitors. The unit collects and analyses bea-
cons emitted by tags deployed nearby the artworks. The implemented
localization algorithm relies on RSS values and in particular, authors
adopt an indoor propagation model to correlate RSS with distance from
the artworks.

We report in Table 1 a survey of works referring to our scenario and
based on the Bluetooth technology. Works have been compared across
four criteria: (i) Experimental Scenario: the scenario considered for the
tests; (ii) Adopted Device: the hardware adopted for the experiments;
(iii) Crowd Exploitation: if the surveyed work considers exploiting data
from the crowd; (iv) Adopted Algorithms: a short description of the
adopted algorithm. As reported in the table and to the best of our
knowledge, it emerges that none of the selected works exploits the
crowd for proximity detection. Differently, this paper moves towards
the idea of collecting and re-using retrievable data from end-users, to
improve the performance of proximity detection algorithms tested in

an indoor museum.

https://developers.google.com/android/exposure-notifications/ble-attenuation-overview?hl=en
https://developers.google.com/android/exposure-notifications/ble-attenuation-overview?hl=en
https://developers.google.com/static/android/exposure-notifications/files/en-calibration-2020-08-12.csv
https://developers.google.com/static/android/exposure-notifications/files/en-calibration-2020-08-12.csv
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Table 1
Overview of Bluetooth-based proximity detection solutions for indoor museums.

Experimental scenario Adopted devices Crowd Algorithms Reference
exploitation

Postojna museum Slovenia Samsung S7 ✗ Strongest RSS signal [9]

Uni. of Extremadura campus,
Badajoz

Honor 8 ✗ Fingerprinting and ML-based
techniques

[8]

Galleria Borghese, Rome, Italy iBeancon (Tx) RaspberryPi (Rx) ✗ Neural Network [10]

Unspecified museum BlueUp mini(Tx)
ESP32-WROOM-32D and
ESP32-WROOM-32U(RX)

✗ Trilateration [11]

Uni. of Cambridge Museums Visitor’s smartphone, BLE beacons ✗ Strongest RSS signal [12]

Unspecified museums Visitor’s smartphone ✗ Trilateration [13]

Louvre Museum Visitor smartphone, BLE sensors ✗ ‘‘If I see you, here you are’’ [14]

MUST museum, Lecce, Italy Wearable device(Rx), Raspberry
PI (TX)

✗ Strongest RSS signal and
image-based recognition

[15]

Unspecified museum Visitor’s smartphone, (iBeacon
protocol)

✗ Trilateration and Kalman filter [16]

Portsmouth City Museum Visitor’s smartphone,
EddyStone-URL

✗ path-loss model [17]

Unspecified museum Raspberry PI ✗ Strongest RSS signal and
image-based recognition

[18]

Monumental Cemetery’s museum,
Pisa, IT

Visitor’s smartphone, BLE beacons ✓ Neural Network, Strongest RSS
signal and Threshold

our solution
2.2. Proximity detection based on RSS analysis

With the term proximity we refer to the ability of estimating the
closeness of a subject with respect to a POI, e.g. museum’s artworks.
In our scenario, POIs are equipped with an emitting device while
the visitor brings the receiving device. i.e. a smartphone. We adopt
the Bluetooth wireless protocol and, more specifically, the Bluetooth
Low Energy (BLE) specification, widely supported by most commercial
devices. The BLE specification offers the possibility for a device to emit
beacons, small packets containing broadcasted information. Generally,
beacons adhere to one of the three main payload formats: iBeacon, Al-
tBeacon and EddyStone. We adopt the iBeacon format as it guarantees
compatibility with Android and iOS devices.

Some recent works exploit RSS values to estimate distance and to
determine the proximity. Authors of [19] introduces a crowd-sourcing
localization system combining Wi-Fi and Bluetooth tags. In particular,
the mobile device not only sends Wi-Fi fingerprint data to a map server,
but it also activates Bluetooth tags to share its location and to determine
the fingerprint information. Such approach allows authors to rapidly
build the signal map. As a result, information from Bluetooth tags is
used to acquire room-level location information without the need for
unnecessary user prompts.

Authors of [20] address the distance estimation problem with a
classification approach known as the d-Classifier. The classifier com-
bines the capabilities of the Kalman filter (KM) and it supports vector
machine (SVM) for precise distance categorization between beacons
and mobile devices. Authors state that while KF and SVM are com-
monly employed in proximity and distance-related applications, the
primary innovation of d-Classifier lies in the creation of feature vectors
that take into account diverse hardware types, deployment locations,
and beacon configurations, ultimately leading to enhanced accuracy.
The experimental findings underscore the unreliability of RSS as a
standalone metric for distance estimation, even after undergoing a
filtering process, given the varied internal and external configurations
in which tags are deployed. Consequently, the d-Classifier advocates
the inclusion of additional information beyond RSS for more accurate
estimations. Authors validate the d-Classifier using a substantial dataset
encompassing over 200.000 samples, featuring RSS measurements ac-
quired from diverse hardware setups and configurations with 25% error
3

reduction over existing methods.
In [21] authors present a system that harnesses the willingness of
smartphone’s users to detect Bluetooth devices. Such CrowdSensing
approach enables the analysis of crowd dynamics in urban settings. The
proposed solutions extends a simple device counting by incorporating a
range of sophisticated and resilient features. The adopted methods have
been evaluated using a substantial dataset comprising nearly 200,000
discoveries collected from nearly 1,000 scanning devices over a three-
day city-wide festival held in Zurich. Authors validate the proposed
solution with a GPS-based dataset from almost 30,000 users, serving
as ground truth reference.

