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ABSTRACT
GPS devices generate spatio-temporal trajectories for different types
of moving objects. Scientists can exploit them to analyze migration
patterns, manage city traffic, monitor the spread of diseases, etc.
Many current state-of-the-art models that use this data type require
a not negligible running time to be trained. To overcome this issue,
we propose the Trajectory Interval Forest (TIF) classifier, an efficient
model with high throughput. TIF works by calculating various
mobility-related statistics over a set of randomly selected intervals.
These statistics are used to create a tabular representation of the
data, which can be used as input for any classical classifier. Our
results show that TIF is comparable to or better than state-of-art in
terms of accuracy and is orders of magnitude faster.

CCS CONCEPTS
• Information systems → Decision support systems; Data
mining; Spatial-temporal systems; Location based services; •
Computing methodologies→ Artificial intelligence; Knowl-
edge representation and reasoning; Supervised learning.
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1 INTRODUCTION
Smartphones, connected cars, and tracking devices with GPS ca-
pabilities produce enormous amounts of mobility data. This data
pertains to the movements of various entities and is used by gov-
ernments, businesses, and researchers for various purposes such as
determining the transportation modes used [6, 14], ascertaining the
identity of the user who generated the trajectory [18], etc. In [5],
the authors compared the latest trajectory classification methods
and highlighted some problems in the field. For example, they show
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that the literature has an unbalanced focus on defining case-specific
features rather than building general-purpose models. Moreover,
most techniques heavily rely on computationally complex models
such as Support Vector Machines (SVM), Multilayer Perceptrons,
and Deep Convolutional Neural Networks (CNN). Unfortunately,
each of these models has its own set of drawbacks: SVMs tend to
be highly sensitive to noisy data, while CNNs require a substantial
amount of training data to reach good performances.

In the field of time series classification, there has been a rapid
advance in recent years [2]. One of the most interesting methods
is the Canonical Interval Forest (CIF) [17]. CIF first transforms the
input time series into a matrix of tabular-like data where every
column is a feature. The set of features computed by CIF is called
catch22 [16]. catch22 is a collection of 22 features extracted from
the hctsa package maximaizing the classification performance while
minimizing the redundancy. Then, it uses a Random Forest (RF) on
the transformed dataset to solve the classification task.

Inspired by CIF and aiming to reach similar performances in
the field of GPS trajectory classification, we propose Trajectory
Interval Forest (TIF), a machine learning model for general-purpose
GPS trajectory classification. TIF extracts mobility-related statistics
over randomly selected intervals and then uses a RF to address the
classification task. The set of intervals can be defined by the number
of observations, elapsed time, or traveled distance. TIF can also
handle different length trajectories using three strategies. Therefore,
the contribution of TIF overCIF is fourfold: (i) definition of mobility-
specific statistics, (ii) simultaneous consideration ofmultiple signals,
(iii) exploitation of spatio-temporal intervals besides observational
ones, (iv) usability with objects of different sizes instead of objects
with a fixed length.

2 BACKGROUND AND PROBLEM SETTING
In this section, we define all the concepts necessary to understand
our proposal. We define a trajectory as follows:

Definition 1 (Trajectory). A trajectory 𝑋 is a sequence of spatio-
temporal points 𝑋 = {(®x1, 𝑡1), . . . , (®x𝑚, 𝑡𝑚)} ∈ R𝑚×3 where the
spatial vectors ®x𝑗 = (lat𝑗 , long𝑗 ) are sorted by increasing time 𝑡 𝑗 .

A trajectory classification dataset is a set of trajectories with a
vector of labels attached.

Definition 2 (Trajectory Classification Dataset). A trajectory clas-
sification dataset D = (X, y) ∈ R𝑛×𝑚×3 × N𝑛 is a set of 𝑛 tra-
jectories, X = {𝑋𝑖 . . . , 𝑋𝑛}, with a vector of assigned labels (or
classes), y = {𝑦1, 𝑦2, . . . , 𝑦𝑛} where 𝑦𝑖 identifies a characteristic of
the trajectory 𝑋𝑖 such as the means type of transport.
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For simplicity of notation, we use a single symbol 𝑚 to denote
the lengths of the trajectories, even if a trajectory dataset usually
contains instances having a different number of observations.

Definition 3 (Trajectory Classification). Given a trajectory classi-
fication dataset D, trajectory classification is the task of defining
a function 𝑓 from the space of possible input trajectories X to a
probability distribution over the class values in y.

