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An Experimental Evaluation Based on Direction
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Abstract— Radio-frequency technologies have been
largely explored to deliver reliable indoor localization sys-
tems. However, at the current stage, none of the proposed
technologies represent a de-facto standard. Although RSS-
based (Received Signal Strength) techniques have been
extensively studied, they suffer of a number of side-effects
mainly caused by the complexity of radio propagation in
indoor environments. A possible solution is designing sys-
tems exploiting multiple techniques, so that to compensate
weaknesses of a specific source of information. Under this
respect, Bluetooth represents an interesting technology,
combining multiple techniques for indoor localization. In
particular, the BT5.1 direction finding specification includes
the possibility of estimating the angle between an emitting
device and an antenna array. The Angle of Arrival (AoA)
provides interesting features for the localization purpose,
as it allows estimating the direction from which a signal is
propagated. In this work, we detail our experimental setting
based on a BT5.1-compliant kit to quantitatively measure
the performance in three scenarios: static positioning, mo-
bility and proximity detection. Scenarios provide a robust
benchmark allowing us to identify and discuss features of
AoA values also in comparison with respect to traditional
RSS-based approaches.

Index Terms— Bluetooth 5.1, direction finding, Indoor
Localization, proximity, Angle of Arrival

I. INTRODUCTION

INDOOR positioning techniques and technologies have
been radically changing the performance of systems de-

signed to estimate the position of targets in indoor en-
vironments [1]. In the last ten years, technological trends
clearly show the use of multiple sensing units to estimate
the position or the proximity of a target with respect to
a point of interest [2]. Under this respect, Radio-frequency
(RF) techniques largely exploit the analysis of the Received
Signal Strength (RSS) as it represents a key-metric to estimate
the distance between an emitter and a receiver. Most of the
proposed solutions rely on the correlation between the signal
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strength and the distance. In turn, the estimated distance can
be used to localize a target with e.g. a trilateration method.
However, as shown by many results in the current literature
[3], [4], RSS-based solutions suffer from a number of side-
effects reducing the accuracy and the reliability with real-
world experimental settings. Among them, we cite the multi-
path fading effect, the signal attenuation and the channel
hopping. RSSI (Received Signal Strength Indicator) values
of advertising channels considerably differ from each other,
causing a possible increase of the localization error [5]. Not
only, but also the device heterogeneity further affects the
performance. Indeed, the estimated RSSI of messages received
from different devices might remarkably vary, due to the de-
vice’s chipsets differ among the vendors or depleting batteries.
As a result, localization systems based on a specific calibration
device, might provide inaccurate results when changing the
device. This is the case of the fingerprint [6] technique which
requires a device-based calibration phase to map the RSSI
expected from each transmitter for every possible position of
a mobile receiver in a space.

Recently, the Bluetooth Core Specification 5.1 provided
by Bluetooth Special Interest Group (SIG) added Direction
Finding (DF) feature in the Low Energy (LE) standard by
modifying the packet structure in LE physical layer. The DF
specification is targeted to indoor positioning [7], and it is
based on Angle of Departure (AoD) and Angle of Arrival
(AoA) techniques. The core idea is to estimate the angle
between the emitting and the receiving device. To this purpose,
the receiving device is equipped with an antenna array, used to
measure the phase delay at multiple antennas. When multiple
receiving devices estimate the corresponding AoAs for a
target, then it is possible to localize it with a triangulation
system. AoA computation requires a specific hardware. i.e. a
receiving device equipped with multiple antennas. Moreover,
the location of the anchor nodes represents a crucial aspect,
to guarantee a certain degree of accuracy of the estimated
AoA values. In fact, small variations of anchor’s orientation,
might introduce a consistent error during the localization
process. Nevertheless, according to our experimental tests, the
estimated AoA values are less prone to significant fluctuations
such as RSS at stationary conditions.

In this paper, we detail our experimental campaign and the
resulting performance. To this purpose, we adopt a BT5.1-
compliant hardware kit, namely the XPLR-AOA by u-Blox.
We identify three application scenarios: static positioning,
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mobility and proximity. These scenarios cover complementary
aspects of indoor localization, allowing us to stress the system
at very different conditions. Concerning the static positioning
scenario, we compute the localization error obtained from
28 reference locations. We also study the performance by
varying the orientation of the target: North, East, West and
South. Concerning the mobility scenario, we compute the
75th percentile of the localization error in an indoor path. We
show how errors are distributed in the reference environment.
Lastly, concerning the proximity scenario, our goal is detecting
proximity or non-proximity events between two people ap-
proaching or moving away. Under this respect, we adopt state-
of-the-art metrics assessing the performance of classification
algorithms, such as the accuracy, precision, recall and F-Score
metrics. The adopted hardware estimates the AoA with two
different angles, azimuth and elevation. With all the testing
scenarios, the anchor node is always deployed on the ceiling
of a wide indoor room. Bluetooth tags emit beacons based on
the EddyStone frame at 50Hz advertisement frequency. The
collected dataset includes a timestamp followed by AoA values
(azimuth and elevation), the RSSI and the Bluetooth channel
used for the message propagation. From our experimental
results, the static positioning scenario provides errors ranging
from 1.82m to 1.90m, while for the mobility scenario, the 75th
percentile is 2.78m. Concerning the proximity scenario, our
algorithm correctly identifies the proximity with an accuracy
score of 93%.

Beyond the results for the three scenarios, in this paper
we also analyze the distribution of the RSSI and of the
AoA according to two features: the impact of the Bluetooth
advertisement channels (channel 37, 38 and 39) and the
influence of the target’s orientation.

It is worth mentioning that this work introduces some
relevant novelties not present in the current literature. They
can summarize as follows:

• We outline an experimental setup tailored to assess
the efficacy of indoor localization systems, leveraging a
promising technique known as Angle of Arrival (AoA).
While AoA has been utilized in various application
scenarios, its integration with Bluetooth technology has
become available only in recent years. The chosen kit, the
XPLR-AOA by u-Blox, provides us with the capability
to gather estimated angles on two planes (azimuth and
elevation), along with RSSI values. The fusion of RSSI
and AoA enables a comprehensive study and comparison
of these techniques for localization purposes.

• The collected data has been analyzed through two inno-
vative perspectives: the influence of Bluetooth channels
and the influence of human posture. Both channel se-
lection and posture significantly contribute to the overall
outcomes. This study addresses these aspects explicitly,
presenting clear and discernible results.

• We replicate three distinct scenarios for indoor localiza-
tion. Specifically, we gather data in static, mobile, and
proximity scenarios, aiming to assess the performance
of the adopted hardware under varying conditions of
increasing complexity.

