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Abstract. Large trajectory datasets have led to the development of summariza-
tion methods. However, evaluating the efficacy of these techniques can be com-
plex due to the lack of a suitable representativeness measure. In the context
of multi-aspect trajectories, current summarization lacks evaluation methods.
To address this, we introduce RMMAT, a novel representativeness measure that
combines similarity metrics and covered information to offer adaptability to di-
verse data and analysis needs. Our innovation simplifies summarization tech-
nique evaluation and enables deeper insights from extensive trajectory data.
Our evaluation of real-world trajectory data demonstrates RMMAT as a robust
Representativeness Measure for Summarized Trajectories with Multiple Aspects.

1. Introduction
In an era of vast trajectory data generated by individuals, vehicles, and objects, the need to
distill valuable insights is paramount. The proliferation of the Internet of Things (IoT) fur-
ther enriches trajectories with multiple aspects, such as weather conditions during travel,
the individual’s mood, and social media posts. Extracting representative information from
trajectories is crucial for effective analysis.

Trajectory summarization methods provide essential tools for creating concise
representations, allowing analysts to efficiently comprehend and leverage the underlying
movement patterns. Nevertheless, evaluating the effectiveness of these summarization
techniques is a complex task, often hampered by the lack of a robust and comprehensive
measure of representativeness [Seep and Vahrenhold 2019, Machado et al. 2022].

This article introduces the Representativeness Measure for Multiple-Aspect Tra-
jectories (RMMAT), addressing the challenge of assessing how well a representative tra-
jectory reflects the original data. By applying the power of similarity metrics and covered
information, RMMAT provides a multifaceted measure that quantifies the quality of rep-
resentative trajectories in terms of their representativeness to the complete input dataset.
This score, adaptable within a customizable configuration, empowers analysts to tailor
the evaluation process to align the unique demands of their analytical scenarios.
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By filling the void left by the lack of a comprehensive representativeness measure,
RMMAT equips researchers with a potent tool for extracting insights from summarized
multiple-aspect trajectory (MAT) data in the burgeoning trajectory data landscape.

In subsequent sections, we delve into RMMAT’s formulation, rigorous experi-
mental evaluations, and facets related to similarity and covered information. We evaluate
RMMAT using the Foursquare dataset (193 users), with promising results.

The rest of this paper is organized as follows. Section 2 introduces foundational
concepts. Section 3 is dedicated to problem and scope definition. Section 4 describes the
proposed measure. Section 5 presents evaluations, and Section 6 concludes the paper.

2. Fundamentals
Geolocation services have become crucial in modern technology, leveraging vast
amounts of data from large-scale tracking to monitor the movement of objects. This
data is increasingly harnessed for purposes such as analysis, mining, and decision-
making [Renso et al. 2013, Oladimeji et al. 2023].

The concept of a trajectory has evolved over time. Initially, a raw trajectory re-
ferred to the sequential movements of an object through geographical space over time,
as defined by Guting [Erwig et al. 1999]. This raw trajectory comprised two dimensions:
spatial and temporal. Around 2007, the notion of a semantic trajectory emerged. Here,
a third dimension was added, enriching the raw spatiotemporal trajectory (x, y, t) with
semantic data. One example could be a point of interest (POI), like a restaurant, that the
object had visited [Parent et al. 2013].

With the proliferation of the Internet of Things (IoT) and social media, trajecto-
ries have been further enriched with diverse semantic information. When trajectories,
or their specific points, are associated with multiple semantic contexts, they are referred
to as multiple aspect trajectories (MAT) [Mello et al. 2019]. This trajectory also encom-
passes three dimensions (spatial, temporal, and semantic), but the semantic dimension
can represent multiple and heterogeneous aspects.

As depicted in Figure 1, an individual’s trajectory throughout a day serves as
an example. The raw trajectory retains spatiotemporal data about the individual (Fig-
ure 1(a)). Conversely, Figure 1(b) illustrates a semantic trajectory, where contextual in-
formation is associated with the raw data, like PoIs (home, work, and restaurant).