Most proposals that deal with sequential data often apply a trans-
formation before training the model. We can make this explicit by
defining the trajectory classification function 𝑓 as the composition
of a feature extraction function 𝑔, that maps every trajectory to a
fixed-sized set of input features and a function ℎ from the space
of possible inputs 𝑔(X) to a probability distribution over the class
values in 𝑦, i.e., 𝑦 = (ℎ ◦ 𝑔) (𝑋 ). Since our objective is to realize a
variant of CIF [17] for trajectory classification, as in CIF, we imple-
ment ℎ as a Random Forest classifier, while the rest of the paper
focuses on defining the feature extraction function 𝑔.

To refer to the subsequence of 𝑋 between the lower and upper
bounds (𝑙, 𝑢), we use 𝑋𝑙 :𝑢 .

Definition 4 (Interval). An interval 𝑘 is a tuple of bounds (𝑙, 𝑢)
indicating the beginning 𝑙 and the end 𝑢 of the interval. 𝐾 denote a
set of intervals and |𝐾 | denote its size.

3 TRAJECTORY INTERVAL FOREST
Inspired by CIF [17], we propose Trajectory Interval Forest (TIF),
an interval-based approach to efficiently and effectively solve tra-
jectory classification. To this aim, we defined an alternative feature
set on mobility data to replace catch22. After that, we defined and
implemented TIF extending CIF to deal with specific problems of
GPS trajectories.

3.1 Mobility Features Description
As the first step, we collected the largest possible number of mea-
sures presented in 20 years of literature to extract mobility features.
In particular, we categorized these measures into three groups:
• Point-based features P [3, 6, 9, 10, 19], i.e., features computed
using at most two observations of the GPS trajectory.
• Aggregated features A [9, 10, 20–22], i.e., aggregation func-
tions applied to sequences of point-based features.
• Interval-based features I [1, 9], i.e., non-canonical aggrega-
tion functions computed on a subsequence of the trajectory.

Details of the measures are reported in Table 1. We highlight that
all the features can be calculated in linear time with respect to the
number of observations in the trajectory 𝑋 .

Among the point-based features P, besides traditional measures
such as distance, speed and acceleration, we underline the presence
of the feature direction dir𝑖 , i.e., the direction towards which an
object is moving at time 𝑖 . In the definition of dir𝑖 , arctan2(𝑎, 𝑏),
computes the angle between a point in a plane and the origin.
The turning angle is then defined as the difference between two
consecutive directions.

Among the aggregated features A, aggregating the values ob-
tained in group P, we underline the presence of the features rate
upper and rate below. These functions compute the frequency of

an event in P, i.e., when the value exceeds or goes below a certain
threshold \1. Like in [9], we used a normalization approach in rate
upper and rate below to derive frequency values in unit distance
using the traveled distance.

Among the interval-based features I, the mean squared displace-
ment captures the variation of the movements in both latitude and
longitude; the straightness measures the ratio between the shortest
path from the origin to the destination and the actual trajectory; the
intensity use estimates how much of the movement area, expressed
as a squared tile, is used by the moving object; and the sinuosity
captures the curving shape of the trajectory.

3.2 TIF Feature Extraction Algorithm
Given the trajectory dataset X and the set of intervals 𝐾 , the algo-
rithm implements the function 𝑔 returning a dataset 𝑍 ∈ R |𝑋 |×𝑐 |𝐾 | ,
where 𝑐 is the number of features to be extracted. For each tra-
jectory 𝑋 ∈ X, and for each interval 𝑘 = (𝑙, 𝑢) ∈ 𝐾 , TIF extracts
the corresponding subsequence from 𝑋 , i.e., 𝑋𝑙 :𝑢 . Details about
how the intervals can be defined are provided in the next subsec-
tion. After that, TIF computes the point-based features 𝑧 (𝑃 ) by
applying the point-based features extraction functions P on the
subsequence 𝑋𝑙 :𝑢 . Depending on the desired point-based features
required, TIF might include in 𝑧 (𝑃 ) also the raw latitude, longitude,
and timestamp. Then, TIF computes the aggregated features A on
each point-based feature 𝑧 (𝑃 ) , and stores it in 𝑧 (𝐴) . Consequently, it
calculates the interval-based features I on 𝑋𝑙 :𝑢 and stores them in
𝑧 (𝐼 ) . The transformation of the trajectory𝑋 into features 𝑧 is accom-
plished by concatenating 𝑧 (𝐴) and 𝑧 (𝐼 ) into 𝑧. Finally, 𝑧 is added
to the transformed feature dataset 𝑍 . The feature-based dataset
𝑍 can then be used as input to any classifier implementing the
predictive function ℎ, such as Random Forests [4], which is our
main choice in line with CIF [17]. The time complexity of TIF is
𝑂 (𝑛 · 𝑐 |𝐾 | · �̃�) where 𝑛 is the number of trajectories in the dataset,
|𝐾 | is the number of intervals, and �̃� is their average length.