This work is organized as follows. Section II frames the
state-of-the-art of indoor localization systems based on AoA.
We explore the current literature to identify radio technologies,
signal metrics and positioning methods for indoor localization.
In Section II we also summarize works adopting a similar ap-
proach and we compare some distinguishing features. Section
III details the direction finding specification and how AoA
and AoD can be estimated with an antenna array. Section IV
reports the data analysis for the static positioning scenario,
while Section V provides the experimental results.

II. RELATED WORK

Knowledge concerning the user’s position in indoor en-
vironments represents a piece of key-context information in
pervasive computing scenarios. During the last 15 years, many
technologies and techniques have been adopted to localize a
target. Nevertheless, those techniques based on RF have been
gaining an increasing attention, due to the pervasive, personal
and ubiquitous features of mobile devices often employed to
localize a target [2].

In this context, researchers and the industry propose to ex-
perimentally evaluate, several signal metrics and technologies
in the RF domain. Five signal metrics can be leveraged to
extract the user position and will be analysed in Section II-A:
RSS, Time of Flight (ToF), Channel State Information (CSI),
Channel Impulse Response (CIR), and AoA.

A. Survey on Positioning
In this section we make a review of the most used sig-

nal metrics exploited for indoor localization purposes, by
analysing papers from Scopus digital library up to 2023.
The 17880 surveying scientific papers have been selected, by
restricting only to those papers related to RF technologies
applied to indoor localization systems1. With this analysis we
aim to provide an overview of the volume of papers related to
this domain. To achieve this, we specifically focused on papers
with title, abstract or keywords explicitly referred to indoor lo-
calization. Fig. 1 shows how signal metrics are combined with
the RF technologies and positioning methods in the literature.
In particular, we aim to provide a qualitative understanding
that papers on BLE with AoA (the same technology and signal
metrics of our study) are relatively scarce compared to the
overall works in literature. Therefore, in this subsection we
concentrate on signal metrics to demonstrate which signals
are more extensively investigated.

The RSS technique is one of the simplest and widely
adopted metric for indoor localization, as RSS is available in
all wireless technologies and it does not require any specific
hardware. RSS measuress the signal power strength received at
the receiver, measured in decibel-milliwatts (dBm). Moreover,
RSS can be used to estimate the distance between transmitter

1TITLE-ABS-KEY (( ( in*door PRE/3 ( loca*tion OR positioning OR
navigation* ) ) OR ( in*door AND ( ( ( position* OR loca*tion ) PRE/0
accuracy ) OR ”simultaneous loca*tion and mapping” OR lbs OR ( location
PRE/0 ( aware OR based ) PRE/0 ( service* OR system* ) ) OR fingerprint*
OR ”received signal strength” ) ) ) ) AND DOCTYPE ( cp OR ar ) AND
SRCTYPE ( p OR j ) AND SUBJAREA ( comp OR engi ) AND LANGUAGE
( english ) AND NOT ( TITLE ( robot* ) OR KEY ( robot* ) )
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(Tx) and receiver (Rx) devices; reasonably the higher the
RSS value, the smaller the distance between the devices.
The resulting distance can be estimated with a number of
signal propagation models [8], [9] given that the transmission
power or the power at a reference point is known. RSSI
(which is often confused with RSS) is the RSS indicator,
a relative measurement of the RSS that has arbitrary units
proposed by each chipset vendor. The RSS metric merely
provides the estimated average amplitude over the whole
signal bandwidth accumulating signal over all antennae, if
any. Therefore, RSS is susceptible to multi-path effects and
interference that produce high variability over time. The CSI
(Channel State Information) is the subcarrier-level channel
measurement for each Orthogonal frequency division multi-
plexing (OFDM) subcarrier, measured at the receiver side.
CSI provides more extended multi-path information and more
stable measurements. For this reason, it can be used to improve
localization accuracy. A different approach is obtained with the
Channel Impulse Response (CIR), which measures the power
delay profile. In practice, in a multi-path channel, the CIR
value reveals information about the propagation delay of each
path. It is worth to notice that both CSI and CIR techniques
represent signal metrics which are more robust to multi-path
effect and to indoor environmental noise. However, they are
not easily available with commercial devices.

ToF (Time of Flight) leverages the signal propagation time
to calculate the distance between a transmitter and a receiver.
The underlying idea is relatively simple, the distance between
the emitter and the receiver can be obtained by multiplying the
estimated ToF with the speed light (which is constant value k).
Although the ToF technique requires a strict synchronization
process between transmitters and receivers. Indeed, the key
aspect affecting the ToF accuracy is the signal bandwidth and
the sampling rate. A low sampling rate (in time) reduces the
ToF resolution, since the estimated distance may be possible
between the sampled intervals. Furthermore, in multi-path
indoor environments, the larger the bandwidth, the higher
the resolution of ToF estimation. Although large bandwidth
technologies improve the performance of ToF, they still cannot
eliminate the localization error in no-light-of-sight conditions.
Indeed, obstacles refract the emitted signals that, traversing
through a longer path, increase the estimated ToF. In order to
relax the synchronization requirement, the Time Difference
of Arrival (TDoA) technique is used. TDoA exploits the
difference in signal propagation times from different transmit-
ters, measured at the receiver. Therefore and differently from
ToF techniques where synchronization is needed between the
receiver and the transmitter, with the TDoA techniques only
synchronization between the transmitters is required.

AoA (Angle Of Arrival) measures the angle at which
the transmitted signal arrives at the receiver, by estimating
the time difference of arrival at each receiver antenna. An
insightful analysis of the AoA signal metric when the BT5.1
direction finding is used will be given in Section III and also
discussed in [10]. The main advantage of AoA is that the
estimated user position is possible with two anchors in a 2D
environment. Although AoA can provide accurate estimation
when transmitter and receiver are relatively close, its accuracy

decreases with the distance. Indeed, a slight error in the AoA
evaluation is translated into a relevant error in the actual
location estimation [10]. Concerning the AoA technique, in
this paper, we experimentally evaluate the BT5.1 direction
finding based on the AoA technique. Fig. 1 emphasizes that
this domain has relatively few works in the literature compared
to the wide field of indoor localization research. In the next
subsection, we only focus on papers that explore the BT5.1
direction finding in real-world experimental settings.

B. Positioning through the Direction Finding
Specification

In this section we provide a review of the state-of-the-art
concerning the adoption of AoA with BT5.1 to localize targets
in indoor environments2. To the best of our knowledge, only
few works are based on real-word experimental settings, while
the majority of published works rely on simulated scenarios or
on the AoA estimation algorithms. Cominelli et al. [11] present
a scenario with two fixed receiver anchors, based on Software
Defined Radios (SDR) reproducing the packets Constant Tone
Extension CTE (more details concerning the use of CTE are
reported in Section III). The solution proposed by the authors
calculates the beacon position taking into account both the
AoA of the received packets and the spatial position of the
receiving antennas. Authors found that as the frequency of
the used channels increases, the AoA average absolute error
decreases. In the indoor settings, the absolute AoA error is
contained within 5° considering the 15° to 90° range, while
the positioning errors are below 85 cm for more than 95%
of the tested positions. In [12], authors present an hybrid
solution, based on the SLWSTK6006A3 kit. The kit adopts
both the AoA and the RSSI obtained from the Bluetooth
signal to evaluate the transmitter’s location. The experiment,
carried out in a real scenario of 25x15m laboratory with four
receiving anchors, obtained an average sub-meter error of
70cm computed on eight locations.