In [22] authors study how to proximity between people with an
RSS-based distance estimation. The addressed scenario is referred to
as Too Close For Too Long (TC4TL). The paper presents a systematic
investigation into the application of Machine Learning techniques, uti-
lizing available datasets. Authors extract a set of 20 statistical features
from accelerometer and gyroscope sensor signals, as well as some
statistical features from Bluetooth signals. These features are used for
classification tasks to determine whether individuals are within a six-
foot proximity and to infer the context of the subjects. Among the 19
classification and regression methods explored by authors, ensemble
methods yield the best performance when applied to accelerometer and
gyroscope data. Results reported in [22] show that proximity can be
classified with an accuracy ranging from 72% to 90% when utilizing
accelerometer data, 78% to 84% with gyroscope sensor data, and a
remarkable 76% to 92% accuracy when using Bluetooth data.

2.3. RSS variability

All the aforementioned works exploit the RSS value estimated by
a receiving device. RSS measures the strength of the receiving signal
and it is generally expressed in decibel 𝑑𝐵𝑚 unit. According to the
Bluetooth chipset installed on a receiving device, the RSS value can
vary significantly. In the following, we will refer to device heterogeneity
to denote RSS variations due to the different hardware adopted to
estimate RSS values. As firstly mentioned in Section 2.1, the Google’s
Exposure Notification implements a static-based approach to mitigate
the device heterogeneity. In particular, such APIs allow to add an
attenuation factor to the RSS values collected by a device.

As a general consideration, the closer the emitter to a receiver,
the stronger the signal and the higher the RSS value estimated by a

receiver. Such relationship has been widely investigated in the last
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Fig. 1. RSS variability of five tags deployed at 1.5 m distance from the receiving device
at stationary conditions.

years, giving rise to a number of propagation models for indoor and
outdoor scenarios [23,24]. The path loss model represents a reference
model for wireless propagation, as also discussed in [25]. According to
such model, the relationship between RSS and distance is given by:

𝑅𝑆𝑆 = 𝑅𝑆𝑆0 − 10𝑛 log10(𝑑∕𝑑0), 𝑑 > 𝑑0 (1)

where 𝑑0 is the reference distance, such that the emitter and the
receiver are always in line of sight (typically 1 m distance), 𝑅𝑆𝑆0 is
the RSS at a reference distance 𝑑0, and 𝑛 is the path loss exponent
that regulates how severe is the attenuation in a given environment.
Nevertheless, in indoor environments, a number of factors affect signal
propagation such as obstacles, the presence of people acting as barriers,
and existing wireless interference on 2.4 GHz band. As a result, deter-
mining the distance of a Bluetooth emitter with respect to the receiver
still represents a challenging task.

RSS variability is generated by several reasons. In our previous
studies, we investigated some of these aspects, such as the effect of body
attenuation [26], the impact of environmental obstacles [5], but also
the influence of the adopted Bluetooth channel for advertising beacons,
as also studied in [27]. Under this respect, it is worth noticing that
beacons are propagated on three channels: 2.402 GHz (channel 37),
2.426 GHz (channel 38) and 2.480 GHz (channel 39) each of which
has a slightly different effect to the estimated RSS value. However, the
Android OS does not allow filtering beacons based on the Bluetooth
channel, causing a significant RSS variability [28,29]. In order to show
the RSS variability, we conduct a preliminary test in which we deploy
five Bluetooth tags at 1.5 meters (−23 dBm power of emission and 2 Hz
advertisement frequency) distance from the receiving device (Google
Pixel 4a). The test involves ten minutes of data collection, and Fig. 1
shows the results. From the figure, it is clear that even if Bluetooth tags
are at the same distance (same model, same distance, same receiving
device), RSS’ distributions remarkably differ.

We replicate the test reported in Fig. 1 by using two receiving
devices: Google Pixel 4a and Honor 9. In this case, the goal is to
show how different receiving devices estimate beacons broadcasted
by five tags at 1.5 distance for ten minutes. Fig. 2 compares the two
distributions: on the left side we report the Pixel’s distribution, while on
the right side the Honor 9’s distribution. Also in this case, it is clear the
impact of device heterogeneity to the RSS distributions. The previously
mentioned considerations make proximity detection a complex task at
realistic conditions.

3. Proximity detection with a CrowdSensing architecture

3.1. The reference architecture

In this section, we first detail our reference scenario and then we
detail how we exploit data collected from the crowd to increase the
performance of two state-of-the-art algorithms.
4

Fig. 2. Effect of device heterogeneity of five tags deployed at 1.5 m from the two
receiving devices at stationary conditions.

We refer to an indoor museum in which visitors are free to move and
to visit a number of POIs, i.e. artworks, information points, galleries
etc. All visitors carry their smartphones, provisioned with a Bluetooth
network interface. The existing POIs are equipped with Bluetooth tags
advertising beacons at regular intervals. Our objective is enabling users’
smartphones to automatically detect the proximity with existing POIs to
offer them an enriching user-experience. As for example, an application
installed on the smartphone can provide artwork’s details as soon
as a visitor moves close to the corresponding POI. We also assume
that smartphones have wireless connectivity for two purposes. On the
one hand, smartphones download some configuration settings, useful to
(re)configure the proximity detection algorithms. On the other hand,
smartphones collect and upload sensing information, that will be used
to improve the accuracy of the algorithms. We refer to [𝑅, 𝑃 ,𝐺𝑇 ] as the
data that visitors’ smartphones can upload to the backend:

• 𝑅: RSS values of the beacons advertised by POIs. This information
can be easily collected through APIs provided by Android and iOS
operating systems. In particular, such APIs offer the possibility of
logging RSS values of Bluetooth tags (expressed in dbm unit);

• 𝑃 : the POI’s identifiers. This information generally corresponds to
the MAC addresses of the Bluetooth tags associated with a POI.
Also in this case, APIs generally provide information about the
MAC address of the Bluetooth emitting devices, as well as the
UUID (Universally unique identifier);

• 𝐺𝑇 : the POI identifier that a visitor is in proximity with. This
information is also referred to as Ground Truth (GT). We discuss
in Section 4.1 a possible approach to infer the visitor’s GT with
the use of a mobile application.