3.3 Interval Types and Filling Strategies
The transition from time series data to trajectory data introduces
several challenges, mainly due to (i) the varying sampling rates,
(ii) objects of different lengths, and (iii) geographic displacement.
Indeed, GPS trajectory data are often subject to multiple sources
of disturbance, such as measurement errors from sensors or the
failure to transmit data due to the conformation of the territory.

As a consequence, to address the issue of non-constant sampling
rates, three variants w.r.t. the standard CIF implementation are
proposed. A first version of TIF, that we name TIF-o, identifies an
interval 𝑘 = (𝑙, 𝑢) through the indexes of the spatio-temporal points
in a trajectory 𝑋 , i.e., 𝑋𝑙 :𝑢 = {(®x𝑖 , 𝑡𝑖 ) |𝑖 ∈ [𝑙, 𝑢]}. Then, the other
two versions, named TIF-t and TIF-s, identify an interval 𝑘 = (𝑙, 𝑢)
respectively as 𝑋𝑙 :𝑢 = {(®x𝑖 , 𝑡𝑖 ) |𝑙 ≤ 𝑡𝑖 ≤ 𝑢} and 𝑋𝑙 :𝑢 = {(®x𝑖 , 𝑡𝑖 ) |𝑙 ≤∑𝑖
𝑗=1 dist (xj−1, xj) ≤ 𝑢}. Finally, we name TIF-a the variant of TIF

calculating features using heterogeneous types of intervals.
Furthermore, we tackle the issue of having trajectories of dif-

ferent lengths through four possible approaches. In the first one,
the operations over intervals exceeding the maximum length of
1In our experiments, we set \ equals to the 25% and 75% of the mean as values of \ for
upper and lower bound, respectively.
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Name Equation Description

P

distance dist𝑖 = | | ®𝑥𝑖 − ®𝑥𝑖+1 | | Generic distance measure.
speed speed𝑖 =

dist𝑖
𝑡𝑖+1−𝑡𝑖

The classical speed formulation.

acceleration accel𝑖 =
dist𝑖

(𝑡𝑖+1−𝑡𝑖 )2
The classical acceleration formulation.

direction 𝑑𝑖𝑟𝑖 = arctan2
(
lat𝑖+1 − lat𝑖 , long𝑖+1 − long𝑖

)
The direction along which the object is moving.

turning angle 𝑡𝑢𝑟𝑛𝑖 = 𝑑𝑖𝑟𝑖+1 − 𝑑𝑖𝑟𝑖 The difference in the direction.

A
statistics sum, max, min, mean, std, cov, var Generic aggregation functions
rate upper rateupper =

|{𝑝>\ | 𝑝∈P(𝑋 ) }|
𝑠𝑢𝑚 ({𝑑𝑖𝑠𝑡𝑖 |𝑖∈𝑘})

Frequency in which the P feature exceeds \ in unit distance.

rate below ratebelow =
|{𝑝≤\ | 𝑝∈P(𝑋 ) }|
𝑠𝑢𝑚 ({𝑑𝑖𝑠𝑡𝑖 |𝑖∈𝑘})

Frequency in which the P feature is below \ in unit distance.

I

mean squared displacement msd = var (𝑋lat ) + var (𝑋long ) Dispersion in both the latitude and longitude dimensions.

straightness str = | | ®𝑥0− ®𝑥𝑚 | |∑
𝑖 dist𝑖

Compare the distance between all the points along to the minimum distance between
the origin and the destination.

intensity use iu =
∑
𝑖 dist𝑖√

Area of movement
Ratio between total trajectory length and area of movement.

sinuosity sin = 2
[
𝑝

(
1−𝑐2−𝑠2
(1−𝑐 )2+𝑠2 + 𝑏

2
)]−0.5 Complexity of the trajectory where 𝑝 is the mean step length, 𝑐, 𝑠 are the mean cosine

(resp. sine) of the turning angles, 𝑏 is the variation of step length.