Furthermore, Sambu et al. [13] test the BOOSTXL-AOA
kit to estimate the AoA and positioning errors in both in-
door and outdoor environments. Tests conducted in indoor
environments are performed with two anchors in a room of
20x25m with several obstacles such as walls, desks, tables
and standing light. The computed average angular error, for
angles between 15° and 90°, is 1.83°. The positioning error,
computed on a smaller 5x5 2m-spaced locations grid, is
36.5cm. The previously mentioned works do not study in depth
the impact of body attenuation on the localization process. In
[14] authors evaluate only the angular error (no discussion
about localization error) in a 8x8m environment. The anchor
node is deployed on a tripod and some obstacles are present

2TITLE-ABS-KEY( ((ble OR bluetooth) AND (aoa OR (angle PRE/0
of PRE/0 arrival))) AND ((in*door PRE/3 (loca*tion OR positioning OR
navigation*)) OR (in*door AND (((position* OR loca*tion) PRE/0 accuracy)
OR ”simultaneous loca*tion and mapping” OR lbs OR (location PRE/0 (aware
OR based) PRE/0 (service* OR system*)) OR fingerprint* OR ”received
signal strength”)))) AND DOCTYPE (cp OR ar) AND SRCTYPE (p OR j)
AND SUBJAREA (comp OR engi) AND LANGUAGE (english) AND NOT
(TITLE (robot*) OR KEY (robot*))

3https://www.silabs.com/development-tools/wireless/efr32xg21-wireless-
starter-kit
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Fig. 1: Alluvial diagram showing the relationship between radio technologies, signal metrics and positioning method (DFL
stands for Device-Free Localization). The data were extracted from the Scopus digital library up to 2023.

in the environment, such as pillars, walls, desks, tables etc.
Authors propose a Recurrent Neural Network to estimate the
AoA measuring an average angular error of 7.1°. The main
issue of this work is the experimental setting. Indeed, the
user didn’t stay in a fixed position, rather she moved in
the environment (the velocity is unknown) in an unknown
path. The ground truth is obtained by deploying four Ultra-
Wideband (UWB) anchors in the environment. However, no
clear information is provided concerning the process required
to obtain the ground truth. Under this respect, we refer to [15],
[16] as guidelines to design a consistent and accurate process
for collecting ground truth locations. The results presented in
[14] show the performance differences between the estimated

positions of two systems (BLE-AoA and UWB-ToF) and not
the performance of an AoA-based system with respect to a
reference system.

Authors of [17] evaluate the performance in an outdoor envi-
ronment of the localization error. They measured a localization
error of 22cm but in just one position which is not sufficient
to draw a general conclusion for indoor environments. In [18],
authors experimentally evaluate the performance in terms of
localization error of the Nordic AoA kit. The positioning
error, computed on a smaller 4.8x4.8m area, is 70cm without
taking into account the posture of the user in a static scenario.
Additionally, in [19], authors measure an angular error of 2°
by using SDR hardware in ten locations. Paulino et al. [20]
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present a self-localization system, where a receiver with an
antenna array utilizes the AoAs from fixed beacons to self-
localize without a centralized system. Concerning the indoor
scenario, they achieve a mean error of 1.16m in position
estimations and compute the AoA with an error of about
15.8°. Wan et al. [21] present an experimental evaluation of
their algorithm, deploying at first one anchor and, secondly,
two anchors in an indoor empty environment. They achieve a
localization error of 0.29m with the two-anchors configuration,
but they consider only the static scenario, without the impact
of the human body. In [22] a mobile robot, equipped with a
receiving BT anchor, has to track an emitting target object.
The robot freely navigates through the indoor environment
since a prefixed path to follow is not considered. Authors
implement parallax and vector position calculations from both
AoA and RSSI data. Finally, Mustafa et al. [23] present an
indoor positioning and navigation system by using up to 4
anchors for static and mobility scenarios. They achieve a mean
localization error of 0.26m, limiting two empty areas of 4m2

and 16m2, respectively. Also in this work, the system does not
contemplate the impact and the orientation of the human body.
Table I summarizes a selection of recent works, reporting: i)
the number of deployed anchor nodes, ii) if the work considers
the user’s orientation, iii) features of the environment, iv) the
number of evaluation points, v) average AoA error, vi) the
obtained localization error, and vii) the scenario taken into
account.

The previously described papers reveal the need to further
investigate the potentialities of the AoA technique applied
to indoor settings. Our work distinguishes from the existing
results for two aspects: the considered scenario and the ex-
perimental settings. Concerning the first aspect, we propose a
more heterogeneous set of application scenarios, which include
static positioning, mobility and proximity. The combination
of them allows us to stress the adopted kit and the proposed
algorithm at very different conditions. Furthermore, we include
three common scenarios typically adopted in the field of indoor
localization. Not only that, but to the best of our knowledge,
the majority of works based on Bluetooth 4.x technology focus
on evaluating the impact of the body’s orientation on signal
propagation [24]–[27]. Whereas, Mavilia et al [28] investigate
the impact of body orientation in a static scenario with anchors
placed on the wall.

Differently from the reviewed papers, our work goes beyond
by measuring localization errors in a more heterogeneous set
of application scenarios, particularly when anchors are placed
on the ceiling. Additionally, we aim to describe the impact
of four different body orientations on AoA estimation using a
BT5.1-compliant hardware kit.

Concerning the second aspect, we test our scenario in a
wide indoor environment of about 110m2. As reported in
Table I, most of the reviewed papers test their solutions in
small environments, in which it is not easy to stress the AoA
estimations with corner-case conditions. As detailed in Section
V, we test our algorithm with angles on the azimuth plane ϕ
in the range: −70° ≤ ϕ ≤ 70°.

III. BLUETOOTH 5.1 DIRECTION FINDING

With the official release of Bluetooth Core Specification
v5.1 in 2019, direction-finding has been added to the speci-
fication, which can help devices to evaluate the direction of
Bluetooth signals. In order to support the direction finding
capability, a transmitter sends BLE protocol data units (PDUs)
with a CTE (a RF sinusoidal signal modulated by a series of
consecutive ones) that follows the CRC code, as shown in
Fig. 2.

Preamble

(1 or 2 octets)

Access-Address

(4 octets)

PDU

(2-258 octets)

CRC

(3 octets)

Constant Tone Extention

(16-160 µs)

Fig. 2: Bluetooth packet format supporting direction finding
capability.

