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From Fossil Fuel to Electricity: Studying the Impact
of EVs on the Daily Mobility Life of Users

Mirco Nanni , Omid Isfahani Alamdari , Agnese Bonavita, and Paolo Cintia

Abstract— Electric Vehicles (EVs) currently provide a major
opportunity to decarbonize urban areas and improve their
quality of life, however, the mass transition towards electric
mobility requires understanding and solving the potential issues
that they might cause to users. In this work, we propose a process
that, through a mix of mobility data analytics, efficient trip
planning, and simulation heuristics, is able to analyze the current
fuel-based mobility of a user and quantitatively describe the
impact of switching to EVs on their mobility lifestyle. We apply
our process to a large dataset of real trips, analyzing both the
impact of EVs on the collectivity and on the individuals, providing
a case study with insights at the level of single users.

Index Terms— Electric vehicles, individual mobility networks,
mobility data mining, trip planning.

I. INTRODUCTION

ELECTRIC mobility is one of the main advocated
solutions for making urban environments ecologically

more sustainable, improving the quality of life of citizens [1].
Despite the quick development of the Electric Vehicle (EV)
market and the strong commitment of car makers, various
social barriers need still to be overcome to complete the
transition of mobility towards electric [2]. Indeed, most users
are very little familiar with what driving an EV really means
and what it might change in their daily lives if they replace
their fuel-based vehicle with an electric one. This lack of
knowledge causes several worries to the average potential user,
even though its many advantages for the environment are clear.

A. What Makes EV Mobility Different

From the viewpoint of the end user, a major issue of
battery-powered vehicles is their reduced autonomy. While
recent years witnessed great improvements in EV technology,
currently an average EV model still has a range that is around
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half of its fossil fuel counterpart, often inducing in the user
the so-called “range anxiety” [3], which might be reduced by
gaining experience in range management and building trust
in range estimation systems. In addition, the time required to
fill a fuel tank is usually just a few minutes, while a stop to
recharge the battery of an EV can take much longer times,
up to some hours, depending on the capacity of the battery
and the type of recharger [4]. This requires more careful
planning of trips and recharges. Finally, in most countries
the recharge infrastructures are currently much less developed
than fossil fuel ones, thus arising further concerns about the
capability of a user to satisfy their mobility needs without
introducing significant deviations from original travel plans.
On the positive side, different from conventional fuel, electric
energy is a utility available in any building. In several cases
that makes EV recharging possible at home or at workplaces.

B. Objective and Novelty of Our Study

This paper proposes a process that, through a mix of
mobility data analytics, ad hoc trip planning and simulation,
can analyze the current fuel-based mobility of a user and
quantitatively describe the impact of switching to EVs on their
mobility lifestyle. We emphasize that our aim is to reproduce
the study over large sets of users and long periods of time, thus
the process needs to be scalable and completely automatic. The
final result is not only a set of general indicators over the whole
population under study but also insights about how the switch
to EVs affected the mobility of single users. Our solution
adds a novel perspective to the existing literature on the topic,
the latter being mostly focused on the infrastructural issues,
namely how to organize the energy distribution (e.g. where
to place recharge stations) and how it will impact the current
power grid, or on abstract path optimization problems, trying
to minimize the battery consumption of trips or the overall
time. Only a small portion of works try to quantitatively study
how much the current mobility actually fits the constraints
imposed by EVs, and in most cases that is done at a general
level, e.g. counting the trips that might fit a given range
[5] (with or without recharges) or studying the mobility
characteristics of a territory to evaluate the sustainability of
EV usage [6].

C. The Simulation Framework

In order to achieve our analytical objectives, we developed
a framework made of two key components. The first one
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is an enriched road network obtained by integrating the
basic OpenStreetMap network with elevation information
and estimated battery consumption for each road segment,
obtained through a mathematical estimation model, and with
the availability of recharge stations at each node. The second
one is a simulation process that takes as input the sequence
of trips (origins and destinations) performed by a single user,
and returns a simulated travel plan that mimics the original one
adapting it to EV requirements. In turn, the process is based on
two main functionalities: a fast heuristics for determining the
best path to reach a destination starting with a given battery
level, also performing intermediate stops (and associated
deviation from the path) to recharge, when needed; and
mechanisms for simulating passive recharges (i.e. performed
while the vehicle was parked at a destination) at key places,
such as the individual home or work, or nearby recharge
stations. The concepts of home and work are automatically
inferred from the input data, exploiting Individual Mobility
Networks [7] (IMN).

In summary, the novel contributions of this paper are
the following: (i) we develop an open source simulation
framework [8] for EVs based on a set of (real) individual
trips, that mirrors them according to EV constraints and battery
recharge opportunities, including the availability of recharge
at home and work; (ii) we define and implement fast heuristics
to compute the best path from an origin to a destination,
taking into account the battery constraints and, where needed,
computing a deviation to reach a recharge station; (iii) we
perform experimentation over a large dataset of real users
in an Italian region, studying the impact of EVs on their
mobility over various scenarios, both at the collective and
individual levels; (iv) finally, we explore the impact of EVs
on the mobility of a sample of users through a network (IMN)
representation.

The paper is organized as follows. Section II discusses
various angles of related works on EV data analysis and
simulation. Section III defines the problem. Section IV
describes the simulation framework and heuristics. Section V
provides experimental results, and finally Section VI closes
the paper.

II. RELATED WORKS

Electric vehicles (EVs) are experiencing a rise in popularity
over the past few years as the technology has matured and
costs have declined. Support for clean transportation has
promoted awareness, increased charging opportunities, and
facilitated EV adoption. Suitably, a vast body of literature has
been produced exploring various facets of EVs and their role
in the transportation and energy systems.