Table 1: Description of features calculated on trajectories subsequences.

the trajectory under analysis are actually performed just on the
nearest two available observations. We identify this variant with
TIF-n (naive). The second and third alternatives consist in two dif-
ferent “filling strategies” that aim to make all the trajectories in
X of the same length𝑚. The first filling strategy is named reverse
fill (TIF-r), and it appends to the trajectory a mirrored copy of
itself, simulating the object moving back along the same path, till
reaching length𝑚. The second filling strategy is named echo fill
(TIF-e), and it is implemented by repeating the same trajectory from
its beginning, i.e., by translating the moving object such that the
“new” starting point coincides with the ending point of the previous
iteration. Finally, as an alternative to filling strategies, we extend
all the variants of TIF to manage intervals as percentages instead
of as actual values. The totals to calculate such percentages are
based respectively on the number of spatio-temporal points, on the
total duration of the travel, and the total distance traveled by the
trajectory. Thus, by using percentages instead of actual values, the
requirement of having all the trajectories with the same length is
not mandatory anymore, and we can also avoid any filling strategy.
We name this variant TIF-p.

The geographic displacement of the trajectories poses an addi-
tional factor to consider. Including the latitude and longitude values
(or some aggregated forms) in the computation of 𝑔, as input of a
predictive machine learning model ℎ, can obviously improve the
performance. However, the resulting classifier 𝑓 will be tailored for
a specific geographic position. On the other hand, not considering
directly this raw information allows the classifier 𝑓 to be trained
on a geographical area and applied in a different one. We indicate
TIF variants also using latitude and longitude with TIF*.

4 EXPERIMENTS
We experimented with TIF on five real datasets2 for GPS trajectory
classification with different sizes, semantics, and classification ob-
jectives. For animals the classification task consists of recognizing
three different species. For vehicles the objective is to distinguish

2animals and vehicles: https://t.ly/keXzn, seabirds: https://t.ly/fhCnR, geolife:
https://t.ly/6VJ-E, taxi: https://t.ly/0GMR9.

between buses and trucks. For seabirds the objective is recogniz-
ing the flying trajectories of three species of seabirds. For geolife,
we set the classification problem to recognize trajectories of public
vs private means of transport. Finally, for taxi, we consider one
month of observation. We aim to distinguish different types of taxi
calls, i.e., A if the trip was dispatched from the central, B if the trip
was demanded directly to a taxi driver on a specific stand, and C
otherwise. We divided each dataset into training and test sets with
a ratio of 70-30. We compare TIF against various state-of-the-art
baselines and competitors: Rocket [8], CNN [7], CIF [17], Geo-
let [13] and Movelets [11]. Hyperparameter details are provided
in the implementation code. We performed a sensitivity analysis
of the method as the hyperparameters changed. The results sug-
gest setting a low value for |𝐾 |, adopting the Euclidean distance to
save time, and searching for the best values for the interval lengths
min length,max length. Once min length,max length are selected,
it is possible to increase the number of intervals |𝐾 |. Finally, to
maximize the performance, we suggest including the choice of the
filling strategy in the hyper-parameter tuning phase.

4.1 Classification Performance
For TIF we report the accuracy and runtime for the four types of
intervals considered, i.e., TIF-o, TIF-s, TIF-t, and TIF-a, as well as
for the setting in which the raw latitude, longitude and time are
used in the point-based features P, denoted with the symbol *.

Table 2 shows the average accuracy and runtime (± std. dev.)
across 10 executions for the five public datasets under analysis. We
report the results obtained for the best hyper-parameters setting
for every method after a grid search (including filling strategies), as
described in the previous subsection. If a method does not terminate
within 3 hours or exceeds the available memory, we report it in the
table by using the symbol “−”.

We immediately notice that one of the TIF variants is always
in the first or second position for accuracy and runtime. A TIF*
variant has the highest accuracy on four datasets out of five, while
TIF variants have the highest or second highest accuracy on four

https://t.ly/keXzn
https://t.ly/fhCnR
https://t.ly/6VJ-E
https://t.ly/0GMR9
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Table 2: Average accuracy, runtime, and standard deviations across 10 repetitions of the experiments using the best hyper-
parameter configurations. Best values in bold, best values runner up in italic.