The previously mentioned scenario might correspond to a very
common situation in which visitors first download the museum’s ap-
plication, and then they use it to get access to contents provided by the
museum. We start from this experience to design a CrowdSensing-based
architecture exploiting the data collected by each of the smartphone:
[𝑅, 𝑃 ,𝐺𝑇 ]. The underlying idea is to design a system able to iterate
through three steps, as reported in Fig. 3:

1. Setting Provider: providing the algorithm’s settings [𝑠] to visitor’s
smartphones to calibrate the algorithms;

2. Data Collector: storing data provided by visitors: [𝑅, 𝑃 ,𝐺𝑇 ];
3. Re-calibration: updating settings [𝑠] with data provided by smart-

phones and elaborated by the backend system.

The reference architecture we propose is composed by a backend
server in charge of providing settings to new visitor’s smartphones
through wireless connectivity. The configuration settings allow the
proximity detection algorithms to detect nearby artworks and to access
the relative contents. The backend also acts as data collector. In partic-
ular, the newly received data [𝑅, 𝑃 ,𝐺𝑇 ]𝑖 from visitor 𝑖 are processed
to refine the configuration settings [𝑠]. Fig. 4 shows our reference
CrowdSensing architecture.
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Fig. 3. Life-cycle of the proposed CrowdSensing architecture for proximity detection.

Fig. 4. The reference CrowdSensing proximity architecture.

3.2. Proximity detection algorithms

We now detail the algorithms that we test to evaluate the proposed
architecture based on a CrowdSensing approach. For each of the algo-
rithms, we describe two versions: a static version and a crowd-based
version.

Threshold-based Algorithm: the first algorithm estimates the prox-
imity from a set of POIs by comparing RSS values with respect to a
reference threshold 𝜏. In the rest of this paper, we refer to this algorithm
as Threshold. This approach is relatively simple and widely adopted
in literature [14,17]. The static version of Threshold considers one
only threshold 𝜏 for all the POIs in the environment. More formally,
the algorithm performs two operations: filtering the sampled RSS values
and comparing them against 𝜏. The adopted filtering technique is based
on a moving window that keeps into account only the most recently
received RSS. Filtering RSS values allows us to stabilize the RSS fluctu-
ations, discussed in Section 2.2. In particular, we adopt the p-percentile
filter, e.g. a median or a percentile of the RSS values, which is often
adopted in computer graphics to remove outliers without degrading the
resulting image (as proposed in [30]). For the purpose of filtering RSS
samples, we use such a filter to minimize the variance of RSS values, to
obtain stables values during the visiting path. More specifically, given
a set of collected beacons from 𝑃𝑂𝐼𝑗 : 𝐵𝑗 = {𝑏1, 𝑏2,… .., 𝑏𝑖}𝑗 and the cor-
responding sequence of noisy RSS values 𝑅𝑆𝑆𝑗 = {𝑟𝑠𝑠1, 𝑟𝑠𝑠2,… , 𝑟𝑠𝑠𝑖}𝑗 ,
the p-percentile filter is given as:

𝑅𝑆𝑆𝑗 = 𝑃 (𝑅𝑆𝑆𝑗 ) ∀𝑃𝑂𝐼𝑗 (2)

where 𝑃 (𝑅𝑆𝑆𝑗 ) corresponds to the p-percentile of 𝑅𝑆𝑆𝑗 . After the
filtering process, Threshold identifies the nearest POI by compar-
ing RSS values of 𝑃𝑂𝐼𝑗 with respect to a single reference threshold
𝜏 as follows: 𝑅𝑆𝑆𝑗 ≥ 𝜏. This comparison is performed for all the
detected POIs, namely 𝑃𝑂𝐼𝑖, 𝑃𝑂𝐼𝑗 , . . . , 𝑃𝑂𝐼𝑘. The algorithm ranks
the list of nearby POIs according to RSS values in an increasing order,
e.g. [𝑃𝑂𝐼𝑖, 𝑃𝑂𝐼𝑗 , 𝑃𝑂𝐼𝑘].

The crowd version of Threshold implements a multi-threshold
mechanism. The underlying idea is still comparing the filtered RSS val-
ues with respect to a reference threshold, but differently from the previ-
ous version, now the algorithm adopts 𝑘 distinct thresholds [𝜏 , 𝜏 ,… 𝜏 ],
5

𝑖 𝑗 𝑘
Table 2
Threshold algorithm: Pattern of visits of three visitors with three POIs and the
corresponding elaborated data.

Visited POI User-collected data

Visitor a 𝑃𝑂𝐼𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−76 𝑖 𝑖
−77 𝑘 𝑖
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Visitor b 𝑃𝑂𝐼𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−44 𝑖 𝑗
−48 𝑗 𝑗
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Visitor c 𝑃𝑂𝐼𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−33 𝑖 𝑘
−30 𝑗 𝑘
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Crowd-Elaborated data [𝜏𝑖 , 𝜏𝑗 , 𝜏𝑘]

one for each POI. The set of thresholds is obtained exploiting data
collected by the crowd. Indeed, we can exploit the CrowdSensing
architecture previously described to assume that smartphones upload
[𝑅, 𝑃 ,𝐺𝑇 ] data containing respectively:

• 𝑅: the list of RSS values;
• 𝑃 : the POI identifier for every RSS value in 𝑅;
• 𝐺𝑇 : the POI to which the visitor is in proximity with, namely the

Ground Truth.