This signal is received by an array antenna that, estimating
the phase difference among the received signal in each an-
tenna, evaluate the AoA [12]. Conversely, when the antenna
array is connected to the transmitter, the system is called Angle
of Departure (AoD). In particular, AoA can be obtained by
measuring the phase difference δ between signals received at
each pair of neighboring antennas, as the wavelength of the
signal λ and the geometry of the antenna, such as the distance
d, are known.

Generally, it is possible to consider two angles for esti-
mating the AoA between an anchor and a tag, namely the
azimuth ϕ and elevation γ angles. Given a Cartesian plane, the
azimuth refers to the angle on the XY plane (azimuth plane),
while the elevation angle is computed on a plane orthogonal
to the azimuth plane and crossing through the Z-axis. More
specifically, given ϕ the estimated AoA on the azimuth plane,
it can be obtained as follows: ϕ = arccos( λδ

2πd ), as reported in
Figure 3. The figure shows two antennas at distance d, and the
wavefront propagating from the right-side with angle θ with
respect to the antenna’s reference plane. The receiver node

Fig. 3: AoA computation based on the geometry of the antenna
array.

equipped with an antenna array can, therefore, collect In-Phase
and Quadrature (IQ) samples of the signal for every array’s
antenna. Ultimately, based on the IQ samples, the anchor
derives essential details about the received signal, including
characteristics like wavelength and frequency. Subsequently,
it utilizes this information to calculate the Angle of Arrival
(AoA) on both the azimuth and elevation.
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TABLE I: Summary of BT5.1 experiments based on a real-world setting.

Work HW/SW n° of Posture Env. [m] eval. AoA loc. Scenario
anchors points error[°] error[m]

[11] SW (SDR) 2 N.A. 6x3 20 5 0.85 static
[12] HW (SLWSTK6006A) 4 N.A. 25x15 8 N.A. 0.7 static
[13] HW (BOOSTXL-AOA) 2 N.A. 5x5 4 1.83 0.365 static
[14] HW (XPLR-AOA-1) 1 N.A. 8x8 N.A. 7.1 N.A. mobility
[17] HW (BOOSTXL-AOA) 1 N.A. outdoor 1 N.A. 0.22 static
[18] HW (NRF52833) 1 N.A. 4.8x4.8 49 5 0.7 static
[19] SW (SDR) 1 N.A. N.A. 10 ≈ 2 N.A. static
[20] HW (UCA-8 Array) 1 N.A. 5.6x4.5 1 ≈ 15.8 ≈ 1.16 static
[21] HW (BG22-RB4191A) 1-2 N.A. 3x3 49 N.A. 0.29 static
[22] HW (XPLR-AOA-1) 1 N.A. 7.5x18 N.A. N.A. 0.27 mobility

[23] HW (BOOSTXL-AOA) 1-4 N.A. 2x2 9 N.A. 0.26 static
4x4 mobility

proposed solution HW (XPLR-AOA-1) 1 ✓ 13.8x8 28 5, refer to [10]. 1.82
static

mobility
proximity

IV. THE EXPERIMENTAL SETTINGS

We now detail how we conducted our experimental data
collection campaign. Section IV-A details the adopted hard-
ware and the relative configuration settings. Our experiments
are based on three application scenarios, identified to test
three common situations for humans in indoor environments,
namely static positioning, mobility and proximity. The col-
lected dataset is analyzed in Section IV-C, in which we study
some features of the RSSI and AoA values. In particular,
we investigate the impact of the Bluetooth communication
channels and the impact of different postures for both RSSI
and AoA samples.

A. The Hardware Kit

The dataset analyzed for this paper has been collected with
the XPLR-AOA kit produced by u-Blox. The kit is composed
by a set of anchor nodes and tag nodes, both supporting
the Bluetooth 5.1 direction finding specification. Anchor’s
layout is 11.5x11.5cm board provisioned with an array of
five square-shape C211 dual-polarized antennas and powered
with the NINA-B4111 BLE module. The anchor node can
be also plugged with a Raspberry PI board, through the I/O
pins. Tags are equipped with the NINA-B4062 BLE module,
they can be configured to vary the advertisement frequency
and the power of emission. In particular, we experience with
frequencies varying in the range [1,10,50]Hz and powers of
emission ranging in [-40,+8]dBm. Figure 4 shows the adopted
hardware kit.

Fig. 4: The hardware kit used for the data collection: Anchor
on the left, tag on the right.

Anchor nodes are configured with the u-Blox firmware,
namely u-connectLocate4 firmware version 1.0.1, designed to
estimate the AoA values for the azimuth and elevation angles,
and the RSS of two polarizations expressed in decibel. For
more details about AoA estimation, please refer to [14], [29],
[30]. The data collected are the following:

• Azimuth angle ϕ, with −90° ≤ ϕ ≤ 90°: the AoA of the
current tag’s signal in the azimuth plane;

• Elevation angle γ, with −90° ≤ γ ≤ 90°: the AoA of the
current tag’s signal in a plane orthogonal to the azimuth
plane;

• RSS values of the 1st and 2nd polarization;
• the advertisement channel used by the tag (37, 38, 39);
• the timestamp tracking the uptime of the logging node.

Every anchor estimates the previously described values for
each of the collected Bluetooth beacons emitted by a tag. Our
experiments are configured with a data rate of 50Hz, resulting
in 3000 expected samples per minute.

B. The Experimental Scenarios
Our experiments are conducted in a wide open room located

in our research institute. The room’s layout is 13.8x8m, cover-
ing an area of 110m2, the ceiling is 3.1m high and no obstacles
are present inside the room. The floor is characterized by
regular 60x60cm tiles, this layout eases the identification of
target locations.

We consider three application scenarios, identified to repro-
duce indoor real-world situations for humans and to test the
hardware and the proposed localization algorithm at different
conditions. For all the scenarios, we deploy one anchor node
on the ceiling, parallel with respect to the floor. More specif-
ically, we position the anchor with the antenna array oriented
toward the floor. The anchor is positioned approximately on
the room center, at z = 3.1m from the ground. The tag is held
by a person (or two people for the proximity scenario), locked
on a lanyard around the neck. The considered scenarios are
described in the following.

static positioning: the goal of this scenario is identifying
the location of a person resting in a specific location. More

4https://www.u-blox.com/en/product/u-connectlocate
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specifically, the person steps over 28 locations on the ground,
resting for 2’ minutes in the same position, as shown in Figure
5. We also vary the posture of the person. In particular, we
collect data with the body oriented toward North, East, West
and South, each postures shifts of 90°, so that to evaluate the
impact of the body to the collected values. For each of the
28 locations, we expect to collect about 6000 samples (the
tag advertises at 50Hz). From our experiments, we observe a
beacon loss rate lower than 10% - 15%. We execute four runs
for this scenario.
mobility: this scenario reproduces an indoor path. To this

