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Abstract—Microsoft proposed RADAR in 2000, the first indoor
positioning system based on Wi-Fi fingerprinting. Since then, the
indoor research community has worked not only to improve
the base estimator but also on finding an optimal RSS data
representation. The long-term objective is to find a positioning
system that minimises the mean positioning error. Despite the
relevant advances in the last 23 years, a disruptive solution has
not been reached yet. The evaluation with non-open datasets
and comparisons with non-optimized baselines make the analysis
of the current status of fingerprinting for indoor positioning
difficult. In addition, the lack of implementation details or data
used for evaluation in several works make results reproducibility
impossible. This paper focuses on providing a comprehensive
analysis of fingerprinting with k-NN and settling the basement
for replicability and reproducibility in further works, targeting
to bring relevant information about k-NN when it is used as a
baseline comparison of advanced fingerprint-based methods.

Index Terms—Wi-Fi Fingerprinting, Received Signal Strength,
k–Nearest Neighbor, Reproducibility, Replicability

I. INTRODUCTION

Since the first introduction of Wi-Fi fingerprinting
positioning systems, the pattern matching algorithm k–Nearest
Neighbor (k–NN) has been one of the most used techniques to
provide a position estimate [1], [2]. k–NN is a non-parametric
supervised learning method introduced in 1951 [3], which is
used in numerous applications other than indoor positioning.
k–NN may be implemented as a data classifier or regressor,
where the output is a class membership or the average of the
values of k nearest neighbours, respectively.

In positioning applications such as fingerprinting, k–NN
regression provides a position estimate by selecting the k
closest samples to the operational sample from within the
training dataset and then averaging the position coordinates of
the closest samples to obtain a position estimate. On the other
hand, k–NN classification fits better for symbolic positioning
applications based on reference locations, rooms or floors. To
find the closest samples, generic distance functions (e.g., City
Block) are used to compute the distance in the signal space
between the operational sample and all training samples.
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Although several efforts have been made to improve the
standard k–NN algorithm in terms of accuracy [4]–[6] and
efficiency [7], [8], new improved versions of k–NN –including
the weighted k–NN variant– have emerged with no disruptive
alterations with respect to the original algorithm.

Recent applications of k–NN include but are not limited
to, Wi-Fi/Magnetic matching, floor detection or smartphone
carrying mode [9]. Furthermore, researchers use the k–NN
algorithm as a core positioning system while evaluating other
features of the positioning pipeline, such as data augmentation
to enrich the radio map [10], [11] or to reconstruct areas
with missing reference points [12]. Finally, it is the de-facto
baseline for fingerprint-based positioning [13]–[17].

Achieving the best possible performance with k–NN
requires optimizing its hyperparameters, i.e. the k, the distance
function [18], [19] and the weighting strategy for centroid
computation. Procedures involving data manipulation may
also improve positioning accuracy. We consider that external
hyperparameters, such as data representation [18], should also
be considered when optimizing the k–NN hyperparameters as
significant improvements can be obtained. However, k–NN is
still used with default hyperparameters when it is the baseline
for comparison with other proposed methods. Unoptimized
baselines may not represent k–NN real performance.

In addition, some work about advanced fingerprinting lack
details to reproduce/replicate it. For instance, how to deal with
non-detected values, the threshold to consider a signal weak or
other relevant hyperparameters. It is not easy to reproduce the
results and replicate the method if core information is missing.

This paper aims to enhance the reproducibility and
replicability of methods in fingerprint-based indoor
positioning. The contributions of this paper include:

• Identification of the relevant steps and core
hyperparameters in the k–NN execution pipeline
required to reproduce an algorithm based on k–NN;

• Analysis of the main k–NN hyperparameters using 69
datasets and statistical tests to assess significance;

• Comparison with state-of-the-art improvements of k–NN.
We provide access to code and datasets that can be

used by the research community to improve the comparative
benchmarking of new methods. Other researchers are
encouraged to add their own datasets and code [20].



II. RELATED WORK

This section describes RADAR, the first Wi-Fi
fingerprinting system –which was based on k–NN– and
subsequent enhanced versions found in the literature.

Bahl and Padmanabhan [1] introduced RADAR in
2000. In their analysis, they included a radio map with
at least 20 samples, considering 70 positions and 4
orthogonal orientations. The proposed empirical evaluation
was conservative as they picked one of the locations and
orientations tuples randomly, and then applied the k–NN
method using all samples from the remaining 69 points and
4 orientations. The evaluation was done in the corridors of
an area of 22.5 m by 43.5 m and considered the Euclidean
distance to compute the dissimilarities between fingerprints.
The results reported a median error of 2.94 m for k = 1 and
2.75 m for k = 5, with degraded performance for larger k.

Cha [21] performed a generic comprehensive analysis of
distance (dissimilarity) and similarity functions because of
their relevance for many pattern recognition problems. They
were reviewed and categorized according to both syntactic
and semantic relationships. This work served as inspiration for
similar analysis focusing on Received Signal Strength (RSS)
fingerprinting [18], [22] using a public dataset each.