Figure 1(c), in turn, showcases a raw trajectory enriched with multiple informa-
tion, like the mean of transportation used by the individual, postings on social networks,
weather conditions, health information, and so on. It emphasizes the complexity of MATs
since the three dimensions can hold simple or complex attributes depending on the domain
context. Moreover, MATs can generate vast amounts of data at high frequency, making
it challenging to extract meaningful insights. In order to address this issue, a promising
strategy is to compute summarized data from a set of MATs, as proposed in some works
[Seep and Vahrenhold 2019, Machado et al. 2022, Machado et al. 2023].

2.1. Trajectory data summarization
Managing trajectory data is a big challenge due to the vast volume and variety of data
continuously generated by different devices, resulting in an overwhelming volume and
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Figure 1. An example of a raw trajectory (a), semantic trajectory (b), and multiple
aspect trajectory(c). Adapted from [Mello et al. 2019].

diversity of information [Martinez et al. 2018, Gao et al. 2019]. In this context, data sum-
marization emerges as a viable strategy to condense similar trajectories and reduce the
complexity of data management.

Trajectory summarization aims at reducing the volume of trajectory data while
preserving its essential characteristics and patterns in a more compact representa-
tion [Hesabi et al. 2015]. Representative trajectories, in particular, provide a concise and
informative presentation of a trajectory input dataset, facilitating analysis, visualization,
and other trajectory-based tasks. In short, MAT summarization encompasses a process of
abstraction from a set of MATs, culminating in a representative MAT. Notably, the repre-
sentative MAT need not exhibit complete congruence with every individual MAT, but it
captures the overarching essence of the dataset [Machado et al. 2022].

Understanding patterns in trajectories can help data analysts make better deci-
sions. These patterns can serve as invaluable tools for diverse applications, such as ana-
lyzing traffic patterns within a city or identifying regions with elevated crime rates. As
depicted in Figure 2 (left), the MATs across distinct days offer a comprehensive insight
into an individual’s movements. Meanwhile, the right side illustrates the culmination of
these MATs into a representative MAT. This summarized representation effectively en-
capsulates the individual’s frequent activities.

Figure 2. Examples of MATs (left) and a representative MAT for them
(right) [Machado et al. 2022].

Proceedings XXIV GEOINFO, December 04 to 06, 2023, São José dos Campos, SP, Brazil.
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3. Problem Definition
In Figure 2, an example of trajectory summarization applied to input dataset D (D =
{p, q, r}) generates the Representative Trajectory (RT). However, an issue with existing
literature is the lack of a well-defined measure for evaluating how well the representa-
tive data accurately represents the entire dataset D. Studies [Seep and Vahrenhold 2019,
Machado et al. 2022] highlight this common challenge when computing representative
trajectories from MATs.

This paper intends to answer this fundamental question: ’How much of the RT
captures and reflects the original MATs’ essence within an input dataset D?’. The com-
putation of RTs should align with specific use case objectives and requirements, as differ-
ent applications may necessitate varying levels of granularity and information preserva-
tion [Machado et al. 2022].

The scope of this work is to propose a novel representativeness measure tailored
for big trajectory data with multiple aspects, aiming to quantify how much information
the RT covers from the input dataset D and how similar this RT is to the entire dataset. We
aim to facilitate the evaluation of summarization techniques and extract valuable insights
from extensive MAT datasets.

4. RMMAT: Representativeness Measure for Multiple-Aspect Trajectory
In this section, we introduce the fundamental concepts of our work, which is called RM-
MAT1: a representativeness measure for MATs. We introduce a novel Representativeness
Measure grounded in a similarity metric and covered information. By giving numerical
values to the similarity, the measure provides a concrete and measurable way to measure
how closely the RT reflects the complex patterns within the input dataset. By the covered
information, this component enables us to examine whether the RT can encapsulate spe-
cific points from the input dataset, effectively reflecting the integrity of the RT concerning
the entire dataset. By blending these two components, RMMAT aiming results in a rigor-
ous and objective measure enables the evaluation of how well the RT captures the data’s
intricacies. This measure aims to overcome limitations in evaluating representativeness
in summarized MAT.