Fig. 5: static positioning scenario. The figure reports the 28
locations and the anchor’s position in red.

purpose, we recruit four different people testing the path with
a regular step of, approximately, 0.6m/s. The path follows
a sequence of markers on the ground, and volunteers move
in a natural way. Under this respect, it is worth to notice
the guidelines proposed by the IPIN Competition (former
known as EvaAAL competition) [15], [16], according to which
the actor for an indoor localization system should act as
natural as possible, by avoiding any bias affecting the overall
performance. Each person executes three runs, for a total of
12 runs for this scenario. We report in Figure 6 the testing
path for the mobility scenario.
proximity: this scenario mimics social interactions between

people. With the term interaction we refer to situations in
which the relative distance between two people fits withing
a specific range. More specifically, we refer to the social
distances proposed by Hall [31], according to which 4 spaces
surround a person: intimate, personal, social and public spaces.
Therefore, we include in this paper also a proximity scenario
whose goal is to detect proximity and non-proximity among
people in indoor spaces. The proximity event is obtained with
people at [0-2.5]m distance for two minutes, while during non-
proximity events people move away at 10m distance for two
minutes. We position on the ground two markers identifying
the correct distances. We recruit a pair of volunteers reproduc-
ing this scenario, they reproduce three runs each composed by
five proximity and five non-proximity events. Figure 7 shows
the proximity scenario.

Fig. 6: The mobility Scenario. The figure reports the testing
path and the anchor’s position.

Fig. 7: The proximity scenario. The figure shows the proximity
and non-proximity events and the anchor’s position.

C. Analysis of the dataset

We now analyze the collected dataset with the goal of
studying how RSSI and AoA values vary. More specifically,
we focus on data collected with the static positioning scenario
(see Section IV-B), as our goal is to study aspects: the impact
of the Bluetooth channels used for advertising and the impact
of the body posture at static conditions.

For what concerns the RSSI values, we initially show the
density distributions on 1st and 2nd polarization, as shown in
Figure 8. The matrix reports the 28 locations, according to the
layout shown in Figure 5. In particular, each plot corresponds
to the RSSI distribution on the 1st and the 2nd polarization
for the corresponding location. The matrix compares the RSSI
distributions on two polarizations, so that to easily spot those
locations whose distributions significantly shift. From the
figure, we observe some locations where the RSSI estimated
on 1st polarization remarkably differ from those estimated
on 2nd polarization. For instance, in some cases, the angle
distributions exhibit patterns like (−180, 240), (−540, 120),
(−360, 120), whereas for different locations, the distributions
deviate. A discernible recursive pattern that elucidates these
variations is elusive. However, it’s noteworthy that the Pearson
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TABLE II: RSSI statistics for three channels and for the 1st and
2nd polarization. Mean value is represented with µ, standard
deviation with σ symbols.

Bluetooth channel #37 #38 #39
% of collected beacons 33% 32% 33%
µ1st [dBm] -71.71 -70.03 -64.32
µ2nd [dBm] -74.16 -72.30 -66.42
σ1st [dBm] 6.74 6.77 6.72
σ2nd [dBm] 5.36 5.30 5.83
max1st [dBm] -56 -51 -48
max2nd [dBm] -56 -54 -48

correlation coefficient (ρ) between RSSI values on the 1st
and 2nd polarization is 0.56, signifying a moderate positive
correlation.

In order to quantitatively measure the existing correlation
between RSSI1st and RSSI2nd, we show in Figure 9 the rela-
tionship between such quantities. From the figure, we observe
a moderate positive correlation, with Pearson coefficient ρ
= 0.56. Therefore, beacons emitted by a tag are generally
estimated with a similar RSSI values of different angles.

The results reported in Figure 8 and Figure 9 are obtained
by combining the RSSI values estimated on the three channels.
However, the channel used for the message propagation im-
pacts the RSSI value, as also shown with some experimental
studies based on commercial devices [32]–[34]. As the col-
lected dataset also provides information about the adopted
channels, we show if and how the adopted channel affects
the RSSI density for the 1st and 2nd polarization. The results
of this analysis are reported in Figure 10. The figure clearly
shows that by increasing the channel, the distributions also
shifts towards stronger RSSI values. Specifically, based on our
experiments, we have observed that channel 39 consistently
yields the highest RSSI values for both polarizations. The
shapes of the reported distributions are characterized by a
number of peaks. This pattern is generated by the considered
scenario for this analysis. In particular, we analyze the data
collected with the static positioning scenario, in which a
person steps over 28 locations resting for two minutes. As
a result, for each location we observe a different spike in the
distribution.

Table II summarizes median, standard deviation and max
RSSI values for the three channels and the two polarizations.

We further analyze the RSSI distribution by evaluating the
impact of four different body’s orientations combined with
three advertisement channels. As detailed in Section IV-B,
the static positioning layout has been obtained with four
orientations shifting of 90° each. We report in Figure 11 the
corresponding distributions. From the figure, we observe that
the different orientations (North, East, West, South) do not sig-
nificantly alter the trends in the distributions. More specifically,
given a polarization e.g. RSSI1st, the three distributions for the
three channels follow the same patterns: channel 39 always
provides the strongest RSSI values. We detail in Table III the
mean, standard deviation and max values for the considered
variables.

Finally, we analyze the impact of the body’s orientation
to the estimated AoA values. For the purpose of this last

analysis, we ignore the adopted channel as it does not affect
the AoA estimation, as shown in Figure 12. As expected,
the AoA distributions span over a wide range, e.g. from
−70° to 70°, as the plot is obtained by considering all the
28 locations each providing different angle estimations with
respect to the anchor’s position. From Figure 12, we observe
that orientations have an effect to the AoA values, as shown
with the median value represented with an horizontal line for
each of the box plots.

Table IV details the AoA statistic for the different orienta-
tions and the AoA angles.

V. EXPERIMENTAL RESULTS

This section details the results we obtain from our data
collection campaign. We first detail the process adopted to
compute an accurate ground truth, namely the actual location
and angle of the reference locations used for the performance
assessment with the three scenarios (see Section V-A). We also
described the adopted algorithm to compute the location given
the estimated AoA values (see Section V-B. Finally, Section
V-C details the obtained results.

A. Determining the Location Ground Truth
With the term ground truth (GT), we refer to the actual

angles between the target and the anchor nodes. We compute
the GT with a geometric approach, detailed in the following.

The GT in the static positioning scenario consists of quadru-
ples of values (xi, yi, zt, ok), where x and y are the values
at position i = (1 · · · 28) shown with the grid in Figure 5.
The value zt is the height of the tag, and ok represents the
orientation of the target wearing the tag with k = {North,
East, West, South}. The quadruple can be converted in two
AoA angles of the signal received by the Anchor’s antennas
(ωi, γi, ok) corresponding to the expected azimuth angle and
elevation angle at position i, for a specific orientation.