In order to clarify this aspect, let us suppose three visitors visit the
museum according to the pattern reported in Table 2. Each visitor
contributes to collect [𝑅, 𝑃 ,𝐺𝑇 ] data, from which it is possible to
extract thresholds for 𝑃𝑂𝐼𝑖, 𝑃𝑂𝐼𝑗 and 𝑃𝑂𝐼𝑘. Let us suppose visitor 𝑎
provides the following matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−76 𝑖 𝑖
−77 𝑘 𝑖
−75 𝑘 𝑖
−77 𝑖 𝑖
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(3)

then the CrowdSensing architecture can compute the threshold
for 𝑃𝑂𝐼𝑖 by selecting from the matrix only RSS values with GT =
𝑃𝑂𝐼𝑖, [−76,−77,−75,…]. Given the set of RSS values, the architec-
ture can now compute the 𝑃𝑂𝐼𝑖’s threshold as the p-percentile 𝜏𝑖 =
𝑃 [−76,−77,…] = −76.25 dBm. Similar computations can be executed
with 𝑃𝑂𝐼𝑗 , 𝑃𝑂𝐼𝑘 of visitors 𝑏, 𝑐. As a result, a multi-threshold list is
obtained: [𝜏𝑖, 𝜏𝑗 , 𝜏𝑘].

In summary, we modify the Threshold algorithm with a crowd-
based version which compares the filtered RSS values of 𝑃𝑂𝐼𝑗 with
respect to a specific threshold 𝜏𝑗 automatically estimated by the crowd.

DeepProximity Algorithm The second algorithm we design is a
learning-based algorithm, referred to as DeepProximity. Its design
follows a feed-forward fully connected network to detect proximity be-
tween visitors and artworks. The implemented learning model extracts
a set of RSS features from collected Bluetooth beacons during a time
window 𝑇𝑘 of k seconds. The extracted features are reported in Table 3.

In particular, STD measures the dispersion of RSS values, SKW
measures the symmetry of the distribution, while KURT measures if
RSS values are heavy-tailed or light-tailed with respect to normal
distribution. RSS values are reported as 𝑑𝐵𝑚 unit, we apply a nor-
malization process in the range [0, 1]. The normalization process is
important as it allows the neural network to quickly converge and to
avoid triggering large gradient updates that sparse and double digit
numbers. The structure of the implemented neural network consists
of three Dense layers separated by two inner Dropout layers, to avoid
overfitting, and an L2 regularizer applied with a coefficient of 0.001.
The first two Dense layers have ReLU as activation function and they
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Table 3
RSS features of DeepProximity algorithm.

Metric Description

Average average RSS value of 𝑛 samples: 1
𝑛

∑𝑛
𝑖=𝑖 𝑥𝑖

Std. deviation standard deviation of the 𝑛 values:
√

1
𝑛

∑𝑛
𝑖=𝑖 (𝑥𝑖 − 𝑥̄)2

Maximum maximum observed RSS value;

Minimum minimum observed RSS value;

Max-Min difference between the maximum and minimum RSS observed values;

Percentile 75𝑡ℎ percentile of the RSS values;

Skewness 1
𝑛

∑𝑛
𝑖=1

(𝑥𝑖−𝑥)3

𝜎3 ;

Kurtosis 1
𝑛

∑𝑛
𝑖=1

(𝑥𝑖−𝑥)4

𝜎4 ;

Inter-quantile inter-quantile range of the RSS values obtained as the difference between the 75𝑡ℎ and 25𝑡ℎ percentile
of the RSS values, offering a much more robust metric against outliers.
Table 4
DeepProximity algorithm: Pattern of visits of three visitors with three POIs and the
corresponding elaborated data.

Visited POI User-collected data

Visitor a 𝑃𝑂𝐼𝑖

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−50 𝑖 𝑖
−51 𝑗 𝑖
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Visitor b 𝑃𝑂𝐼𝑗

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−44 𝑖 𝑗
−45 𝑗 𝑗
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Visitor c 𝑃𝑂𝐼𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝑅 𝑃 𝐺𝑇
−33 𝑖 𝑘
−34 𝑗 𝑘
⋮ ⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎦

Crowd-Elaborated data

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑅𝑆𝑆 𝐼𝐷
−50 𝑖
−51 𝑗
−44 𝑖
−45 𝑗
−33 𝑖
−34 𝑖
⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺𝑇
𝑖
𝑖
𝑗
𝑗
𝑘
𝑘
⋮ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

have 1024 neurons each. The last Dense layer implements a Softmax
activation function, with ten neurons in order to provide, for each of the
artwork, the probability of the user’s proximity to it. As done with the
Threshold algorithm, we implement two versions of DeepProximity: a
static and a crowd version as detailed in the next. The static version of
DeepProximity follows the well-known learning pipeline, according
to which the model is trained once with the training set, it is validated
with the validation set, and lastly it is tested with the test set. The
training set is used only once, and it is never updated. Differently,
with the crowd version of this algorithm, we propose to exploit data
collected by visitors to continuously re-train the model as soon as new
data are uploaded. A graphical representation of the neural network is
reported in Fig. 5. Visitors upload [𝑅, 𝑃 ,𝐺𝑇 ] and whenever new data
is received, the system extracts the nine features shown in Table 3
from the raw RSS values. In turn, such features can be feeded the
neural network to estimate, for each of the artwork, the probability of
being in its proximity. After this step, the original data received from
the visitor, together with the GT information, is added to the training
data and a new version of the neural network model is generated in
order to be used with future visitors. This approach can improve the
performance of the neural network, as over time, the training dataset
keeps growing. We report in Table 4 an example with three visitors
and the corresponding user-collected and crowd-elaborated data used
to re-calibrate the neural network.
6

Fig. 5. DeepProximity algorithm model with the implementation of the crowd
version.