A. Studies on Issues and Opportunities of EVs
1) Market and Stakeholders Studies: Several papers and

reports perform surveys to see how EVs fit individual
needs [9], [10], mostly capturing the feelings of people or
general statistics, thus not providing ways to profile the
individual electrificability of users in objective terms. Vehicle
price, fuel cost, driving range, battery replacement cost,
charging time and maintenance cost are among the significant
attributes considered in consumer choice modelling [11].

2) Simulation-Based Studies: Similar to our objectives,
some studies on EVs make use of mobility data, typically to
understand typical mobility needs of the population, and check
how well they fit the main characteristics of EV mobility.
E.g., in [6] general urban mobility behaviours in two Italian
areas are studied through trip length, average speed and
parking duration distributions, which are used to quantify
the urban fleet share that can fit a switch to battery EVs.
Also, [5] investigated the charging behaviour of EV drivers by
simulating travels and charges at public chargers, showing that
more than 5% of the trips would require recharging at a public
charger for different driving range and charging assumptions.
Some platforms allow running traffic simulations with all or
partially electrified fleets, as in [12], where EVs are simulated
in highway networks with online charging, and [13], where
a spatial-temporal model is built based on a Poisson arrival
location model (PALM) for EVs charging at public stations
on the highway. Compared to these works, our approach aims
to analyze EVs’ impact at a finer granularity, analyzing the
single vehicle’s mobility, providing more precise estimates and
allowing a better understanding of the general phenomenon
and of potential issues.

B. Simulating the EV Mobility

In order to simulate the mobility of EV vehicles in a
realistic and effective way, various factors should be taken
into consideration.

1) Route Planning: Identifying the best path from an origin
to a destination in the context of EVs is a hard problem, since
it adds constraints to the classical shortest-path task (namely,
battery constraints) and requires finding trade-offs between
travel time, energy consumption and time spent recharging.
The problem can be formulated as a Constrained Shortest Path
(CSP) task [14], and various approaches were studied to take
into consideration different aspects: minimize overall travel
and recharge time [15]; minimize energy consumption [16],
also including battery capacity constraints and recharging
road segments [17], as well as approximation schemas for
the task [18]; find trade-offs between energy consumption
and driving time [19]. In our paper, we propose a greedy
routing strategy that favours travel times (expected to be the
priority criterion for average users) and plans recharge stops
at stations in such a way as to minimize the combined cost of
deviating the path and the recharge time.

2) Global Optimization of EV Mobility: The several trips
that make up a user’s daily mobility clearly influence each
other, as the battery recharges might be anticipated or
postponed in various ways, in principle, calling for an overall
optimization based on the knowledge of a long-term plan of
movements. However, the state-of-the-art provided by routing
software is currently based on Constrained Vehicle Routing
solutions, such as OR-Tools [20], that typically require to pre-
compute all shortest paths among the possible destinations,
which is impractical for large-size simulations. Our work
provides fast-yet-accurate and reasonable heuristics, based
on greedy single-step optimization, that reflects typical human
behaviours and realistic situations. Since our aim is to achieve
large-scale simulations, computational costs are critical.
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3) Battery Charge-Discharge: The authors of [21] consider
that battery charging times are nonlinear using a particular cost
function which takes this aspect into consideration. Indeed,
while nearly linear for low state of charge, the charging
rate decreases when arriving the battery limit. In [22] this
aspect is modeled by matching a linear with an exponential
function for high state of charge. At the same time, practical
battery maintenance guidelines (e.g. [23]) suggest refraining
from reaching such charge limits, thus linear charging can be
assumed when operating within the devised charge ranges. In
our work we will adopt such a simplified model, although
our framework can easily accommodate more complex ones.
A practical effect of this is that (time-wise) there is no
convenience to split a full battery recharge into in several
small ones.

4) Mobility Data Analysis for EVs: Mobility data analytics
is a wide and active research field with applications in
several domains, from driving behaviours to animal movement
analysis, crowd dynamics, and so on. In particular, various
tools have been developed to analyze individuals and extract
their key movement characteristics. Among them, in [24] the
notion of mobility profile is introduced, which summarizes
the regular movements of a user. Such individual models
are exploited in [25] for building an effective individual and
collective movement predictor. The work in [7] provides a first
definition of Individual Mobility Networks (IMNs), a network-
based representation that integrates locations, movements, and
their temporal dimension in a succinct way, allowing to
infer semantic information of locations and trips, as well as
simulating realistic mobility agendas [26]. In our work we
exploit IMNs to drive the overall simulation, identify key places
(home and work) for defining the simulation scenarios, and,
finally, to provide a more insightful analysis of results.

III. PROBLEM DEFINITION

A simulation framework for EVs should aim to compute a
mobility schedule that satisfies the (real) mobility demand Su
of a user u respecting the battery constraints of EVs and trying
to minimize the overall cost that the user would experience
in doing that. In particular, battery constraints require that
the simulation identifies when and where recharges should
take place. Also, the cost of a schedule might be defined
in various alternative ways, such as the total time spent
(probably the most natural choice, which will be adopted in
our experiments), the amount of charge consumed, the overall
distance travelled (considering that reaching a recharge station
might require significant detours), and so on.

A. Optimal EV Schedule
We start by introducing the concept of EV schedule which

is basically a sequence of stops including original mobility
demand of the user and potential recharge stops that satisfies
the basic requirements of EVs.