Shin et al. [23] introduced a two-stage procedure to
dynamically set the value of k for every operational fingerprint.
First, the Euclidean distance to all reference samples is
computed, and only the samples with a distance below
a threshold are selected. Then, an additional rule based
on differences is applied to further filter the selected
candidates. Then, the workflow of weighted k–Nearest
Neighbor (wk–NN) is conducted using the inverse of the
distance to weigh the locations when computing the centroids.
The evaluation was performed in a test space of 48 m to 22 m.
Unfortunately, no clue about the threshold is provided.

Liang et al. [4] proposed a novel RSS-fingerprint distance
that mimics the physical geometric distances and weights the
base stations (bs) according to their strength. The execution
pipeline afterwards follows the traditional wk–NN where the
weights for computing the centroids correspond to the squared
inverse of the new physical distance. The empirical evaluation
was carried out outdoors over one single GSM network in an
urban area, an ideal test-bed to compare the performance of
traditional k–NN and improved k–NN algorithm.

Zou et al. [24] applied the wk–NN with a novel
weighting scheme, where the computation was leveraged to
the Signal Tendency Index (STI) instead of the raw Received
Signal Strength (RSS). The distance among fingerprints was
calculated with the Euclidean distance over STI features
and the weights for centroid computation corresponded to
the inverse of the distance of the selected neighbours. The
empirical experiments were conducted in a 35.6 m to 16.6 m
laboratory for 6 months. The results showed that leveraging on
STI features compensated device heterogeneity and reduced
the overall positioning error with respect to raw RSS, but
extended analysis on other distance functions was omitted.

Recently, Liu et al. [25] proposed a rule to dynamically set
the k value up to a maximum reestablished value using two
threshold values and the cosine similarity values of the nearest
neighbours ranked in the range of [1 . . . kmax]. Although
the proposed method improves the traditional wk–NN, it
introduced two new hyperparameters to optimize.

In the last 23 years, none of the several k–NN enhancements
emerged as a clear winner. The evaluation setups among works
differ, baselines do not share the same configuration, or some
key elements are underexplored (e.g., distance function among
fingerprints). Some of the k–NN enhanced versions introduce
strict restrictions, e.g., asking for reference locations in regular
grids or having multiple fingerprints per position, while others
introduce new hyperparameters to optimize. Furthermore, the
empirical evaluation is limited to a few scenarios, limiting
the generalization of results. In this work, we perform a
comprehensive analysis of k–NN and variants.

III. THE PIPELINE FOR POSITIONING WITH k–NN

This section describes the pipeline for fingerprinting-based
positioning in a reproducible way. The provided description is
technology and measurement-agnostic.

A. Off-line phase: Data collection

Data collection is a time-consuming task as the radio map
or reference set (denoted by T in this paper) is built with real
measured data. Ideally, the operational area should correspond
to a medium/large size scenario with a realistic deployment of
anchors and a good distribution of reference locations.

The collection itself is straightforward, one or several
fingerprints are collected at every reference location with
a single or multiple devices. Reference locations should be
equally distributed following a regular grid if possible. Data
collection and/or selection of locations can be delegated to
users by means of crowdsourcing. Depending on the radio
map, cross-validation with some restrictions can be applied
to generate independent training (T ) and validation sets (V),
enabling an objective procedure to select hyperparameters.

Nevertheless, a secondary radio map is needed, acting as the
evaluation or test set (E in this paper). Although collecting all
data in a single procedure is also viable, it is not recommended.
Very similar fingerprints may end up in the training and testing
sets, thus leading to over-optimistic results. For fair evaluation,
training, validation and test sets should all be independent.

Depending on the device, raw data can be gathered as
individual readings or as a vector with one reading per detected
emitter. In the former case, samples should be aggregated
within an appropriate time window to generate fingerprint
vectors. In the vectors, non-detected values must be identified.

Hardware and software limitations must be cross-checked
and documented. For instance, the process to sense a single
Wi-Fi RSS fingerprint should take around 1.5 s to 6 s,
depending on the number of scanned radio channels. However,
Android buffers the RSS values and allows collecting multiple
fingerprints per second, which results in having exactly the
same RSS values (and fingerprints) in a short time window.



We do recommend sharing the data and providing it in its
rawest form, with the anchor ID, the transmission frequency,
the received intensity values and the timestamp. In the case of
receiving individual readings, we also recommend providing
data in vector format and the procedure to generate them.

The steps described above serve for static data collection.
In the case of collecting data while moving, high-accurate
real-time ground truth is needed to label reference positions,
similar to what was introduced by Daniş et al. [26], where
the authors track the position of a device with cameras and
a Bluetooth Low Energy (BLE) beacon in an area with
markers. They process the video streams to obtain precise pose
estimations and reduce the positional error to less than 5 cm.
They annotate BLE data with the position to create a radio
signal dataset for evaluating a radio signal-based localization
system.