4. The case study of monumental cemetery of pisa

Experiments has been conducted in the context of the RE.S.I.STO
project [5]. The project targets to visitors of Pisa medieval city, with
the goal of providing high-quality digital contents accessible via smart
devices. The goal of RE.S.I.STO is twofold. On the one hand, the
project aims at recovering a database with historical contents related to
several artworks of Pisa medieval city. The recovery process required
refreshing contents from an obsolete digital support to maintainable
technological framework. On the other hand, the project aims at ex-
ploring the potentialities of market-ready technologies to improve the
user-experience of museum visitors. In this respect, we design and test
the RE.S.I.STO mobile application, R-app (as presented in [5]), which
offers to visitors a digital guide based on the recovered contents such
as: artwork’s description, details, multi-media contents. The application
implements several proximity detection algorithms and it provides to
visitors the appropriate content as soon as they move in proximity to a
specific artwork. Section 4.1 details the design principles of the appli-
cation. The case study is located in Monumental Cemetery’s museum of
Piazza dei Miracoli Pisa (IT), details are reported in Section 4.2, while
in Section 4.3, we describe the different data collection campaign.

4.1. The design of R-app for museum visits

R-app is a multi-platform application based on the React Native
Framework. The application implements three core operations:
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Fig. 6. Screenshots of the three main pages of R-app.
• Logging beacon’s information, such as the corresponding RSS
values, beacon’s identifier (Bluetooth MAC address);

• running the proximity detection algorithms to determine the
nearest artworks;

• showing the artwork’s contents to visitors.

The three operations are implemented with three software modules:
Beacon Logging Service (BL), Proximity Detection Service (PD) and UI
Content Viewer Service (UI). BL is designed to collect only beacons
emitted by Bluetooth tags included in a white-list. This filter allows us
to avoid collecting data from existing Bluetooth devices, not relevant
for the proximity detection process. The PD module, implements the
proximity detection algorithms. More specifically, the BL listens for
beacons in a moving time window 𝛥𝑡. The collected information is then
processed in the next time window 𝛽𝑡, applying the RSS filter, namely
the p-percentile. Filtered data are provided as input to the PD module in
charge of identifying the three nearest artwork identifiers according to
a specific algorithm. Indeed, we decided to rank the top-three artworks
so that to mitigate any possible error while detecting the proximity,
but without affecting the final user-experience. Lastly, the UI module
shows to the visitor the thumbnails of the top-3 artworks.

The UI module implements three screens, optimized for mobile
devices: a splash page, the main page and the artwork’s detail page,
as reported in Italian language in Fig. 6. The Main page shows the
top-three list of nearby artworks with the corresponding thumbnail,
clicking on a thumbnail it is possible to access to the artwork’s details.

Concerning the implementation of proximity algorithms, they are
included with the R-app code and packaged as a mobile application for
Android OS. In particular, concerning DeepProximity, the neural
network models can be designed and tested by means of the Keras
library for Python. The Keras model consists of: (i) the structure of
the network such as the number of layers and the connections among
them, (ii) the set of weights associated to the nodes, (iii) the optimizer
obtained by compiling the model, and (iv) a set of losses and metrics.
In order to use the implemented Python model in the Android app, it
is necessary to export the model structure and the associated weights
by saving it to a serialized JSON file format and subsequently load the
pre-trained model in the R-app exploiting the Tensorflow.js3 library for
React-Native (Fig. 7).

The model file is stored in a public repository and R-app downloads
it when needed. Although in the static version of the application the
model is downloaded only once during the startup, with the crowd-
based version of the application an additional task is required to
periodically update the model from a remote server.

3 https://www.tensorflow.org/js
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Fig. 7. Conversion and deployment of the neural network model from the Keras format
to Tensorflow.js for React-Native.

A last consideration refers to the collection of the Ground Truth.
As reported in Section 3, we assume that visitor’s smartphones upload
[𝑅, 𝑃 ,𝐺𝑇 ] data. GT identifies the nearest artwork for a visitor, and
this information is crucial to exploit 𝑅, 𝑃 data. We now discuss a
possible strategy to infer the 𝐺𝑇 . Our approach consists of logging
user’s gestures during the usage of R-app, such as navigating through
the pages. More specifically, it is possible to log the timestamp associ-
ated with the click event of the Artwork’s detail page. This event
tells us that a visitor is interested to details of a specific artwork
and hence is presumably in front of it. The events we track are:
<timestamp, select_artwork, artwork_ID> and <times-
tamp, back_from_artwork, artwork_ID>, from which it is
possible to extract the GT for the [𝑅, 𝑃 ] data to upload.

4.2. The monumental cemetery’s museum

The Monumental Cemetery’s museum of Pisa, located in Piazza dei
Miracoli4 is a semi-indoor space with a rectangular shape. The museum
is composed of an indoor section composed by long and short corridors
where artworks are positioned. The covered area of the museum covers
approximately 5,000𝑚2, the long corridors are 130 × 9 m, while the
short corridors are 42 × 11 m. Statues, frescos, sarcophagi, tombstones
are all placed inside the inner corridors at different distances from
each other, as well as along the walls, as reported in Fig. 8(a). In
the short corridors, artworks are close to each other (about 1 m–
5 m distance). Differently, in the long corridors, artworks are more
distant. Artworks are placed so that visitors can observe them frontally;
tombstones, instead, are vertically-placed becoming tiles of the floor,
visitors cans step over them. This last aspect is the distinguishing

4 GPS coordinates: 43.724028582, 10.394915035.

https://www.tensorflow.org/js
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Fig. 8. The Monumental Cemetery of Pisa and the deployed Bluetooth tags.
Fig. 9. The four visiting layouts, the blue arrow denotes the path.
feature of the Monumental Cemetery’s museum, as visitors step over
historical tombstones.