Definition 1 ((Valid) EV-schedule): An EV-schedule is defi-
ned as a tuple (S, c, r, b1, b∗) composed of: a sequence S =
⟨s1, . . . , sn⟩ of stop locations; a function c : {2, . . . , n} → R
defining the amount c(i) of battery consumed for traveling
from si−1 to si (1 < i ≤ n); a function r : {1, . . . , n} → R+
assigning the amount of battery recharged at each stop si ; the

initial battery level b1 ∈ R+; and a maximum battery capacity
b∗ ∈ R+. The EV-schedule is said to be valid if the following
holds:

1) ∀1 ≤ i ≤ n : arrival_batt (i) ≥ 0
2) ∀1 ≤ i ≤ n : arrival_batt (i)+ r(i) ≤ b∗
where arrival_batt (i) = b1 +

∑i−1
j=1 r( j)−

∑i
j=2 c( j).

Constraints (1) and (2) above guarantee that the battery
level is always maintained within practical limits at stops
(0 to maximum capacity). We also observe that functions c
and r basically define, respectively, the charge and discharge
operations applied during the simulation.

Definition 2 (Compatible EV schedule): Given the seque-
nce Su of stops performed by a user u and a set R of
recharge-enabled locations, we say that the EV-schedule ξ =

(S, c, r, b1, b∗) is compatible with Su and R (or simply
compatible, when clear from the context) if:

1) ξ is a valid schedule;
2) Su ⊑ S;
3) ∀i. r(i) > 0 ⇐⇒ si ∈ R

with ⊑ denoting the subsequence relation.
Finally, we introduce the general optimization problem:
Definition 3 (Optimal EV schedule): An Optimal EV

schedule for user u is an EV schedule ξ = (S, c, r, b1, b∗)
compatible with her sequence of stops Su , such that it
minimizes the total cost C(ξ) =

∑
τ(i) +

∑
σ(i), where

τ(i) represents the cost of performing the trip between
locations si−1 and si , and σ(i) represents the cost of
stopping/recharging at location si .

B. Instantiating the General Problem Definition

The definitions provided in the previous section can be
instantiated in several different ways, depending on the factors
that are considered more important to weigh for a specific
context. We provide an instance of the general framework
fitting the aim of this work, namely evaluating the potential
impact of EV-based mobility over individual users’ mobility.
We do that by defining the parameters and functions involved
in the definitions above, namely c(i), r(i), τ(i) and σ(i):

Definition 4 (EV Time Minimization Problem): Given a
user u, the EV time minimization problem consists in finding
an optimal EV schedule for u under the following definitions:
• Battery consumption c(i) is computed assuming to

follow the fastest path between the two locations
si−1 and si . Also, since roads can have a negative
battery consumption (recharging when traveling down-
hill) we ensure that the battery level never exceeds
the cap b∗.

• Recharge amount r(i) is defined in two different cases: if
the visited location was already in the original schedule,
then the recharge lasts exactly the stop duration; in any
other stop, it lasts as much as needed to fill the battery
up to the cap. Also, we assume that the recharge speed
remains constant for a given station, regardless of the
current battery level, which is an approximation.

• Trip cost τ(i) is computed as the travel time between
locations, not considering other parameters at this stage,
such as battery consumption.

• Recharge cost σ(i) is computed as time spent recharging
if the recharge happens in a new stop introduced in the
EV-schedule, and zero in the other cases (what we call
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also passive recharges). Recharge time is assumed to be
linear in the amount of energy required, while queue
waiting times at stations are not considered.

Our final objective is then to evaluate the cost of an optimal
EV schedule under time minimization as compared to that of
its original, internal combustion engine-based one.

C. The Four Simulation Scenarios

A fundamental aspect that affects EV mobility is the
availability of recharge options. Part of them is determined by
the public infrastructures on the territory, which are basically
the same for every user. Others depend on the user’s status,
which therefore might in principle condition their capability
of safely replacing the current internal combustion engine
(ICE) vehicle with an electric one. We consider the following
four basic settings, covering a range of different recharge
opportunities.

1) Public Station Scenario: The user can only recharge
the battery at public stations. This represents the worst-case
scenario, as no other recharge options are available. We remark
that, according to Definition 4, if the stop at a recharge
station was already in the original schedule (i.e. the user was
visiting that area for purposes unrelated to the station itself)
then the recharge is not considered as a cost. The recharge
takes place only if the stay lasts at least a given minimum
duration, that we set at 1 hour as default, and is interrupted
when the stay ends (i.e. the battery might be only partially
recharged).

2) Home Scenario: The user can recharge on public stations
when needed (thus making deviations for the actual trip and
wasting time while waiting for the recharge), and also at home
every time they stop there for at least a specific minimum
duration, our default threshold being 20 minutes.

3) Work Scenario: Similarly to the Home Scenario, the
user can recharge at their work location when they stop there
for at least a minimum duration, the default threshold being
20 minutes.

4) Home And Work Scenario: Both Home and Work options
are available. Clearly, this is the best scenario for the user,
since there are more opportunities for recharging without
spending time reaching stations and waiting.

5) Emergency Situations: In addition to the scenarios
above, we define a specific situation: when the initial battery at
a starting location is not sufficient to reach the destination or
any charging station, the user runs into an emergency situation.
These cases will be counted separately, representing a critical
measure of the usability of EVs. In terms of simulation,
we assume that in case of emergencies, the vehicle is rescued
and transported to destination, where it can continue the
schedule with a fully-recharged battery.

According to literature, the share of users belonging to each
scenario is quite variable from country to country, yet typically
showing a majority in the Home and Home-and-Work ones.
From EU estimates [27] it follows that 33% can recharge at
home, 11% at work, 44% in both, and just 12% only at public
stations; also, these statistics fit with information available for
Italy (e.g. [28] cites 80% of EV recharges performed at home)
and other countries (e.g. Canada [29].)