B. Data processing at offline and online phases

An important, but commonly uncredited, step in
fingerprinting is data pre-processing. It includes how to
represent the non-detected values with a numeric value, as
generic distance functions cannot handle missing data. In
RSS-based fingerprinting, missing data are often replaced
with −200 dBm, −150 dBm, −110 dBm or the minimum value
in the dataset minus 1. Nevertheless, the proper values depend
on the kind of measurement and positioning technology.

Another relevant pre-processing procedure to consider is
filtering weak signals. i.e., assigning the non-detected value to,
for instance, those signals weaker than a threshold or keeping
only the n strongest signals in the fingerprint. If this optional
step is applied, the full procedure should be documented.

Choosing the proper RSS data representation is a relevant
procedure. Some machine learning models only work when
input data are scaled to [0, . . . , 1] range. In k–NN, some
distance functions do not work as expected if the input data are
negative (e.g. Sorensen or Cosine [18], [21], [22]) and RSSs
should be shifted to positive. Finally, the measurements in
RSS-based fingerprinting are not linear, and some alternatives
tried to mimic the Log Distance Path Loss model [4], [18].

Finally, the way different fingerprints collected at the same
location are aggregated is also included in this pre-processing
step. Some authors use all raw samples, as in RADAR, while
others average fingerprints collected in the same location.

We do recommend sensible pre-processing in both, offline
& online phases, such as choosing a proper data representation
[18]. However, we do not recommend averaging fingerprints
at the online phase as it requires being in the same location for
a long period, which is not compatible with indoor navigation.

C. On-line phase: Data processing

The high-level description of k–NN-based positioning is
provided in Algorithm 1, requiring 3 hyperparameters: 1) the
function dist to compute distances among fingerprints [21], 2)
the value of k, and 3) the strategy to compute centroids. We
assume infinite distance if j-th training s

T
j and i-th evaluation

s
E
i fingerprints (ln.4) do not share any common emitter.

Algorithm 1 Pseudocode of k–NN for positioning
1: input T , E , k, dist, centroid
2: for i = 1 to ∣E∣ do
3: for j = 1 to ∣T ∣ do
4: 1 Compute RSS distances dj = dist(sEi , sTj )
5: end for
6: Sort distances in RSS space
7: 2 Select k′ nearest training samples (lowest d): nsi
8: 3 Compute centroid: posi = centroid(posT , nsi)
9: end for

10: Return: Estimated positions

Once distances are computed (ln.5), the nearest neighbours
(nsi) correspond to the samples with the lowest distance values
dj . If multiple neighbors share the k-th distance after sorting,
we choose them all. We thus consider k

′ nearest neighbours
(ln.7). Some authors use a similarity function in ln.4 (simj)
instead of a distance one. In those cases, the nearest neighbours
are those with higher similarities instead of lower distances.

The strategies for calculating the position posi (ln.8, eq.1)
are: unweighted centroid and weighted centroid based either
on inverse distance or on squared inverse distance. All weights
are scaled so that their sum equals 1.

posi = centroid(posT , nsi) =
k
′

∑
l=1

(
wl ⋅ pos

T
nsi(l)

∑k
m=1 wm

) (1)

where: wl =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 unweighted centroid
(dl)−1 weighted centroid inverse distance
(dl)−2 weighted centroid sq. inverse dist.

when computing wl, if a similarity function (simj) is used
in ln.4, distances dj must be replaced with (1 − simj) if
[0 . . . 1]-scaled or (simj)−1. Handling div by zero must be
documented, we added small value ϵ = 10

−8 to any distance.

IV. EMPIRICAL ANALYSIS AND RESULTS

A. Experimental setup

To compare k–NN and improved variants we applied them
over 51 Wi-Fi datasets: DSIn [27], LIBn [28], MANn [29],
MINT1 [30], SAH1 & TIE1 [31], TUTn [32]–[37], UJIn [38],
UTS [39], OFIN [40], GPRn [41], SODn [14], KIOSn [42],
EEILn [43]; 9 BLE datasets: OFINBn [40], UEXBn [44],
UJIBn [45]; and 9 hybrid datasets: HDBn [46]. The
implemented methods and dataset descriptions are provided
in [20] for research reproducibility and replicability [47].

We report the mean 3D positioning error ϵ3D for each
dataset. As aggregated metrics, we provide the average error
considering all the 112239 individual evaluation samples (All)
from the 69 datasets, and the average error considering the 69
mean values provided per dataset (DB). For aggregated results,
we also report the normalized values (All n. and DB n.) with
respect to baseline C1 (see Section IV-B). T-student, Anova1
and Wilcoxon test (tt, a1 and w in Table I) are used to check
whether differences among results are significant !or not %.



B. Analysis of hyperparameters in k–NN

First, we analyse the k–NN hyperparameters, comparing
4 configurations of k–NN: C1) default values; C2) optimal
distance; C3) optimal distance & k tuple; and C4) optimal
set of all hyperparameters. We use City Block distance, k=1
and unweighed centroid and positive data representation for
RSS [18] as default configuration. Table I provides all results.