4.3. Experimental settings

We conduct a data collection campaign whose goal is measuring
the improvement of a CrowdSensing approach for two proximity al-
gorithms. Data are collected by varying: (i) the visiting paths and (ii)
the adopted smartphones, as shown in Fig. 9 and as summarized in
Table 5. The collected data are available to the community as a public
repository [6].

Artworks are monitored with Bluetooth tags produced by Glob-
alTag. Tags advertise beacons at 2 Hz and they are powered with
CC2032-type battery and 0 dBm power of emission, as shown in
Fig. 8(b). Visitors stop about two minutes in front of each artwork,
according to the four different visiting layouts.

5. Experimental results

The collected data have been analyzed to measure the performance
by considering the static and the crowd versions of the algorithms
presented in Section 3. We compute the performance by considering
three metrics: Accuracy, Precision and Recall, as typically done with
a classification task. Accuracy measures the fraction of predictions an
algorithm got right. Precision corresponds to the number of true correct
answers in a given class, divided by the number of observations of
that class. The recall metric measures the number of correct answers
in each class divided by the actual number of objects in that class.
With precision, we can make sure that what we identify as proximity
is actually a proximity event, while with recall, we can make sure
8

to not miss out other positive observations. We compare the perfor-
mance of Threshold and DeepProximity algorithms against a
reference baseline, namely the Max algorithm. Max adopts a path-
loss propagation model to convert the RSS values into a distance
measure. The resulting nearest artwork is the one with minimum found
distance [9,12,15,18]. Such algorithm is often-adopted to estimate the
proximity, hence it is used to compare the results of the static and
crowd algorithm fairly. More specifically, given the path-loss model
described with Eq. (1), the distance function used with Max from a
given artwork 𝑗 can be estimated as:

𝑓𝑗 (𝑑) = 𝑒−
𝑅𝑆𝑆𝑗−𝑅𝑆𝑆0

10𝑛 ∀𝑗 (4)

The nearest artwork 𝑝𝑥(𝑘) at time 𝑘 is given by 𝑝𝑥 = argmin
𝑑

𝑓𝑗 (𝑑)

while a ranking of the ‘‘most near’’ artworks could be easily generated
by sorting Eq. (4).

5.1. Results

Experimental results are obtained by studying the performance of
two algorithms: Threshold and DeepProximity compared against
a baseline algorithm referred to as Max. We adopt three settings for
the proposed algorithms reported in Table 6, namely: Device, Visiting
Layout and by All-Runs. Each setting requires a specific configuration
for the two algorithms, as described in the next. Concerning the Device
setting, the goal is testing the algorithms without considering the device
heterogeneity that we introduced in Section 2.2. More specifically, we
compare the algorithms when using the same device model for training
and testing purposes. The static version of Threshold is executed us-
ing one single threshold 𝜏 obtained from the first test. For example, tests
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Table 5
Details of the tests executed. The table reports the test ID, the visiting layout, the
corresponding artworks’ orders and the adopted device.

Test ID Visiting layout Artwork’s order Adopted device

R1

Layout 1 1-2-3-4-5-6-7-8-9-10

Pixel 4
R2 Redmi 8
R3 Honor 8-2
R4 Honor 9
R5 Huawei P30
R6 Honor 8-1
R7 Honor 8 Pro
R8 Huawei P8

R9

Layout 2 1-3-4-7-9-8-2-5-6-10

Pixel 4
R10 Redmi 8
R11 Honor 8-2
R12 Honor 9
R13 Huawei P30
R14 Honor 8-1
R15 Honor 8 Pro
R16 Huawei P8

R17

Layout 3 10-5-6-3-2-8-9-7-1-4

Pixel 4
R18 Redmi 8
R19 Honor 8-2
R20 Honor 9
R21 Huawei P30
R22 Honor 8-1
R23 Honor 8 Pro
R24 Huawei P8

R25

Layout 4 6-8-9-5-7-3-2-4-1-10

Pixel 4
R26 Redmi 8
R27 Honor 8-2
R28 Honor 9
R29 Huawei P30
R30 Honor 8-1
R31 Honor 8 Pro
R32 Huawei P8

executed with Google’s Pixel 4 are: [𝑅1, 𝑅9, 𝑅17, 𝑅25] and in this case,
Threshold is calibrated using R1. The performance of the algorithm
is then computed with the three remaining tests: [𝑅9, 𝑅17, 𝑅25], we
denote this setting with the notation: [𝑅1 → 𝑅9, 𝑅17, 𝑅25]𝜏 as reported
in Table 6. Concerning the crowd version of Threshold, a similar
approach is followed but, differently from the previous case, we exploit
the crowd mechanism. In particular, we use ten thresholds [𝜏1 ⋯ 𝜏10]
one for each artwork, such thresholds are obtained by using data
collected with test R1 and the performance are computed with three
remaining tests, we denote to this setting as [𝑅1 → 𝑅9, 𝑅17, 𝑅25][𝜏1⋯𝜏10]
n Table 6. The static version of DeepProximity, it is obtained by
raining the neural network with one out of four tests, and we test
he algorithm with the three remaining tests, we denote this setting
ith the notation: [𝑅1 → 𝑅9, 𝑅17, 𝑅25] in Table 6. While, concerning

he crowd version of DeepProximity, the algorithm is trained with
hree out of four runs (𝑅1, 𝑅9 and 𝑅17), and it is tested on the last
est (R25). It is important to note that the training set can be further
xtended as soon as the visitors provide new data; this is the strength
f the proposed crowd solution.