IV. SIMULATION FRAMEWORK

A. Setting the Stage: Battery Charging/Discharging on the
Map

1) Battery Consumption Model: Our estimation of battery
consumption for each trip of the user is based on an
instantaneous consumption model introduced in [30] and
recommended in [31] as a good trade-off between realistic
simulation and efficient computability. The model considers
all the physical forces to which the vehicle is constantly
exposed in order to estimate the amount of electric power
needed to reach a certain speed, and includes rolling resistance
(based on tire characteristics), mass of vehicle and driver, slope
of the road, aerodynamic resistance, air density and vehicle
speed. Also, the efficiency of the vehicle, such as engine and
gear efficiency, and the energy consumption due to onboard
electronics are estimated. Finally, regenerative breaking is
considered, recovering a fraction of the energy lost during
decelerations. In our simulations, we will consider a medium-
class car model, with associated parameters. In particular,
we will fix the maximum battery capacity to 40 kWh, which
represents a lower-end setting. More details, including all the
physical parameters adopted, are given on the GitHub page [8].

2) Estimating Elevation and Speed: Our basic source of
geographical information is OpenStreetMap (OSM), which
provides a road network graph. Then, we imputed the
maximum travel speed on each road, the altitude of the nodes,
and subsequently, the slopes of the respective edges.

a) Speed: Since OSM typically does not provide
complete information about speed limits (only 10% of road
segments in our area of study had it), we estimate it through
the road type information (the Highway attribute), which is
always available and distinguishes among alleys, crossings,
motorways, residential, etc. Each type was then associated
with its most common speed limit adopted in the area.

b) Slopes: We deploy the Copernicus DEM open data,
of the European Space Agency, to assign the elevation
information of each node in the road network, then the slope
of each edge is computed as its average variation.

3) Estimating Road-Level Discharge: In computing the
battery consumption on one edge (road), the speed and the
slope on the edge were assumed constant and the maximum
speed limit for that edge was chosen as speed. Finally, the
consumption by the vehicle on the edge was calculated, based
on the battery consumption model described in the previous
section.

4) Integrating Public Recharge Stations: Finally,
we extracted from the popular public repository
OpenChargeMap the list of recharge stations available
in our area of interest, associated each of them with the
closest node of our road network (thus labelled as public
recharge location) and with its maximum recharge power
available.

B. EV-Compliant Best Path Computation
1) Best Path Heuristics: As described in Section III-B, the

path selected to reach a destination is simply the fastest one,
when the battery constraints allow that. When that is not
possible, an intermediate stop at a reachable charging station
is performed, selecting the one that minimizes the overall time
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(travel for the new path plus recharge time). In order to add
flexibility to the schema, we compute the overall time as a
weighted sum of its three components:

k1 · torig→station + kcharge · trecharge + k2 · tstation→dest

That allows us to model various contexts, for instance,
favouring short recharge times at the cost of longer trips
(increase kcharge) or postponing recharges (k1 < k2).
In complex situations, especially with long trips, one stop
might be insufficient, thus requiring a multi-stop optimization
that might greatly increase computation times. Our approach
to the problem is a greedy solution that identifies the first
recharge stop assuming that one stop is sufficient to reach the
destination; then, if that is not the case, we repeat the same
process to reach the destination from the current station (now
starting with a full battery), thus greedily identifying the next
stop, as above.

2) Paths Precomputation: Our simulation technique relies
heavily on shortest-path computations. To improve the
simulation performance, we perform offline shortest path
precomputations to collect some useful information. However,
considering the quadratic space requirements of storing
the shortest paths of all node pairs in the road network
graph, we limit the precomputations to/from charging station
nodes and store only the aggregate information about paths.
We achieve that by using Dijkstra’s algorithm [32], adopting
the edge traversal times as weights.

We denote with P(ni , n j ) the precomputed shortest
path between nodes ni and n j . For each pair of nodes,
we store aggregate information about the shortest path’s total
traversal time P time

tot (ni , n j ), spatial length P length
tot (ni , n j ), and

consumption Pcons
tot (ni , n j ). This information is not always

sufficient to infer the final battery level of the vehicle after
traversing a path, since it can contain recharge edges (downhill
roads) that might either take the battery level beyond the
maximum capacity or hide a peak of consumption within
the path. For instance, the sequence of edge consumptions
(and recharges, when negative) ⟨−2, 3, 5,−3⟩ yields a total
consumption Pcons

tot (ni , n j ) = 3, yet, if the initial charge level
is very close to the maximum capacity, the passive recharge
provided in the first leg (−2) would be wasted, since the
battery cannot store it, and the effective final consumption
would be 5, i.e. higher. At the same time, starting with a
charge level slightly larger than the consumption does not
guarantee to reach the destination. Indeed, in the example
above, the first three legs of the path reach a total consumption
of −2+3+5 = 6, thus if the initial charge level of the vehicle
is 4, it would run out of energy at the third leg. To account for
this dynamic behavior, we store two additional values for each
path: the maximum charge Pcharge

max (ni , n j ) which indicates an
upper bound for the battery level of the vehicle that guarantees
the battery will not go beyond the capacity considering all the
downhill recharges along the path; and the minimum charge
Pcharge

min (ni , n j ), which is the minimum initial charge needed
for the vehicle to safely reach n j .

Algorithm findMinMaxCharge summarizes the computation
of Pcharge

min and Pcharge
max for a sequence of path consumptions

consSeq and a maximum battery capacity C , following the
intuition given through the example above. In line 1, we first
compute the sequence of prefix sums of consSeq . The prefix

sum indicates the vehicle’s battery levels, starting with a
battery level of zero from the first edge of the path.