Concerning the mobility scenario, the GT is collected in a
similar way, by also adding a timestamp tracking the instant
in which the target lies in a specific position. In order to
record a sufficiently accurate timestamp, the target is equipped
with the StepLogger application, also adopted with the IPIN
competition [15], [16]. The StepLogger application allows
to record the timestamp (epoch time) and a label, i.e. the
identifier of a marker on the ground. In this way, it is possible
to re-build the real location of a target moving indoor. In
our case, we position 28 markers on the ground, as reported
with the grid in Fig. 6, and for each of them we record the
timestamp with the StepLogger application. The expected error
for the GT measurement is maximum 20cm.

Finally, concerning the GT of the proximity scenario it
consists of the timestamp when the pair of targets starts a
proximity event and when it starts a non-proximity event. To
this purpose and similarly to the previous scenario, we adopt
the StepLogger application through which we are able to track
the proximity (1.5m distance) and the non-proximity (10m
away), as reported in Figure 7.

Similarly to the mobility scenario, the clocks between the
anchor node and the StepLogger appliaction are synchronized
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Fig. 8: RSSI distribution on 1st and 2nd polarization for 28 locations.

TABLE III: Statistics for three advertisement channels on 1st and 2nd polarization, relative to four orientations. Mean value of
RSS is represented with µ, standard deviation with σ symbols.

North East West South
Channel 37 38 39 37 38 39 37 38 39 37 38 39
µ1st [dBm] −74 −72.14 −65 −71.6 −69.7 −64.5 −70.6 −69.5 −64.1 −70.5 −68.6 −63.4
µ2nd [dBm] −75.6 −73.5 −68.2 −75 −72.9 −66.4 −73.4 −71.7 −66.15 −72.4 −71 −64.8
σ1st [dBm] 6.1 6.7 6.4 7.3 7 7.6 6.1 6.6 6 6.6 6.1 6.5
σ2nd [dBm] 4.9 4.7 5.4 5.4 5.7 5.5 6 5.5 6.6 4.2 4.7 5.1
max1st [dBm] −56 −55 −48 −56 −51 −48 −56 −53 −51 −56 −56 −50
max2nd [dBm] −62 −60 −52 −62 −60 −54 −56 −54 −48 −61 −57 −53

TABLE IV: Statistics for the azimuth ϕ and elevation γ angles
relative to four orientations. Mean value is represented with
µ, standard deviation with σ symbols.

North East West South
µϕ [dBm] 0.4 0.83 1.68 0.83
µγ [dBm] -5.6 -3.3 2.149 2.64
σϕ [dBm] 39.8 38.9 40.3 38.3
σγ [dBm] 32.8 28.8 30.7 33.6
maxϕ [dBm] 78 72 74 78
maxγ [dBm] 64 64 68 72

at the beginning of the experiment. The data collected is
therefore a sequence of triples indicating the initial and final
time of an interaction and a boolean variable proximity:
(ti, ti+1, p) with p indicating proximity.

B. Computing the Indoor Location

We implement an indoor localization algorithm able to
estimate the target’s location for all the tested scenario, in
terms of x, y coordinates. The error is calculated as the
Euclidean distances from the GT. Concerning the proximity

scenario, it represents a classification problem (detecting prox-
imity or non-proximity events). Therefore, given the estimate
target’s location we compute the inter-personal distance and
we compared it against the GT. In the rest of this section, we
detail the algorithm used to determine the target’s location.

Figure 13 shows how the azimuth and elevation angles are
converted in terms of x, y coordinates. In the experiments the
anchor is placed on the ceiling, this means that the azimuth
plane is perpendicular to the floor x, y of the room, as shown
in Figure 13-b. To calculate the transformation of the segment
AT, joining anchor A to the tag, T must be projected on the
azimuth plane xz, as shown in Figure 13-a. The tangent of the
azimuth angle ϕ is given by the ratio of two catheti of length
xT and (zA − zT ) respectively, where zA is the height of the
anchor and zT the height of the tag. By setting h = (zA−zT ),
the difference in height between anchor and tag, we can write:

xT = h · tan(ϕ) (1)

The tangent of the elevation angle γ is obtained from the ratio
of two other catheti: the first is the projection of the segment
AT on the xz plane (colored red), whose length is given by
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Fig. 9: Correlation between RSSI1st and RSSI2nd on the 1st
and the 2nd polarization.

√
x2
T + h2 and the second one perpendicular to the xz plane

and of length yT : tan(γ) = yT /
√
x2
T + h2, substituting (1)

in this expression we obtain:

yT = h ·
√
1 + tan2(ϕ) · tan(γ) = h

cos(ϕ)
· tan(γ) (2)

From equations (1) and (2), we can easily obtain the GT
for the static positioning scenario in terms of AoAs. In the
mobility scenario, a window of 500ms was considered to
average the measured angles before converting them into
positions. While in the proximity scenario all the measures
taken in the time interval were considered.

C. Analysis of the Results
We now detail the experimental results obtained for the three

scenarios, namely static positioning, mobility and proximity.
Concerning the static positioning, we compute the error for

each of the 28 locations as reported in Figure 14. The figure
reports as white dots the 28 locations and with a red box the
anchor’s locations (the (0, 0) coordinate). We report the results
for the four orientation (North, East, West and South) and for
each plot, we report the coordinates both on the x, y axis. From
the figure, we observe that the location error varies not only
according to the locations, but also according to the posture.
As a general trend, we observe that locations close to the
anchor node result with the lowest errors, while locations on
the peripheral areas (e.g. upper/lower left/right corners) tend
to increase the errors.

From Figure 14, we also observe that the orientation affects
the low-error region. With the North orientation, the low-error
region is evenly centered around the anchor’s location, with a
mean error of 1.90m. With the East orientation such regions
is shifted to values of x = [183− 3]. This shift depends from
the orientation of the user. In particular, as the user is oriented

(a) 1st Polarization.

(b) 2nd Polarization.

Fig. 10: RSSI distribution for three channels and two polar-
izations.

toward East, the low-error region exists in those location in
which the user is in line-of-sight with the anchor. As soon
as the anchor is behind the user, e.g. locations (−177, 54),
the error tends to increase. The mean error obtained with the
East orientation is 1.90m. Similarly, the low-error region with
the West orientation is centered in location (−177,−128).
As soon as the user is ahead the anchor’s location, the error
tends to increase, in this case the mean error is 1.82m. Similar
considerations apply also for the South orientation with a mean
error of 1.88m.

Results concerning the mobility scenario are reported in Fig-
ure 15. The figure shows the path followed by the target and,
for each of the 28 path’s locations, we report: the ground truth,
the estimated location and the error as a black line. We execute
12 runs for the mobility scenario, and Figure 15 reports the
mean localization error for all the runs. From the figure we
can distinguish two behaviours. Firstly, locations far from
the anchor’s position generally result with higher localization
errors with respect to locations close to the anchor. This aspect
can be observed by considering the error bars, which increase
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Fig. 11: RSSI distribution on 1st and 2nd polarization with
four orientations (North, East, West, South) and three channels
(37, 38, 39).