We report in Fig. 10 the results of the Device setting for the three al-
orithms: Max (baseline), Threshold and DeepProximity as a bar
lot. Each row of the figure shows a specific metric: Accuracy, Precision
nd Recall, each column shows results for a different algorithm and bars
how the performance comparing the static and crowd version (blue vs
range bars). As a general trend, we observe from Fig. 10 an increase
f the performance when adopting the crowd version of an algorithm.
n particular, the DeepProximity algorithm provides the best results
oth on the static and crowd versions, with 72% and 81% of Accuracy.
n interesting observation is related to the Threshold algorithm, whose
erformance remarkably increases from the static to the crowd version,
ith an average increase of the Accuracy score of 30% (from 32% of the

tatic version to 62% of the crowd version). Despite its simplicity, the
9

e

hreshold algorithm exhibits lower accuracy when compared to Max
nd DeepProximity, as evidenced in our comparisons. However, the
ntroduction of the crowd version, which incorporates multiple thresh-
lds for various artworks, significantly enhances overall performance.
his aspect underscores the effectiveness of the CrowdSensing approach
utlined in our work.

The second setting is referred to as Visiting Layout setting (see
able 6). In this case, we increase the complexity by also varying the
isiting layout. More specifically, we test the three algorithms with
ifferent smartphones and with different visiting layouts (see Fig. 9).
iven Layout 1, the following tests are executed: [𝑅1 ⋯𝑅8]. In this case,

he static version of Threshold adopts 𝑅1 as calibration test, and the
emaining seven runs to test the performance, we denote this setting
s: [𝑅1 → 𝑅2, 𝑅3,… , 𝑅8]𝜏 in Table 6. Concerning the crowd version of
hreshold, we use ten different thresholds obtained from test 𝑅1,
hile the performance are computed on the remaining seven tests:
𝑅1 → 𝑅2, 𝑅3,… , 𝑅8][𝜏1⋯𝜏10]. For what concerns DeepProximity, we
ary the test set according to the static or crowd versions. In particular,
hen using the static version, we use 𝑅1 as a test set and [𝑅2 ⋯𝑅8]
s validation set: [𝑅1 → 𝑅2, 𝑅3 ⋯𝑅8]. Differently, when using the
rowd version of DeepProximity, we use 𝑅1 to 𝑅7 as test and 𝑅8 as
alidation test: [𝑅1, 𝑅2 ⋯ , 𝑅7 → 𝑅8]. Results of the Layout setting are
eported in Fig. 11. We observe a general increase of the performance
hen switching to the crowd version of the algorithms. We measure
n average Accuracy score for the DeepProximity of 63% with
he static version and 80% with the crowd version, a net increase of
6%. Concerning the Threshold algorithm, the increase of the perfor-
ance is also evident: from 32% to 47% and a net improvement of 15%.

t is worth to notice that the overall performance are slightly lower
han that of the Device setting. This decrease depends from the device
eterogeneity which makes the proximity detection a more complex
ask. This is particularly evident for the Threshold algorithm. Indeed,
e calibrate the static and the crowd version of the Threshold
lgorithm by using a specific smartphone model, such as the Pixel 4,
ut we test Threshold algorithm with different smartphone equipped
ith a different Bluetooth chipsets (and with a different antenna’s

ensitivity). As a result, the calibration obtained with a specific device
odel might no longer be valid. We report in Appendix an in-depth

nalysis of the device’s offsets.
Finally, we adopt more challenging testing conditions, namely the

ll-Runs setting, see Table 6. With this setting, we combine results
rom all the 32 testing runs, mixing two orthogonal complexities: device
eterogeneity and different visiting paths. Concerning the static version
f Threshold, we calibrate the algorithm with one run, e.g. 𝑅𝑖, 𝑖 ∈
𝑅1 ⋯𝑅32], and we test it with the remaining 31 runs, and then we
verage the results: [𝑅𝑖 → 𝑅1, 𝑅𝑖−1, 𝑅𝑖+2 ⋯𝑅32]𝜏 . The crowd version
ollows the same approach of the Device and Layout settings. In this
ase, we use a multi-threshold set extracted from a calibration run,
𝑅𝑖 → 𝑅1, 𝑅𝑖−1, 𝑅𝑖+2 ⋯𝑅32][𝜏1⋯𝜏10]. For what concerns the DeepProx-
mity algorithm, for the static version we train the model with one
nly run, and we test on the remaining 31 runs, after which we average
he results: [𝑅𝑖 → 𝑅1, 𝑅𝑖−1, 𝑅𝑖+2 ⋯𝑅32]. While, for the crowd version we
rain on 60% of the runs, and test on the remaining 40% of the runs:
𝑅1+⋯+𝑅20 → 𝑅21 ⋯𝑅32]. Results of the All-Runs setting are reported
n Fig. 12.

The All-Runs setting interestingly provides the best improvement.
e measure an average Accuracy of DeepProximity algorithm of

3% with the static version and of 81% with the crowd version, with
net improvement of 17%. While, for the Threshold algorithm, the
ccuracy metric varies from 32% to 52%, with 20% of net improve-
ent. As previously introduced, the All-Runs setting well reproduces
realistic condition in which visitors own different smartphones and

hey follow an arbitrary path. Under these challenging conditions the
eepProximity correctly classifies 81% of proximity events with the

xisting artworks for any adopted smartphone and visiting layout. As a
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Table 6
Experimental settings: Device, visiting layout and All-Runs.