Function findMinMaxCharge
Input : consumption sequence consSeq, and battery

capacity C
Output: (minInitCharge, maxInitCharge)

1 prefixSumSeq← compute prefix sum of consSeq
2 minInitCharge← max(prefixSumSeq)
3 maxInitCharge← C
4 if min(prefixSumSeq) < 0 then
5 maxInitCharge← C + min(prefixSumSeq)
6 return (minInitCharge, maxInitCharge)

The maximum prefix sum of consSeq specifies the minimum
amount of charge needed for the vehicle to follow the path
successfully. On the other hand, if the minimum of this prefix
sum sequence denoted by psmin is negative, then the path has
a subsequence that charges the battery. Thus, if the vehicle
arrives at that edge with a charge of C , no recharge will happen
as the battery is already full. Thus, in that case, the upper
bound of the battery level to avoid exceeding the battery limit
is C + psmin (line 4). However, if psmin is positive, we can
infer that the upper bound would be the battery’s capacity
(line 3). The correctness of Algorithm findMinMaxCharge and
its usage are formalized by the following:

Property 1: Given a path having prefixSumSeq,
minInitCharge and maxInitCharge as defined in Function
findMinMaxCharge, we have that:
• if the initial charge c is such that c < minI ni tCharge,

then the path is not doable by the vehicle;
• if minI ni tCharge≤c≤max I nitCharge, then the path

is doable, and the final charge is c − pre f i x SumSeq;
• if c > max I nitCharge, then the path is doable, and the

final charge is max I ni tCharge − pre f i x SumSeq.
Proof: See auxiliary material on the GitHub page [8].

The precomputation of shortest paths is justified mainly by
the fact that road networks and charging stations in the network
do not change frequently, and the precomputation can be done
offline when significant changes happen to the network.

C. User History EV-Simulation

Algorithm 1 summarizes our proposed procedure for the
overall simulation of EV users’ mobility. The procedure is
based on the general simulation parameters listed in Table I,
which are all passed to Algorithm 1. In addition, the algorithm
receives the road network graph G and the sequence of a user’s
trajectories T sorted chronologically. Also, two parameters
indicating the nodes where the user can recharge at home or
at work, set to null if home/work recharge is not allowed.

The simulation starts using the origin and destination of
each trip in user’s history T to simulate the sequence of
consecutive locations that the user intends to visit. Hence,
the graph nodes orig, dest that correspond to the origin and
destination of the trip are obtained (line 4). The duration of
user’s stay at orig, which is basically the time they spent
from the end of the previous trip until the start of the current
trip, is computed in line 5. If the home or work recharges
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Algorithm 1 (EV Strategy)
Input : G, T , homeNode, work Node

and General Parameters (Table I)
Output: Simulated Path S

1 S ← ⟨⟩
2 cc← b1 // cc is the current charge
3 foreach t ∈ T do
4 orig, dest ← G.get Node(t.s), G.get Node(t.e)
5 stay Dur ← stay duration at orig before starting t
6 if homeNode ̸= null and

orig == homeNodeandstay Dur ≥ ms then
7 cc← recharge at home
8 else if workNode ̸= null and

orig == work Nodeandstay Dur ≥ ms then
9 cc← recharge at work

10 else if orig has a station and stay Dur ≥ mdms then
11 cc← recharge at station
12 reached ← False; rechargeCount ← 0
13 while not

reachedandrechargeCount ≤ max Recharges do
14 p← S P(G, orig, dest, weight =‘traveltime’)
15 consSeq ← consumptions of p’s edges
16 (is Feasible, cc)←

isFeasible(consSeq, batCap, cc)
17 if isFeasible then
18 reached ← T rue; S.insert(orig);

S.insert(dest)
19 break
20 else
21 rcs ← {stations cs | cc ≥ Pcharge

min (orig, cs)}
22 if rcs = ∅ then
23 break
24 recharger ← argmins∈rcs k1 ·

P time
tot (orig, s) + k2 · P time

tot (s, dest) +
25 + kc · recharge_time(s)
26 if cc < Pcharge

max (orig, recharger) then
27 cc← cc − Pcons

tot (orig, recharger)
28 else
29 cc← Pcharge

max (orig, recharger)−
Pcons

tot (orig, recharger)
30 cc← b∗ (full recharge and collect statistics)
31 rechargeCount ← rechargeCount + 1
32 S.insert(orig)
33 orig← recharger
34 if not reached then
35 EMERGENCY condition
36 cc← b∗

37 return S

are allowed, and the user stays there for at least a predefined
amount of time ms, a home or work recharge is done before
the next trip starts from orig (lines 6-9). The same applies to
stays longer than mdms at locations corresponding to a station
(line 11).

Next, lines 14-19 compute a shortest path from orig to dest
using the edge traversal time as weight criterion. If the shortest

TABLE I
GENERAL SIMULATION PARAMETERS

path is feasible given its sequence of edge consumptions, then
reached is set to T rue and both orig and dest are inserted
into the simulated path sequence S. Otherwise, depending on
the current battery level cc, a list of reachable charging stations
is fetched from the precomputed information P (line 21).
Note that, there might be no reachable charging stations if
the battery level of the vehicle is too low, in which case, the
current trip simulation is interrupted (lines 22-23).

Then, the best charging station recharger is selected
among the possible options using the heuristics described in
section IV-B.1 (line 25). According to Property 1, if the current
charge of the vehicle is lower than Pcharge

max (orig, recharger),
then the vehicle will consume the energy equal to the sum of
path’s edge consumptions. Otherwise, the same computation
will be performed, yet capping the initial battery level at
Pcharge

max (orig, recharger) (lines 26-29). Then, a recharge is
done at recharge (line 30), the number of recharges for
the current origin/destination pair is incremented (line 31),
the node orig is added to S and recharger is set as the
origin node for the next trial in reaching the destination
(lines 32-33). This process repeats until either the vehicle
reaches the destination or the number of recharges exceeds the
max Recharges threshold. In case it is not possible to reach
the destination, the algorithm raises an emergency condition
and continues with simulating the next trip (lines 34-36).