Fig. 12: AoA distribution for different postures and angles.

with the peripheral locations, and decrease with locations
surrounding the anchor. Secondly, the implemented algorithm
tends to attract the target toward the anchor’s locations. The
attraction effect remains consistent in the static scenario as
well. In Fig. 14, the most significant errors are identified along
the perimeter of the room, particularly pronounced on the sides
farther from the anchor. This is due to the fact that, with
the same angular error, the error in meters is amplified for
locations that are more distant.

The maximum and minimum localization error correspond
to 4.8m and 0.11m respectively, with a mean value of 1.83m
and a median error of 1.55m. According to the framework
adopted with the IPIN Competition [2], [15], [16], we also
compute the 75th percentile, as it represents a robust statistic
mitigating the effect of outlier estimations. From our experi-
ment, the 75th percentile of the error corresponds to 2.78m.

(a) xz plane (vertical plane)

(b) xy plane

Fig. 13: Geometric representation of ϕ and γ angles.

We further investigate the error distribution, and we plot the
CDF (Cumulative Distribution Function) in Figure 17.

Similar considerations also apply for the best and worst
runs, which are reported Figure 16. The best run represents
the run in which we measure the lowest locations error, with a
mean error of 1.74m and 75th percentile of 2.97m. Concerning
the worst run, the corresponding mean error is 1.94m and 75th
percentile 2.94m.

Concerning the proximity scenario, we execute our algo-
rithm with the goal of identifying proximity and non-proximity
events. As reported in Figure 7, two targets are in proximity
at 1.5m distance for two minutes and then they are in non-
proximity when they move away for two minutes. We test the
algorithm by varying the distance threshold τ . Such threshold
models the minimum distance at which an interaction between
the targets starts. In particular, we test values of τ ranging
from 1.5m to 4m, whose results are shown in Figure 18. As
τ increases, our algorithm tends to also increase the false
positive rate (the algorithm classifies proximity against a non-
proximity event), as shown with the precision metric. Such
curve starts decreasing at τ = 2.5m distance, meaning that after
such distance the algorithm wrongly classifies non-proximity
events. Conversely, the accuracy and F-Score metrics increase
up to τ = 3.5m, after which the algorithm wrongly classifies
the proximity events. For the purpose of this work, we set
the τ = 2.5m, and we report in Table V the obtained results.
In particular, the algorithm classifies proximity with 93.81%
accuracy and 93.11% F-Score. It is important to acknowledge
that the proximity test was conducted in close proximity to
the anchor location. It remains uncertain whether comparable



12 IEEE JOURNAL OF INDOOR AND SEAMLESS POSITIONING AND NAVIGATION

[cm]

[cm]

A

A A

A

North

South

West East

[cm]

[c
m
]

[m
]

[m
]

[m
]

[m
]

[c
m
]

[c
m
]

[c
m
]

[cm]

Fig. 14: Experimental results for the static positioning scenario: The contour maps show the localization error for each of the
28 locations and the four orientations.
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Fig. 15: Experimental results for the mobility scenario: For
each of the locations along the path, the graph shows the
ground truth locations (as purple boxes) and the estimated
locations (as blue stars). Black lines measure the locations
errors. Anchor’s locations is denoted with a red box.

performance can be achieved with a test conducted in the
peripheral area of the room, where, as previously mentioned,
positions are drawn towards the anchor. However, proximity
measures are relative and not absolute distances. Therefore,
if both individuals in proximity are positioned at the room’s
edge, both their positions should be influenced by the anchor,
preserving the relative distance. Naturally, this consideration
warrants validation through additional experiments, as there is
a possibility that one person could overshadow the other.

TABLE V: Confusion matrix and metric results for the prox-
imity Scenario and distance threshold set to 2.5m.

Expected Results accuracy F-Score
proximity Non-proximity [%] [%]

proximity Events 3304 39 93.81 93.11Non-proximity Events 450 4104

VI. DISCUSSION AND CONCLUSIONS

Indoor localization systems have been gained an increasing
attention, as they open to the possibility of improving the
usability of a wide plethora of services target to end-users,
also referred to as LBS (Location-Based Services).

Differently from the outdoor scenarios in which GNSS-
based solutions are well consolidated, indoor environments
still represent a challenging scenario. Under this respect, it is
worth to mention the existence of several indoor localization
competitions (e.g. IPIN [16], TC4TL [35], Indoor Localization
Competition 2.0 [36]) which aim at testing and compare state-
of-the-art techniques with real-wold settings. A multitude of
techniques can be adopted to localize a target indoor, ranging
from Visible Light, Ultrasound, Acoustic signals and Radio-
frequency (RF) techniques. Among them, the family of RF-
based approaches traditionally has successfully demonstrated
the possibility of localizing a target indoor. In this work, we
explored the potentialities of Bluetooth 5.1 direction finding
specification based on AoA estimations. We define three lo-
calization scenarios, static positioning, mobility and proximity
and we evaluate the performance in terms of the localization
error. The considered scenarios cover three reference use-
cases commonly experimented in the field of indoor local-
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Fig. 16: Experimental results for the mobility scenario concerning the best (left-side) and worst run (right-side).

Fig. 17: Cumulative Distribution Function of the localization
error for the mobility scenario.

ization. More specifically, we test the proposed algorithm to
localize a target resting in 28 locations for two minutes, a
moving target following an indoor path and, lastly, two targets
reproducing a social meeting in proximity (1.5m distance)
and non-proximity. To this purpose, we deploy one anchor
node equipped with an antenna array on the ceiling, in a
wide open room and we assigned to the target a Bluetooth
5.1 tag held around the neck. From our experiments, we
measure the average localization error varying according to
the considered scenario. Concerning the static positioning, we
measure an average error below 2.1m, for the mobility scenario
the 75th percentile of the localization error is 2.78m. Finally,
the obtained performance for the proximity scenario show that
our solution is able to successfully detect proximity with an
accuracy of 94.58%. The availability of data is a crucial aspect
that we have thoroughly taken into account. We intend to share
the data gathered in this study to facilitate additional research
and ensure reproducibility. In this regard, it is worth noting
that we have already initiated the publication of data derived
from Angle of Arrival (AoA) measurements, collected using
Bluetooth 5.1 devices. Currently, we have released a dataset

Fig. 18: Experimental results for the proximity scenario: The
graph shows the accuracy (A), F-Score (F) and precision (P)
by varying the distance threshold.

featuring information from 4 anchors as reported in [37].
From the results described in this paper, we derive some

consideration concerning the use of AoA-based solutions to
localize a target. Firstly, the orientation of the target affects
the overall results. In this work, we experiment with four
orientations: North, East, West and South each shifting of
90° with respect to the anchor’s position. As expected and
already verified with RSS-based approaches, the effect of the
human body is to reduce the signal propagation and, in turn
of increasing signal reflections, giving rise to the multi-path
effect. Such effects are shown with the heatmaps reported
in Figure 14. A second consideration refers to the anchor’s
location. In our experimental setting, we deploy the anchor
on the ceiling with the antenna oriented toward the floor. In
our previous study [10], we experience with different anchor’s
deployments, such as anchors deployed on the wall with
α° inclination. However, such last deployments increase the
complexity to determine the target’s location as the anchor’s
inclination requires a more complex geometric computation.