Rocket Geolet Movelets CNN CIF TIF-o TIF-t TIF-s TIF-a TIF-o* TIF-t* TIF-s* TIF-a*

A
cc
ur
ac
y
(→

) animals .871±.00 .935±.00 .563±.00 .477±.06 .971±.00 .960±.02 .982±.03 .941±.02 .989±.02 1.00±.00 1.00±.00 .996±.01 .984±.03
vehicles .928±.00 .965±.00 .921±.00 .750±.01 .939±.00 .965±.00 .987±.00 .965±.01 .985±.00 .972±.01 .987±.01 .962±.01 .983±.01
seabirds .667±.00 .967±.00 - .594±.05 .700±.02 .773±.02 .788±.04 .697±.04 .773±.02 .833±.02 .828±.06 .788±.06 .859±.01
geolife .733±.00 .861±.00 - .721±.012 - .918±.00 .893±.01 .903±.00 .916±.01 .916±.00 .900±.00 .904±.01 .918±.00

taxi .566±.00 .578±.00 - .524±.01 - .538±.01 .565±.00 .543±.01 .597±.01 .633±.01 .775±.00 .732±.00 .839±.00

Ru
nt
im

e
(←

) animals 2.2s±.00 21.3s±.00 25.7s±.00 1.3s±.07 7.5s±.97 1.5s±.02 0.6s±.01 3.5s±.04 7.0s±.04 1.7s±.09 1.2s±.06 3.6s±.06 7.0s±.21
vehicles 31.5s±.00 50.1s±.00 141m±.00 5.3s±.69 34.6s±.59 5.8s±.04 1.6s±.08 9.2s±.14 18.7±..85 5.8s±.04 17.3s±.52 9.2s±.14 15.2s±.52
seabirds 15.7s±.00 48m±.00 - 11.8s±8.37 105.8s±.02 1.0s±3.27 3.3s±.39 23.9s±2.97 29.1±3.17 1.1s±.06 0.8s±.03 29.6s±3.80 32.7s±3.23
geolife 29.1m±.00 145.2m±.00 - 27.2s±7.37 - 11.2s±.17 10.5s±.02 15.4s± 0.15 38.7±.03 14.8s±.04 13.0s±.00 15.9s±.05 46.0s±.01

taxi 13.3m±.00 44m±.00 - 3.2m±.41 - 3.29m±.01 3.33m±.00 3.42m±.01 8.41m±.14 10.9m±.05 7.48m±.03 6.36m±.19 20.63m±.34

datasets out of four. Including the raw data, TIF* reaches substan-
tially higher scores than the state-of-the-art, while the accuracy of
TIF is aligned with one of the competitors. Concerning runtime,
with the exception of CNN on taxi, TIF variants are markedly
faster than state-of-the-art approaches. Therefore, TIF provides the
highest accuracies and the lowest runtimes.

However, despite the slightly higher runtime, among the vari-
ants of our proposal, we can observe that all TIF* versions achieve
the highest accuracy. Similarly, among TIF variants, TIF-a has the
highest accuracy. Hence, using an ensemble of intervals defined het-
erogeneously w.r.t. observations, space, and time increases the pre-
dictive performance of the RF. However, for animals and vehicles,
the best accuracy is achieved by TIF-o*/TIF-o and TIF-t*/TIF-t,
probably due to the small size of these datasets.

Given the above results, we recommend relying on TIF-a* if
runtime is not an issue and if the model must not be geographically
transferred on TIF-a otherwise.

5 CONCLUSIONS
We have presented TIF, an interval-based approach to GPS trajec-
tory classification that transforms the spatio-temporal data into a
simplified feature-based representation that can be used as input to
any classifier. TIF collects, homogenizes, and implements efficiently
the most relevant features defined in the field in the last 20 years.
Plus, in TIF, we proposed and evaluated some strategies to handle
the different lengths and non-constant sampling-rate problems. In
the field of mobility data analysis, these two problems are rarely
addressed. Finally, we show that TIF outperforms the competitors
in terms of runtime while reaching their accuracy.

TIF can be extended to include features about the nearby moving
entities, i.e., features that can capture some of the environment
characteristics in which the object is moving. Inspired by HIVE-
COTE [15] in the time series domain, we would like to integrate
TIF and other competitors based on different trajectories represen-
tations to create a trajectory-specialized ensemble classifier. Finally,
we would like to extend the capabilities of TIF by extending it to
support to Multiple Aspect Trajectories [12].

ACKNOWLEDGMENTS
This work is partially supported by the EU NextGenerationEU pro-
gramme under the funding schemes PNRR-PE-AI FAIR (Future

Artificial Intelligence Research), PNRR-“SoBigData.it - Strengthen-
ing the Italian RI for Social Mining and Big Data Analytics” - Prot.
IR0000013, H2020-INFRAIA-2019-1: Res. Infr. G.A. 871042 SoBig-
Data++, G.A. 761758 Humane AI, and G.A. 952215.