V. EXPERIMENTS

A. Setting up the Stage
In this section, we describe the dataset used and the

general setting of the experiments carried out. Also, some
properties of the dataset are explored, to give the reader a
better understanding of the application context.

1) Dataset: Our experiments are based on a proprietary
dataset of real GPS traces from 1000 private vehicles moving
in the Tuscany region, Italy, and spanning 2 months in March
and April 2017. The vehicles represent residents from (i.e.
their main location belongs to) five provinces (Arezzo, Firenze,
Lucca, Pisa, and Pistoia), although their trips can span all over
the region. The raw data is segmented by identifying stops,
defined as points where a vehicle remains within a distance of
50 meters for at least 20 minutes. Each trip is then represented
by its pair of origin and destination points, filtering out trips
shorter than 1 km (typically representing cases where the
vehicle is simply parked in a different slot in the same area).
This results in a total of 176,300 trips. In order to make the
results of our simulation perfectly comparable with the real
mobility data, the trip between each origin and destination
pair is reconstructed through a fastest path heuristics – the
same used in the simulation, yet with no battery constraints
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Fig. 1. Distribution of the number of trips involved in the experiments: (left)
trips per user; (right) trips per day of each user.

–, storing its length and duration. This reduces the impact of
imperfections in the road network (missing edges, incorrect
speed, etc.) over the comparison process. Each origin and
destination point is snapped to the closest node in the road
network, and we use the shortest path function provided by
the NetworkX library [33] using traversal time as edge costs.

2) Home and Work: In order to implement the simulation
scenarios it is essential to identify the locations representing
home and work places. We do that following the approach
described in [7], [34], and [35], which infers a graph structure
of the user’s mobility named Individual Mobility Network
(IMN), and identifies visited locations and their frequency.
The first and second most frequently visited locations are then
selected, resp. as home and work place of the user.

3) Dataset Statistics: As shown in Figure 1, most users
have more than 100 trips in the observation period and
an average number of trips per day ranging from 2 to 8,
suggesting that the movement history of the users analyzed
is significant.

A general analysis of trip length and duration, omitted due
to space limitations and available in [8], reveals that most trips
are in the short range (≤ 10km), with a significant number of
moderately long ones (between 10km and 40km) and a small
fraction of long trips (longer than 40km up to 300km).

The experiments make use of two sources of geographical
data: OpenStreetMap, for the road network of Tuscany, which
is composed of 138792 nodes (intersections) and 305804 edges
(road segments); and OpenChargeMap, for the catalogue of
recharge stations available on the territory and their power,
for a total of 354 stations. Figure 2 shows the distribution of
recharge power and the geographical disposition of stations.
Recharge stations are grouped by power category, following
the current standard classification (see, e.g., [36]): slow if
power < 7kW , fast if 7 ≤ power < 25kW , rapid if
25 ≤ power < 100kW , ultra-rapid if power > 100kW . The
most common ones are fast rechargers (78%), especially with a
power of 22 kW, although there is a good number of rapid ones
(8%), and a few ultra-rapid (1.7%). Around 55% of stations
provide 2 plugs, 13% only one and 24% 3-4 plugs, while the
remaining 8% go up to 38. The large majority of stations are
in the Northern part of Tuscany, in particular along the line
connecting Florence and Pisa.

B. Runtime Evaluation
As mentioned above, we aim to run our simulations on large

pools of vehicles and long time periods. For this reason, in
this section we will evaluate the scalability of the proposed
approach w.r.t. the input dataset size (namely the number of

Fig. 2. (left) Number of stations by maximum recharge power provided
(in KW); (right) Geographical distribution of stations (red=slow, orange=fast,
green=rapid, blue=ultra-rapid). Original map created from OCM data.

trips involved in the simulation) and its complexity (namely
the length of trips). We consider the two extreme scenarios:
public-only recharges and recharging also at home and work.

The scalability study measures the growth of runtimes for
increasing sizes of the input dataset. In particular, each data
sample is composed of the first N trips in chronological
order, with N ranging from 10k to 160k. Runtimes grow
linearly in the input size for both scenarios, as we could
expect given that each trip is only loosely dependent on the
previous ones, with times ranging from 200 seconds (for 10k
trips) to 4000 seconds (160k trips). Also, the public-only
scenario has slightly higher runtimes due to its higher chances
of deviations to recharge stations, which add complexity to
the process and increase runtimes. Notice that these time
measures do not consider the fixed cost of the pre-computation
phase described in Section IV-B.2, which depends only on
the geographical area of interest and not on the mobility data.
In our experiments, pre-computations added an amortized cost
equivalent to ∼221 milliseconds per trip, assuming to amortize
it over a single simulation run (i.e. a single scenario with
a single set of parameters). While still significant, it easily
becomes negligible when multiple runs are needed (as for
the set of experiments in this paper) or larger datasets are
employed.

Simulating short trips is expected to be less expensive than
longer ones, since the latter usually involve a more complex
shortest path computation and there are also higher chances
that an additional stop at a recharge station needs to be
planned. An analysis of the runtime distribution for single trips
showed us that runtimes grow approx. linearly with the trip
length, and the vast majority of trips (more exactly, 96.9%)
are less than 30 km, for which the single trip cost is virtually
always less than 50 milliseconds. More detailed results and
visual plots are available in the auxiliary material [8].

As mentioned in the related works, most competing
approaches available in literature aim to precisely optimize
the single trip, yet require much higher computational costs –
indeed, the optimal routing algorithm behind them (e.g. [37])
is known to be NP-hard, and thus hardly applicable to large
and medium-sized setting as the one we are considering here,
which requires to simulate more than 170k trips over a road
network composed by over 300k edges. Our heuristics, instead,
results to be efficient enough to run each experiment in around
1.2 hours on a single commodity machine.