TABLE I
RESULTS FOR k–NN UNDER 4 HYPERPARAMETER CONFIGURATIONS

ϵ3D C2 vs. C1 C3 vs. C2 C4 vs. C3 C4 vs. C1

dataset C1 C2 C3 C4 df tt a1 w df tt a1 w df tt a1 w df tt a1 w

DSI1 4.95 4.45 3.64 3.56 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

DSI2 4.95 4.45 3.72 3.65 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

LIB1 3.02 3.02 2.44 2.42 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

LIB2 4.19 2.86 2.35 2.34 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

MAN1 2.82 2.82 2.14 2.12 = % % N ▲ ! ! ! ▲ % % % ▲ ! ! !

MAN2 2.47 2.14 1.61 1.61 ▲ ! ! ! ▲ ! ! ! ▲ % % % ▲ ! ! !

MINT1 2.67 2.67 2.16 2.16 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

SAH1 9.07 8.55 5.96 5.93 ▲ % % % ▲ ! ! ! ▲ % % % ▲ ! ! !

TIE1 6.55 4.12 2.36 2.36 ▲ ! ! ! ▲ ! ! ! ▲ % % N ▲ ! ! !

TUT1 9.57 5.27 4.43 4.43 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

TUT2 14.37 10.19 8.75 8.37 ▲ ! ! ! ▲ ! % ! ▲ % % % ▲ ! ! !

TUT3 9.25 8.75 8.37 7.76 ▲ ! ! ! ▲ ! ! ! ▲ ! ! ! ▲ ! ! !

TUT4 6.36 5.96 5.33 5.20 ▲ % % ! ▲ ! % ! ▲ % % % ▲ ! ! !

TUT5 6.92 5.65 5.22 5.22 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

TUT6 1.87 1.82 1.82 1.82 ▲ % % % = % % N = % % N ▲ % % %

TUT7 2.23 2.10 2.10 2.04 ▲ % % % = % % N ▲ % % ! ▲ ! ! !

UJI1 9.62 8.11 7.36 7.33 ▲ ! ! ! ▲ ! % ! ▲ % % ! ▲ ! ! !

UJI2 8.04 7.59 6.04 6.04 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

UTS1 8.44 7.85 6.51 6.50 ▲ % % ! ▲ ! ! ! ▲ % % % ▲ ! ! !

OFIN1 2.30 2.08 1.57 1.55 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

GPR00 2.95 2.95 2.30 2.30 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

GPR01 2.86 2.86 2.29 2.29 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

GPR02 3.29 3.24 2.35 2.35 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR03 3.35 3.33 2.39 2.39 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR04 3.06 3.00 2.29 2.29 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR05 3.27 3.27 2.35 2.35 = % % N ▲ ! ! ! = % % N ▲ ! ! !

GPR06 2.98 2.96 2.37 2.37 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR07 2.98 2.97 2.41 2.41 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR08 2.73 2.70 2.31 2.31 ▲ % % % ▲ ! ! ! ▲ % % % ▲ ! ! !

GPR09 2.97 2.89 2.36 2.36 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR10 2.71 2.67 2.28 2.27 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

GPR11 3.02 2.94 2.35 2.35 ▲ % % % ▲ ! ! ! = % % N ▲ ! ! !

GPR12 2.85 2.69 2.37 2.36 ▲ ! ! ! ▲ ! ! ! ▲ % % % ▲ ! ! !

GPR13 2.96 2.75 2.43 2.43 ▲ ! ! ! ▲ ! ! ! ▲ % % % ▲ ! ! !

SOD01 3.26 2.78 2.43 2.43 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

SOD02 1.99 1.95 1.54 1.54 ▲ % % ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

SOD03 2.02 1.99 1.61 1.61 ▲ % % % ▲ ! ! ! ▲ % % % ▲ ! ! !

SOD04 3.30 2.90 2.01 2.00 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

SOD05 3.43 3.34 2.88 2.83 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

SOD06 3.89 3.89 3.47 3.47 = % % N ▲ ! % ! = % % N ▲ ! % !

SOD07 4.17 4.17 4.16 3.25 = % % N ▲ % % % ▲ ! ! ! ▲ ! ! !

SOD08 4.04 3.95 3.63 3.62 ▲ % % % ▲ % % ! ▲ % % ! ▲ ! % !

SOD09 4.55 4.48 3.55 3.54 ▲ % % ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

KIOS0 2.26 2.26 1.89 1.87 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

KIOS1 2.35 2.13 1.82 1.80 ▲ ! ! ! ▲ ! ! ! ▲ % % % ▲ ! ! !

KIOS2 2.27 2.27 1.85 1.83 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

KIOS3 1.78 1.78 1.58 1.56 = % % N ▲ ! ! ! ▲ % % ! ▲ ! ! !