REFERENCES
[1] Paulo JAL Almeida et al. 2010. Indices of movement behaviour: conceptual

background, effects of scale and location errors. Zoologia 27 (2010), 674–680.
[2] Anthony J. Bagnall et al. 2017. The great time series classification bake off: a

review and experimental evaluation of recent algorithmic advances. DAMI 31, 3
(2017), 606–660.

[3] Adel Bolbol et al. 2012. Inferring hybrid transportation modes from sparse GPS
data using a moving window SVM classification. CEUS 36, 6 (2012), 526–537.

[4] Leo Breiman. 2001. Random Forests. Mach. Learn. 45, 1 (2001), 5–32.
[5] Camila Leite da Silva et al. 2019. A Survey and Comparison of Trajectory Classi-

fication Methods. In BRACIS. IEEE, 788–793.
[6] Sina Dabiri et al. 2020. Semi-Supervised Deep Learning Approach for Transporta-

tion Mode Identification Using Trajectory. IEEE TKDE 32, 5 (2020), 1010.
[7] Sina Dabiri and Kevin Heaslip. 2018. Inferring transportation modes from GPS

trajectories using a convolutional neural network. CoRR (2018), 360–371.
[8] Angus Dempster et al. 2020. ROCKET: exceptionally fast and accurate time series

classification using random convolutional kernels. DAMI 34, 5 (2020), 1454–1495.
[9] Somayeh Dodge et al. 2009. Revealing the physics of movement: Comparing

the similarity of movement characteristics of different types of moving objects.
CEUS 33, 6 (2009), 419–434.

[10] Mohammad Etemad et al. 2018. Predicting Transportation Modes of GPS Trajecto-
ries Using Feature Engineering and Noise Removal. In CCAI. Springer, 259–264.

[11] Carlos Andres Ferrero et al. 2018. MOVELETS: exploring relevant subtrajectories
for robust trajectory classification. In SAC. ACM, 849–856.

[12] Carlos Andres Ferrero et al. 2020. MasterMovelets: discovering heterogeneous
movelets for multiple aspect trajectory classification. DAMI 34, 3 (2020), 652–680.

[13] Cristiano Landi et al. 2023. Geolet: An Interpretable Model for Trajectory Classi-
fication. In IDA (Lecture Notes in Computer Science, Vol. 13876). Springer, 236–248.

[14] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. 2008. TraClass: trajectory
classification using hierarchical region-based and trajectory-based clustering.
Proc. VLDB Endow. 1, 1 (2008), 1081–1094.

[15] Jason Lines et al. 2016. HIVE-COTE: The Hierarchical Vote Collective of
Transformation-Based Ensembles for Time Series Classification. In ICDM. IEEE
Computer Society, 1041–1046.

[16] Carl H. Lubba et al. 2019. catch22: CAnonical Time-series CHaracteristics -
Selected through comparative time-series analysis. DAMI 33, 6 (2019), 1821.

[17] Matthew Middlehurst et al. 2020. The Canonical Interval Forest (CIF) Classifier
for Time Series Classification. In IEEE BigData. IEEE, 188–195.

[18] Farid Movahedi Naini et al. 2016. Where You Are Is Who You Are: User Identifi-
cation by Matching Statistics. IEEE Trans. Inf. Fore. Secur. 11, 2 (2016), 358–372.

[19] Sasank Reddy et al. 2008. Determining transportation mode on mobile phones.
In ISWC. IEEE Computer Society, 25–28.

[20] Zhibin Xiao et al. 2017. Identifying Different Transportation Modes from Trajec-
tory Data Using Tree-Based Ensemble Classifiers. IJGI 6, 2 (2017), 57.

[21] Yu Zheng et al. 2008. Learning transportation mode from raw gps data for
geographic applications on the web. InWWW. ACM, 247–256.

[22] Yu Zheng et al. 2008. Understanding mobility based on GPS data. In UbiComp
(ACM International Conference Proceeding Series, Vol. 344). ACM, 312–321.


	Abstract
	1 Introduction
	2 Background and Problem Setting
	3 Trajectory Interval Forest
	3.1 Mobility Features Description
	3.2 TIF Feature Extraction Algorithm
	3.3 Interval Types and Filling Strategies

	4 Experiments
	4.1 Classification Performance

	5 Conclusions
	Acknowledgments
	References