Furthermore, we observe a decrease of the performance
with anchor wall-mounted, leading us to prefer a ceiling-
mounted anchor. A further consideration refers to the number
of required anchors to guarantee a specific performance. More
specifically, in this work we only deploy one anchor. We
consider as a promising research line to also investigate the
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possibility of deploying multiple anchors in the same environ-
ment (as done in [37]), and to estimate the target’s location
by jointly considering AoA values from all the anchors. From
a preliminary analysis, this approach would increase the per-
formance at a reduced deployment cost. More specifically, we
note two pivotal aspects in our observations: 1) The position of
the anchor significantly influences the quality of the collected
data and 2) The orientation of the anchor not only plays a
crucial role in determining the quality of the collected data,
but it also influences the ease of installation. Regarding the
first aspect, anchors may be positioned according to various
layouts, the center of the wall, the corners of the room or on the
ceiling. Based on our experience, we observe that the optimal
layout strictly depends on the shape of the testing environment.
As a general consideration, it is advisable to avoid layouts in
which the angle on the azimuth plane between anchors and
target exceeds of 70° - 80°. Indeed, such angles usually repre-
sent the most critical conditions for AoA estimation. As for the
second aspect, the orientation of anchors is also pivotal. We
experimented with vertical, tilted, and horizontal orientations.
The impact is twofold: on one hand, the orientation influences
the computation of the target’s location, and on the other
hand, it can extend the deployment phase. Ensuring uniform
orientation for all anchors is essential, and in the case of tilted
anchors, replicating the same inclination might pose challenges
during installation.

Finally, our last consideration refers to the use of multiple
techniques, such as combining RSS and AoA together and
a filtering or training strategy to estimate the location. Data-
fusion represents the path to pursue to make a significant step
toward sub-meter localization accuracy. In particular, we refer
to use of RSS to estimate the distance and, at the same time, to
exploit the AoA values to estimate the direction of the signals.
Such combination could be processed with filtering techniques,
such as Particle filter [38] or Kalman filter [39] in order to
attenuate the signal noise and to provide stable results.

REFERENCES

[1] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization
systems and technologies,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2568–2599, 2019.

[2] F. Potortı̀, A. Crivello, F. Palumbo, M. Girolami, and P. Barsocchi,
“Trends in smartphone-based indoor localisation,” in 2021 International
Conference on Indoor Positioning and Indoor Navigation (IPIN). IEEE,
2021, pp. 1–7.

[3] C.-C. Pu and W.-Y. Chung, “Mitigation of multipath fading effects to
improve indoor rssi performance,” IEEE Sensors Journal, vol. 8, no. 11,
pp. 1884–1886, 2008.

[4] M. R. Basheer and S. Jagannathan, “Localization and tracking of objects
using cross-correlation of shadow fading noise,” IEEE Transactions on
Mobile Computing, vol. 13, no. 10, pp. 2293–2305, 2014.

[5] Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, “Smartphone-based
indoor localization with bluetooth low energy beacons,” Sensors, vol. 16,
no. 5, p. 596, 2016.

[6] J. Zhang, G. Han, N. Sun, and L. Shu, “Path-loss-based fingerprint lo-
calization approach for location-based services in indoor environments,”
IEEE Access, vol. 5, pp. 13 756–13 769, 2017.

[7] M. Woolley, “Bluetooth direction finding,” A technical Overview, 2019.
[8] K. N. R. S. V. Prasad, J. Cheng, and V. K. Bhargava, “Accurate distance

estimation for rss localization with statistical path loss exponent model,”
in GLOBECOM 2020 - 2020 IEEE Global Communications Conference,
2020, pp. 1–6.

[9] G. Wang and K. Yang, “A new approach to sensor node localization
using rss measurements in wireless sensor networks,” IEEE Transactions
on Wireless Communications, vol. 10, no. 5, pp. 1389–1395, 2011.

[10] M. Girolami, P. Barsocchi, D. La Rosa, F. Furfari, and F. Mavilia,
“Evaluation of angle of arrival in indoor environments with bluetooth 5.1
direction finding,” in 2022 18th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob)
(WiMob 2022), Thessaloniki, Greece, Oct. 2022.

[11] M. Cominelli, P. Patras, and F. Gringoli, “Dead on arrival: An empirical
study of the bluetooth 5.1 positioning system,” in Proceedings of the 13th
International Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization, ser. WiNTECH ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 13–20.

[12] G. Pau, F. Arena, Y. E. Gebremariam, and I. You, “Bluetooth 5.1:
An analysis of direction finding capability for high-precision location
services,” Sensors, vol. 21, no. 11, 2021.

[13] P. Sambu and M. Won, “An experimental study on direction finding of
bluetooth 5.1: Indoor vs outdoor,” in 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC), 2022, pp. 1934–1939.

[14] P. Babakhani, T. Merk, M. Mahlig, I. Sarris, D. Kalogiros, and P. Karls-
son, “Bluetooth direction finding using recurrent neural network,” in
2021 International Conference on Indoor Positioning and Indoor Navi-
gation (IPIN). IEEE, 2021, pp. 1–7.

[15] F. Potortı̀, S. Park, and et al., “The ipin 2019 indoor localisation
competition—description and results,” IEEE Access, vol. 8, pp. 206 674–
206 718, 2020.

[16] F. Potortı̀, J. Torres-Sospedra, and et al., “Off-line evaluation of indoor
positioning systems in different scenarios: The experiences from ipin
2020 competition,” IEEE Sensors Journal, vol. 22, no. 6, pp. 5011–
5054, 2022.

[17] G. Pan and J. Ho, “Indoor positioning experiments based on bt 5.1,” in
2022 IEEE 4th International Conference on Power, Intelligent Comput-
ing and Systems (ICPICS). IEEE, 2022, pp. 687–692.

[18] H. Ye, B. Yang, Z. Long, and C. Dai, “A method of indoor positioning
by signal fitting and pdda algorithm using ble aoa device,” IEEE Sensors
Journal, vol. 22, no. 8, pp. 7877–7887, 2022.

[19] F. A. Toasa, L. Tello-Oquendo, C. R. Peńafiel-Ojeda, and G. Cuzco,
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