KIOS4 2.53 2.46 1.97 1.97 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

KIOS5 2.09 2.03 1.76 1.73 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

EEIL01 4.05 3.94 3.45 3.41 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

EEIL02 4.51 4.34 3.84 3.83 ▲ % % % ▲ ! % ! ▲ % % % ▲ ! ! !

OFINB1 3.55 2.30 1.75 1.75 ▲ ! ! ! ▲ ! ! ! = % % N ▲ ! ! !

OFINB2 4.28 2.73 2.34 2.34 ▲ ! ! ! ▲ % % % = % % N ▲ ! ! !

OFINB3 1.61 1.49 1.20 1.20 ▲ % % % ▲ ! ! ! ▲ % % % ▲ ! ! !

OFINB4 3.35 2.53 2.16 2.16 ▲ ! ! ! ▲ ! % ! = % % N ▲ ! ! !

UEXB1 3.61 3.53 2.86 2.81 ▲ % % % ▲ ! ! ! ▲ % % % ▲ ! ! !

UEXB2 4.80 4.28 4.01 3.83 ▲ % % % ▲ % % % ▲ % % ! ▲ ! ! !

UEXB3 7.24 6.99 6.18 6.07 ▲ % % N ▲ % % ! ▲ % % % ▲ ! ! !

UJIB1 3.09 2.86 1.64 1.64 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

UJIB2 4.42 3.70 2.04 2.04 ▲ ! ! ! ▲ ! ! ! ▲ % % % ▲ ! ! !

HDB11 1.34 1.34 1.34 1.34 ▲ % % % = % % N = % % N ▲ % % %

HDB12 2.35 2.30 2.03 1.99 ▲ % % % ▲ ! ! ! ▲ % % ! ▲ ! ! !

HDB13 4.01 2.54 2.13 2.08 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

HDB21 2.54 2.49 2.21 2.19 ▲ % % ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

HDB22 1.77 1.77 1.77 1.77 = % % N = % % N = % % N = % % N

HDB23 2.85 2.40 2.09 2.06 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

HDB31 2.83 2.77 2.23 2.23 ▲ % % ! ▲ ! ! ! = % % N ▲ ! ! !

HDB32 2.75 2.64 2.22 2.22 ▲ ! ! ! ▲ ! ! ! = % % N ▲ ! ! !

HDB33 1.33 1.33 1.33 1.33 ▲ % % % = % % N = % % N ▲ % % %

All 3.37 3.12 2.69 2.64 ▲ ! ! ! ▲ ! ! ! ▲ ! ! ! ▲ ! ! !

DB 3.94 3.51 2.92 2.88 ▲ % % ! ▲ ! % ! ▲ % % ! ▲ ! ! !

All n. 1.00 0.94 0.82 0.81 ▲ ! ! ! ▲ ! ! ! ▲ ! ! ! ▲ ! ! !

DB n. 1.00 0.92 0.77 0.76 ▲ ! ! ! ▲ ! ! ! ▲ % % ! ▲ ! ! !

!stands for performances statistically different; %stands for equivalent performances; NWilconox could not be applied

When optimizing hyperparameters for a dataset, we consider
k values in set k ∈ [1, 2, . . . , 19, 20]∪[21, 23, . . . , 49, 51]. For
distances, we considered City Block, Euclidean, Minkowsky
3, Cosine, Sorensen, Neyman (both sides), LGD, PLGD
with penalty weights of α = 1/10 and α = 1/40. In all
cases, we use positive RSS data representation. For centroid
computation, we used the strategies after Eq. 1. Optimal
hyperparameters refer to the combination with the lowest error.

When comparing CX vs. CY , the statistical results are
summarized as follows. Symbol ▲ in columns df means that
CX reports a lower mean positioning error than CY , while the
cell color intensity indicates how many tests reported CX being
better than CY . If both means agree, symbol = is provided in
df. There is no case of CY reporting a lower error than CX .

Selecting only the optimal distance function, C2, has global
reduction of error of around 6%–8% but it is statistically better
with the 3 tests than C1 in 25 datasets. We used positive data
rep. [18] as some distances only work with positive values.

Selecting the most appropriate distance function and k
together, C3, highly improved the results. The global reduction
of error is of around 18%–23% with respect to C1. The
statistical results show that the differences of C3 with respect
to C2 are statistically different in almost all datasets.

Selecting the most appropriate distance function, k, and
weighting strategy, C4, is the least important, with a marginal
improvement with respect to C3. In that case, the results
provided by C4 are better –considering the 3 statistical tests–
than C3 only for 2 datasets. The RSS measurements are noisy
and, therefore, the RSS distances are not correlated to the
geometric distances, i.e., the closest fingerprint in the RSS
space may not match the closest fingerprint in the geometric
(real-world) space, being a weighted centroid not optimal. C4
global improvement is around 19%–24% with respect to C1.