Device (ex. Pixel 4)

static crowd

Threshold [𝑅1 → 𝑅9 , 𝑅17 , 𝑅25]𝜏 [𝑅1 → 𝑅9 , 𝑅17 , 𝑅25][𝜏1⋯𝜏10 ]
DeepProximity [𝑅1 → 𝑅9 , 𝑅17 , 𝑅25] [𝑅1 + 𝑅9 + 𝑅17 → 𝑅25]

Visiting Layout (ex. Layout 1)

Threshold [𝑅1 → 𝑅2 , 𝑅3 ,…𝑅8]𝜏 [𝑅1 → 𝑅2 , 𝑅3 ,…𝑅8][𝜏1⋯𝜏10 ]
DeepProximity [𝑅1 → 𝑅2 , 𝑅3 ,…𝑅8] [𝑅1 + 𝑅2 ⋯ + 𝑅7 → 𝑅8]

All-Runs (𝑅1 → 𝑅32)

Threshold [𝑅𝑖 → 𝑅1 , 𝑅𝑖−1 , 𝑅𝑖+2 ⋯𝑅32]𝜏 [𝑅𝑖 → 𝑅1 , 𝑅𝑖−1 , 𝑅𝑖+2 ⋯𝑅32][𝜏1⋯𝜏10 ]
DeepProximity [𝑅𝑖 → 𝑅1 , 𝑅𝑖−1 , 𝑅𝑖+2 ⋯𝑅32] [𝑅1 +⋯ + 𝑅20 → 𝑅21 ⋯𝑅32]
Fig. 10. Experimental results of the Device setting.
last consideration, we observe that DeepProximity always increases
the performance with the crowd version.

To highlight the enhancement achievable with the crowd version,
we tested this approach by subsequently increasing the number of runs
used in the training phase. As shown in Fig. 13, as we train the neural
network with more runs, we observe an improvement on all the metrics.
The accuracy quickly increases from 55% when using just one run (𝑅1)
as training, to 75% when using nine runs (𝑅1 …𝑅9) as training set.
From there the accuracy slowly but constantly increases as additional
runs are used for training, reaching the value of 95% when employing
31 runs (𝑅1 …𝑅31). The other two metrics, recall and precision, closely
match the corresponding accuracy values. This is an expected behavior
since, as a general trend, the more data are used for training a network,
the higher the expected performance.

From the obtained results, we can summarize the main findings as
follows:

• Except for the Max algorithm used as a base line, the crowd
version of Threshold and DeepProximity algorithms almost al-
ways improve the overall performance with respect to the static
versions in all the three settings (Device, Layout and All-Runs);

• The crowd version of the DeepProximity achieves the best perfor-
mance in terms of accuracy, precision and recall in all the tested
settings;

• The crowd approach effectively addresses the device heterogene-
ity issue allowing the algorithms to adapt to different devices even
after the deployment phase;
10
Therefore, we argue that combining a CrowdSensing approach with a
learning-based algorithm for proximity detection represents a promis-
ing approach.

6. Conclusions

The massive diffusion of wearable devices equipped with sensing
units and wireless connectivity has opened to a new computational
paradigm, referred to as CrowdSensing. The underlying idea is de-
signing systems able to collect and exploit data provided by user’s
devices, by unleashing their potentiality as active data providers. This
approach is often used by many successful mobile applications, such as
navigation apps and sport tracker applications. In these cases, contents
are continuously updated as new data from the crowd are collected
and elaborated. We apply this principle in a cultural heritage context.
In particular, in this work, we face with the problem of designing a
full-stack architecture able to detect the proximity between visitors and
artworks. To this purpose, we describe the design of two algorithms,
implementing a static and a crowd version and comparing them with a
baseline proximity algorithm. In the first case, crowd data are not used,
while in the second case, algorithms are continuously (re)calibrated
with data provided by the crowd. We detail in the paper the data col-
lection campaign we organized in the Monumental Cemetery’s museum
located in Piazza dei Miracoli, Pisa (IT). Tests have been done using
eight different smartphones and following several visiting paths. From
our test, we are able to clearly observe an increase of the performance
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Fig. 11. Experimental results of the Layout setting.

Fig. 12. Experimental results of the All-Runs setting.

Fig. 13. Experimental results obtained with the DeepProximity crowd algorithm as the training data increases.
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Fig. A.14. Offsets of thresholds obtained with a reference smartphone and compared against the remaining ones.
when switching to the crowd-based version of the tested algorithms.
It is worth to notice that the collected dataset is available to the
community [6].

The proposed idea only covers one of the many improvements areas
of the CrowdSensing parading. We also investigate the combined use
of RSS and direction sensors to estimate the relative orientation of a
visitor with respect to a POI. More specifically, the recent Bluetooth
5.1 Direction Finding specification introduces the possibility for a
Bluetooth device to estimate the Angle of Arrival (AoA). This feature
can potentially be exploited to determine the relative orientation of a
visitor with respect to an artwork. The combined adoption of RSS and
AoA allows to implement a navigation service, guiding a visitor along a
pre-defined visiting path. A preliminary study about the potentialities
of AoA in indoor environments is reported in [31] and a Bluetooth 5.1
dataset is available in [32].
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Appendix. Analysis of the device’s offset

We detail in this appendix how thresholds obtained with a reference
device differ with respect to other commercial devices. Fig. A.14 shows
for every tested smartphone, the threshold’s offsets obtained the re-
maining smartphones. As for example, given the Pixel 4a as calibration
smartphone (with a threshold at 1.5 𝑚 from an artwork of 𝜏 = −67
dBm), we report in Fig. A.14 the threshold’s offsets as a bar plot.
The ideal condition is a perfect threshold match (0 offset) between
calibration and testing smartphone, but at real conditions, we observe
remarkable differences. Those smartphones with negative offsets are
those estimating stronger RSS values with respect to the calibration
smartphone, e.g. −67 dBm vs −57 dBm. Conversely, those smartphones
with positive offsets are those estimating lower values than that of the
calibration smartphone. The case of Honor 8 PRO (H8PRO in Fig. A.14)
clearly shows that all the tested smartphones provide lower RSS values
than that of the calibration smartphone.
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