C. Simulation Results

1) Overall Impact of EV on Individual Mobility: The core
of the experiments consists of a comparison of the original
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TABLE II
OVERALL IMPACT OF EVS ON TRIPS. WE FOCUS ON THE COMPARISON

BETWEEN THE AVERAGE LENGTH AND THE AVERAGE DURATION OF
REAL AND SIMULATED TRIPS

trips against the simulated ones on the four scenarios (charge
at public stations only; public and home; public and work
place; public and home + work) over the whole dataset.
In addition, we created 100 random sample mixes of the
four scenarios, associating each user to one of them by
following the representative distribution statistics for (some)
EU countries provided in [27], according to which 77% of
users can recharge at home, 55% at work and 12% in none of
them. The results are summarized in Table II. First, we can see
that the average lengths of the trips in the four scenarios are
very similar to the original ones, with an increase of less than
1%, signifying that deviations for recharging are on average
modest. In terms of trip duration, the worst-case scenario
yields increments that are moderate in absolute terms (+1’17”)
and yet, given the typical short lengths of trips, are significant
in relative terms, reaching a 18.11%. This percentage very
quickly drops to moderate levels when recharge-at-work is
introduced, and to modest ones with recharge-at-home.

The simulations yield a 0.75% of emergencies in the
public-only scenario, which is relatively large. We believe
this to be an overestimate of real user issues, mainly
caused by the insufficient distribution of recharge stations
in Tuscany (currently covering only larger cities and main
ways), aggravated by the incompleteness of OpenChargeMap
(we estimate it is missing ∼30% stations). With the growth
of the EV infrastructures, we expect that these factors will
be greatly alleviated in the near future. Introducing other
recharge options drastically reduces emergencies down to
0.03% for the home + work case. Similar results are obtained
for the percentage of trips with recharges at stations. Finally,
we observe that the representative sample mix achieves rather
low values, that are between the recharge-at-work and the
recharge-at-home scenarios.

Overall, the results show that by applying the simple
charge management heuristics considered in this paper, the
majority of trips incur minor deviations from the original
ones. Considering the sparseness of the current recharge
infrastructures available in the area of study, that provides
positive feedback for individual users about the feasibility
of switching to an EV without changing any aspect of their
mobility habits.

These results can be seen from the perspective of the single
individual, in order to understand if the moderate average
impact measures shown actually hide smaller portions of
largely affected users. Figure 3 represents the distribution
of the duration increase (left) and distance increase (right)
measured by aggregating times and distances by the user.
As we can see, the figure not only confirms that introducing
home/work as recharge opportunities the impact is reduced

Fig. 3. Distribution of increase of trip duration and length aggregated by
user.

TABLE III
TEMPORAL VARIATIONS OF EVS IMPACT FOR THE FOUR SCENARIOS. THE

TWO-MONTH PERIOD IS SPLIT INTO FOUR SHORTER PERIODS OF TWO
WEEKS EACH (t1 , t2 , t3 AND t4) IN ORDER TO SEE HOW THE

PERCENTAGES CHANGE INSIDE THE SELECTED TIME

(the peak around a 0 increase grows significantly), but also
that virtually no user suffers increases above 4% in any of the
scenarios.

2) Temporal Stability of Results: In order to evaluate
if the results obtained are time-dependent, we provide in
Table III aggregates over four consecutive bi-weeks for the
four scenarios. We can observe that there is indeed some
variability, and also a general slight increase on all measures
considered, yet always remaining at low levels and well below
1%. The increase can be justified by considering that some
vehicles travel relatively little, and thus it is unlikely that they
will need recharging during the first bi-weeks, concentrating
recharges (and, consequently, deviations) later in the period.

3) Spatial Stability of Results: Since our dataset spans
a significantly large area, and the recharge infrastructures
are not homogeneously distributed, we try to understand if
trips in different provinces suffer from deviations of different
intensities. Table IV summarizes the results. Here we can see
that, indeed, different areas show a different impact level.
In particular, Pisa benefits from a larger number and better
distribution of recharge stations at least in relation to its
size, and thus shows a significantly smaller impact than the
others. Firenze and Lucca have similar values that are much
larger than Pisa, most likely because of the large extension of
Firenze, resulting in a lower density of stations, and the limited
number of stations in Lucca, only partially balanced by the
proximity to Pisa and its infrastructures. Finally, Arezzo and
Pistoia are less covered by stations and also slightly peripheral
to the other big cities. As a final remark, we notice that the
impacts of the single provinces are smaller than the aggregates
shown in Table II. This is due to the fact that trips originating
outside provinces are not included here, and they indeed tend
to be longer and traverse less populated (also in terms of
stations) areas.

4) Impact of Heuristics’ Parameters: When a direct trip to
a given destination is not possible because of a battery charge
shortage, the proposed heuristics builds a path passing through
a reachable recharge station, which is chosen by considering
the travel time to reach the station, the travel time to reach
the destination from the station, and the recharge time. The
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TABLE IV
GEOGRAPHICAL VARIATIONS OF EVS IMPACT. EACH PROVINCE IS

ASSOCIATED TO THE TRIPS THAT START FROM IT

Fig. 4. Usage frequency of stations by power by increasing values of kcharge
(weight of recharge time in the path selection algorithm).

weight associated to each component is defined, respectively,
by parameters k1, k2 and kcharge. In this paragraph we discuss
the effects of different choices of parameters, in terms of
performances and also in terms of station usage.