C. Comparison of k–NN implementations

Once the limits for k–NN are explored, we compare some
improved versions. In addition to the normalized baseline
(1-NN) in aggregated results, we include 3 k–NN baselines:
M1) optimal k value and unweighted centroid; M2) optimal
k value and weighted centroid (inv. dist.); M3) optimal k
value and weighted centroid (sq. inv. dist.); In M1−3, we
only consider City Block distance, as most of improved k–NN
methods do not explore other distances. In this comparison, we
also include M4−5) Adaptive wk–NN [25] with kmax = 51
and optimal kmax based on wk–NN, both with optimal
thresholds values (τP ∈ [0.8, 0.85, 0.90, 0.95, 0.99]; τS ∈

[0.20, 0.21, . . . , 0.99, 1.00]); M6−7) SAWKNN [48] with
kmax = 51 and optimal kmax based on wk–NN, both with
optimal threshold (γth ∈ [0.01, 0.02, . . . , 0.99, 1.00]); M8)
STIWKNN [24] with optimal k; M9−10) DWFWKNN [4]
with the physical distance provided by authors and our
implementation; and M11−13) ARWKNN [49] with optimal
k for City Block, Min-Max and Clark distances. In M4−7,
optimal refers to the value for a hyperparameter providing the
lowest error. In M12, positive data rep. [18] was used with the
Min-Max distance. The full results are reported in Table II.



TABLE II
RESULTS FOR k–NN, Wk–NN AND ENHANCED IMPLEMENTATIONS

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

DSI1 4.09 4.05 4.03 3.86 3.83 4.10 4.03 3.8227.63 4.14 4.78 3.91 3.90
DSI2 4.22 4.17 4.11 3.85 3.88 4.11 4.05 3.8327.88 4.11 4.90 3.95 3.93
LIB1 2.44 2.43 2.42 2.47 2.44 2.43 2.41 2.44 4.11 2.52 2.47 2.61 2.90
LIB2 3.70 3.70 3.69 2.64 2.64 3.66 3.68 2.68 5.59 3.35 4.20 2.69 3.25
MAN1 2.17 2.15 2.14 2.35 2.31 2.14 2.15 2.29 5.11 2.18 2.47 2.41 2.43
MAN2 1.69 1.70 1.71 1.62 1.62 1.70 1.69 1.65 3.31 1.67 2.15 2.18 1.90

MINT1 2.16 2.16 2.16 2.31 2.27 2.16 2.16 2.4021.06 2.12 2.39 2.39 2.37
SAH1 6.47 6.45 6.44 7.62 7.25 6.45 6.40 6.6529.71 6.01 7.55 7.31 6.39
TIE1 5.38 5.38 5.38 7.09 7.12 5.38 5.38 7.2915.27 8.09 5.98 5.45 7.25
TUT1 8.28 8.20 8.06 6.21 6.19 7.67 8.20 6.2811.87 7.70 9.40 6.93 6.95
TUT2 11.23 11.02 10.85 8.83 8.83 11.17 11.17 8.7816.22 9.9612.40 9.72 9.63
TUT3 9.06 8.65 8.36 8.33 8.37 8.35 8.37 8.2420.55 8.57 9.16 8.34 8.39
TUT4 5.68 5.57 5.52 5.89 5.82 5.76 5.58 5.8020.27 5.81 6.25 5.68 5.49
TUT5 6.29 6.23 6.19 5.82 5.92 6.14 6.19 5.9316.38 6.39 6.92 6.11 5.84
TUT6 1.87 1.87 1.87 2.12 2.11 1.76 1.87 2.1114.32 1.95 1.88 1.82 2.01
TUT7 2.23 2.23 2.15 2.53 2.51 2.10 2.23 2.5114.34 2.23 2.24 2.11 2.23
UJI1 8.62 8.61 8.60 7.59 7.57 8.52 8.59 7.5929.51 7.97 9.41 7.90 7.84
UJI2 6.35 6.33 6.31 6.66 6.62 6.41 6.31 6.6021.13 6.03 7.02 6.72 6.53
UTS1 7.54 7.51 7.49 6.51 6.46 7.52 7.42 6.5516.28 7.03 7.88 7.30 7.65

OFIN1 1.69 1.68 1.67 1.71 1.72 1.72 1.67 1.72 6.38 1.79 1.90 1.77 1.85
GPR00 2.30 2.30 2.32 2.31 2.31 2.42 2.42 2.39 4.00 2.30 2.68 2.63 2.56
GPR01 2.29 2.29 2.30 2.30 2.30 2.38 2.38 2.38 3.99 2.29 2.63 2.57 2.49
GPR02 2.35 2.36 2.37 2.37 2.37 2.44 2.44 2.42 3.24 2.35 2.75 2.74 2.62
GPR03 2.40 2.40 2.41 2.43 2.43 2.51 2.51 2.48 3.74 2.40 2.80 2.81 2.72
GPR04 2.29 2.29 2.30 2.32 2.32 2.38 2.38 2.39 3.50 2.29 2.63 2.60 2.55
GPR05 2.36 2.37 2.37 2.38 2.38 2.47 2.47 2.42 4.43 2.36 2.77 2.80 2.72
GPR06 2.39 2.39 2.39 2.38 2.38 2.45 2.45 2.43 5.32 2.37 2.69 2.72 2.51
GPR07 2.42 2.43 2.44 2.43 2.43 2.49 2.49 2.54 5.46 2.42 2.70 2.72 2.60
GPR08 2.38 2.37 2.36 2.37 2.35 2.41 2.38 2.38 3.25 2.31 2.55 2.53 2.47
GPR09 2.42 2.42 2.42 2.39 2.39 2.44 2.44 2.44 3.57 2.36 2.74 2.70 2.56
GPR10 2.34 2.33 2.33 2.35 2.32 2.37 2.34 2.39 3.23 2.28 2.54 2.53 2.40
GPR11 2.42 2.42 2.42 2.38 2.38 2.44 2.44 2.45 3.73 2.36 2.82 2.77 2.57
GPR12 2.46 2.45 2.44 2.39 2.40 2.48 2.45 2.42 3.15 2.37 2.77 2.74 2.42
GPR13 2.54 2.54 2.54 2.47 2.47 2.55 2.55 2.53 4.90 2.45 2.87 2.85 2.51
SOD01 2.65 2.65 2.64 2.98 2.84 2.67 2.64 2.83 5.45 2.66 3.16 2.98 2.50
SOD02 1.72 1.71 1.70 1.93 1.99 1.68 1.68 2.00 4.38 2.48 1.85 1.65 1.92
SOD03 1.80 1.80 1.79 1.97 1.98 1.73 1.79 2.07 7.20 2.46 1.90 1.79 1.82
SOD04 2.50 2.50 2.50 4.09 4.09 2.48 2.48 4.16 5.33 4.66 2.80 2.92 2.96
SOD05 2.93 2.92 2.91 3.70 3.14 2.81 2.86 3.17 4.93 3.50 3.18 3.09 2.86
SOD06 3.72 3.73 3.73 3.96 3.96 3.64 3.60 4.04 8.14 4.70 3.85 3.83 3.96
SOD07 4.17 3.25 3.26 3.46 3.43 3.29 3.27 3.46 5.61 4.11 3.58 3.62 3.77
SOD08 3.74 3.76 3.75 3.96 3.98 3.64 3.64 4.15 9.07 4.42 3.99 4.12 4.27
SOD09 3.61 3.63 3.65 3.98 3.86 3.73 3.62 4.08 7.69 4.29 3.76 3.77 4.09
KIOS0 1.90 1.89 1.88 1.93 1.94 1.90 1.89 1.9412.47 1.86 2.09 2.08 1.95
KIOS1 1.85 1.83 1.84 1.88 1.88 1.80 1.80 1.9211.21 1.83 2.09 2.07 2.03
KIOS2 1.85 1.84 1.83 1.99 1.99 1.89 1.83 1.9910.34 1.86 2.09 2.06 2.01
KIOS3 1.58 1.57 1.57 1.71 1.71 1.57 1.56 1.7211.52 1.56 1.71 1.69 1.62
KIOS4 2.06 2.06 2.05 2.19 2.18 2.09 2.06 2.1711.34 2.01 2.29 2.22 2.04
KIOS5 1.83 1.81 1.80 1.83 1.86 1.82 1.80 1.8811.10 1.77 1.95 1.94 1.83

EEIL01 3.45 3.43 3.41 3.73 3.60 3.45 3.39 3.63 9.37 3.92 3.78 3.52 3.69
EEIL02 3.90 3.89 3.88 4.05 4.01 3.95 3.89 4.0314.17 4.22 4.08 3.92 4.07

OFINB1 2.54 2.62 2.69 2.34 2.34 2.92 2.70 1.84 3.14 2.24 3.17 2.18 2.30
OFINB2 3.76 3.78 3.79 2.57 2.62 3.80 3.70 2.72 4.69 2.85 4.46 3.26 2.72
OFINB3 1.20 1.20 1.20 1.64 1.64 1.20 1.19 1.30 1.31 1.25 1.29 1.62 1.50
OFINB4 2.77 2.80 2.82 2.65 2.32 3.25 2.84 2.19 6.33 2.80 3.35 2.70 2.84
UEXB1 3.23 3.15 3.10 3.35 2.85 3.08 3.07 2.9110.82 3.19 3.29 3.27 3.19
UEXB2 4.40 4.29 4.20 4.28 3.97 4.07 4.07 3.94 8.63 4.17 4.55 4.61 4.28
UEXB3 6.45 6.32 6.24 6.01 6.19 6.66 6.51 6.08 9.52 6.16 6.25 6.35 6.36
UJIB1 1.81 1.79 1.78 1.71 1.69 1.85 1.80 1.65 2.21 1.60 2.14 2.05 2.25
UJIB2 2.75 2.71 2.67 2.58 2.57 2.68 2.67 2.62 3.83 2.59 3.39 3.33 3.02