Since stations can have very different recharge speeds,
it can happen that the heuristics chooses to perform large
deviations (and thus spend more time to travel) in order to
reach a fast recharger and thus spend less time recharging. For
this reason, high values of kcharge are expected to increase
the usage of the highest speed stations. Figure 4 shows the
distribution of recharges on the different station types, grouped
by power/speed, for different values of kcharge. As we can
see, when the weight of recharge time is null, recharges are
strongly concentrated on relatively slow stations, namely those
labeled as “fast”, which are the most popular on the territory.
With kcharge = 0.2 the distribution immediately changes, and
the peak is now on the “rapid” group. Further increasing
kcharge has little effect on the slow/fast group, whereas the
rapid one slightly decreases in favour of the “ultra-rapid”.
In all cases, the slowest stations in the “fast” category and
those in the “slow” one have a marginal role, since they are
not common enough nor convenient in terms of recharge time.

Table V describes how the impact of EVs changes when
varying the travel time parameters (k1 and k2). Increasing
k2 has no clear effect on the length and duration of trips,
while it apparently leads to a slight reduction in the number
of recharges required. This might be motivated by the fact
that high values of k2 promote recharges that are closer to the
final destination, which is thus reached with more charge in
the battery for the following trips. A low k2, instead, would
favor early stops at stations along the trips, resulting in lower
battery levels at the destination.

5) Validation of Results: In order to test whether our
solution provides results coherent with other existing EV-
related services, we compared it against the popular online
EV-based trip planner ABRP (https://abetterrouteplanner.com/)
through a small-scale experiment covering 20 users over

TABLE V
EFFECTS OF VARYING k1 AND k2 ON EVS IMPACT. kcharge IS FIXED TO 0.2

one day. Results show that the trips generated by ABRP
have a similar length (average difference around 2%) and
a significant, yet stable increase in driving time (35.3%)
and recharging time (24.6%) – which can be attributed
to ABRP referring to real-time, and thus traffic-affected,
road status information. This small comparison suggests
that our results, expressed as relative increase/decrease of
times, are overall coherent with ABRP. More details are
provided in [8].

D. Case Studies
In this section we closely examine the impact of EVs on

two sample users, each under two scenarios: charge at home
and work, and charge only at public stations. User A is
characterized by a moderate number of recharges performed
(12 in the worst case), while user B had a higher number (28 in
the worst case). Figures 5 and 6 show the results respectively
for user A and user B, adopting a double visual representation
of the EV-based mobility for each scenario: the Individual
Mobility Network (IMN) one (top) depicts user’s locations as
nodes and trips as edges, representing visit/trip frequency as
thickness and recharges as redness; the temporal charge one
(bottom) shows the charge in time, using red for recharges at
stations and green for passive ones.

The IMN representation in Figure 5(top-left) shows that in
the public-only scenario user A performed several recharges
along different trips of their history (see the red edges), plus
rather frequent passive recharges (i.e. while stopping at a
trip destination) in two locations (see the small red nodes).
The temporal charge plot on the bottom-left also confirms
that recharges at stations (in red) are approx. uniformly
distributed in time, while passive recharges (in green) are
less frequent. The corresponding home + work scenario is
shown on the right plots. As we can see, recharges are now
much more concentrated on the home and work location,
significantly reducing the recharges at stations (especially for
trips starting/ending at home or at work) and also strongly
reducing the other passive recharges. The temporal graph
confirms this, and also shows that the battery level is generally
kept much higher than in the previous scenario. For this user,
the overhead in adopting an EV seems to be moderate, and
reduced almost to zero when recharging at home and work is
possible.

User B, shown in Figure 6, starts from a much more
complex situation, as they require rather frequent recharges
at public stations in the public-only scenario and do not
benefit from passive recharges. Moving to the home and work
scenario, recharges at home reduce significantly the usage of
public stations, yet there is no dominant work place, and the
overall result is that also in this scenario a significant number
of stops at public stations is needed, especially in the central
period of time. User B is not only energy-hungry, but their
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Fig. 5. Use case A: IMNs (top) and temporal graph of charge (bottom). Left:
Home + Work scenario; right: Public-only. Size and width in IMNs represent
frequency of stop/trip, darkness of red represents frequency of recharge. In the
temporal graph, passive charges are green, those at stations are red.

Fig. 6. Use case B: same layout as Figure 5.

mobility distribution also makes the effect of passive recharges
less incisive. Overall, this appears to be a user that might
require more effort in the transition to EVs.

More examples are available on the GitHub of the
project [8], where also the source code of our framework
is provided, together with a sample application on open
data.

VI. CONCLUSION

In this work, we proposed a methodology based on mobility
data analytics, ad-hoc trip planning and simulation, that
provides detailed quantitative information about what the
switch from ICEs to EVs can mean for single users and
for the collectivity. The proposed approach is efficient – thus
suitable for large-scale studies – and takes into consideration
the main aspects involved in EV-based mobility: limited
driving range, sparse recharge infrastructures, potentially long
recharge times, the possibility of recharging at home/work,
and so on.

A. Use Case Results and Application
The results obtained over an Italian region show how the

electrification process is expected to generate only moderate
issues at the collective level (mainly, marginal increases in
distance traveled and overall moderate time spent at recharge
stations), and yet individual users can expect slightly different
impacts in they travel & refuel habits. We envision that these
results (and the tool in general) can help various actors of
the mobility scene: decision-makers in better planning the
charging infrastructures by simulating the impact of installing
new stations or improving their speed; car makers to support
the design of models that better fit users’ needs; and the single
users, that can better understand their personal fitness to EV
under different conditions and car models (e.g. choosing their
personal best trade-off between battery capacity and cost).

B. Limitations and Open Problems
Though a ready-to-use tool, the proposed approach is still

amenable to improvements in several directions that we aim
to explore: integrating/estimating waiting times at stations,
as well as a more complete map of charge stations; considering
the variability of power provided by chargers as effect of
the time-variable energy grid load; studying the effect of
different battery capacities; studying the impact of EVs on user
costs and environmental factors; finally, devising processes
and setting up experiments to achieve a stronger validation
of results, and a better calibration of the tool.
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