HDB11 1.34 1.34 1.34 1.83 1.90 1.33 1.34 1.85 2.27 1.53 1.32 1.31 1.76
HDB12 2.03 2.02 2.01 1.96 1.96 1.97 1.97 2.02 3.11 2.11 2.33 2.26 2.15
HDB13 3.38 3.37 3.37 2.08 2.08 3.33 3.32 2.10 6.99 4.93 3.90 2.84 5.69
HDB21 2.26 2.26 2.26 2.20 2.20 2.26 2.26 2.20 2.80 2.27 2.33 2.35 2.51
HDB22 1.77 1.77 1.77 1.94 1.95 1.59 1.77 2.00 4.35 1.89 1.63 1.66 1.94
HDB23 2.47 2.46 2.46 2.07 2.07 2.46 2.46 2.0810.88 3.65 2.83 2.46 4.42
HDB31 2.48 2.48 2.48 2.38 2.38 2.45 2.45 2.38 2.79 2.60 2.60 2.65 2.86
HDB32 2.39 2.39 2.39 2.29 2.29 2.35 2.35 2.31 3.09 2.53 2.52 2.54 2.81
HDB33 1.33 1.33 1.33 1.61 1.63 1.26 1.33 1.63 4.43 1.37 1.32 1.33 1.46

All 2.93 2.90 2.88 2.88 2.88 2.87 2.89 2.89 8.63 3.04 3.16 2.95 3.17
DB 3.31 3.27 3.26 3.25 3.21 3.28 3.27 3.22 9.03 3.40 3.62 3.35 3.42

All n. 0.88 0.87 0.87 0.90 0.89 0.86 0.87 0.90 2.84 0.93 0.94 0.90 0.97
DB n. 0.84 0.83 0.83 0.85 0.84 0.83 0.83 0.85 2.44 0.88 0.92 0.87 0.90

Background meaning: lowest error; highest error; 2nd highest error.

Overall, all methods have similar aggregated performance,
except M9−13, and none of them fit in all the evaluated
scenarios. In a few datasets, the improved versions have
significantly better performance. As commonly done in the
literature, the distance function is not optimized in the
baselines, M1−3, so improvements may be over-optimistic.

Adaptive wk–NN (M4−5) and Self-Adaptive wk–NN
(M6−7) are promising compared to the baselines. On the other
hand, some proposed methods need further adjustments to
operate. The physical distance in DWFWKNN is not working
(M9), while our implementation is the best choice for some
cases. ARWKNN was proposed for light-based positioning,
providing weak results for RSS (e.g., M11).

Comparing the results in Table II, the improved versions
of k–NN in the literature M4−13 provide lower positioning
errors than the three baselines in 55 out of 69 datasets, being
the aggregated results better in M5−7. Considering the results
in Table I, k–NN with C4 provides the best overall results for
54 out of 69 datasets. For the remaining 15 datasets, M4−13 is
few cm better than C4 (less than 5 cm in 11 datasets, ≈6 cm in
3 datasets), except for HDB22 where the difference is 18 cm.

V. DISCUSSION & CONCLUSIONS

The k–NN model is recurrently used in those
fingerprint-based solutions, either as an improved method or
as a baseline to compare the other advanced machine learning
models. This work presents a deep analysis of this method.

Our work confirms that settling the optimal k value for each
dataset is the most relevant hyperparameter. As already proved
in the literature, k should be chosen according to the density of
fingerprints available. Similarly, the distance function is also
relevant and should be tuned for each dataset. Furthermore,
we may take care of RSS data representation as some distance
metrics do not work with negative values. The way to compute
the position estimate (centroid) seems to not be relevant.

However, k–NN is still applied with a default configuration,
such as low k and City Block distance when used as a baseline.
We demonstrate that a wise selection of hyperparameters
matters. As researchers, we need to compare our proposed
methods to State-of-the-Art models and baselines with
optimized parameters, avoiding comparisons to un-optimized
baselines which led to over-optimistic error reductions.

The most important outcome is that a single hyperparameter
configuration is not generalizable and does not fit well in all
scenarios. As researchers, we do not only have to provide
the method description, but also the fair procedure to set its
hyperparameters. What is a trivial procedure for k–NN, can
be complex in advanced neural networks where the weight
initialization procedure, the number of hidden layers, the
number of neurons and the transfer function –among others–
are key hyperparameters. In those cases, replicating the same
structure published in the literature in a completely different
indoor scenario may end up in a suboptimal estimator.

Similarly, among the several proposed improved versions
of k–NN, none of them emerges as a clear winner as
the positioning performance depends on the case (dataset).
When proposing a new method, we must ensure replicability
by means of extensive evaluation in different and diverse
scenarios. i.e., a method that fits very well in a database should
not poorly perform in another scenario.

Having a diverse set of datasets is essential to ensure the
generalization of a proposed method. However, the analysis
presented in this work is based on test data; we also need
datasets with independent training, validation and test subsets.
We do recommend sharing datasets in its rawest form.

We also recommend sensible data pre-processing. In future
works, we will explore other hyperparameters involved in the
fingerprinting workflow, such as data representation, as well as
include advanced machine learning models in the comparison.
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