4.1. Similarity Metric Component

The trajectory similarity metric measures how similar two trajectories are based on at-
tributes such as spatial positions, temporal sequences, and potentially additional seman-
tic aspects. It quantifies how much they share common patterns in terms of movement
through space, time, and semantics. While traditional measures compare trajectories
pairwise, the challenge is to measure the similarity of an RT against the entire dataset
of trajectories.

We calculate the similarity between RT and each {T1, T2, ..., Tn}2 D, considering
that D and RT are non-empty. We use the median value of the similarity measure to
account for skewed distributions or outliers in the dataset. To address this concern, we
opt to use the median value of the similarity measure across all pairs of MATs (RT and
each T 2 D), given that 0  Similarity  1. The median is less affected by extreme

1Source code available at https://github.com/RepresentantativeMAT/RMMAT.git
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values or anomalies in similarity scores, resulting in a more balanced representation of
central tendency. The equation is given by:

|Similarity (RT,D)| =
Me({Similarity(RT, T1), Similarity(RT, T2), ..., Similarity(RT, Tn)})

(1)

Find the median similarity value between RT and all T 2 D by using the function
Me that calculates the median of similarity scores.

4.2. Covered Information Component
In order to compute the covered information within D by RT, we evaluate the MAT points
of each Ti 2 D that RT covers and aim to derive the proportion of covered information in
a non-negative value. This computation is defined as:

✓PD
p2T p ✓ RT

|D.points|

◆
(2)

The objective of RMMAT is to harmonize both components: (i) the similarity
between RT and all MATs and (ii) the measure of the coverage input MAT points by RT,
when available. So, the representativeness measure score between the RT and the input
dataset is calculated by the final function RMMAT, with RMMAT 2 [0,1]:

RMMAT = !sim ⇥ |Similarity (RT,D)|+ !cover ⇥
✓PD

p2T p ✓ RT

|D.points|

◆
(3)

The weights !sim and !cover represent the importance of each component for com-
puting the representativeness between trajectories for a specific scenario. We assume that
!sim + !cover = 1.0. Components with higher weights have a more pronounced impact
on the final representativeness scores.

5. Experimental Evaluation
This section presents a running example of how RMMAT works and evaluates it through
experimentation in a real dataset to assess its accuracy, robustness, and practicality in
capturing trajectory data. The experiments were conducted on a Dell Inspiron laptop
with an Intel Core i5 processor and 16 GB memory using Java. We describe the datasets
(Section 5.1), the general experimental setup (Section 5.2), and two evaluations analyzing
the relevance of RT concerning similarity information and covered information (Sections
5.4 and 5.5) in the following sections.

5.1. Dataset
We used the Foursquare NYC dataset, which includes check-in records from April 2012
to February 2013 in New York City. The dataset is enriched with contextual information
such as weekday, category, price, rating of the POIs, and weather conditions. The dataset
includes 3079 trajectories from 193 users, with each trajectory containing around 22 data
points, and each user is associated with an average of about 16 trajectories.
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5.2. General Experimental Setup

In computing RMMAT, several key elements require definition: (i) the selection of
a summarization method responsible for deriving representative data; (ii) the estab-
lishment of an appropriate similarity measure; (iii) the definition of weights (W ) to
individual components. We opt for the state-of-the-art MAT summarization method,
MAT-SGT [Machado et al. 2023], and the widely recognized MAT similarity measure,
MUITAS [Petry et al. 2019], to establish trajectory similarity. We employ a balanced
weights strategy, setting !sim = !cover = 1

2 .

5.2.1. Summarization method setup

MAT-SGT summarizes data on a grid of cells. Two parameters are required for its setup:
(i) ⌧rv (threshold RV), which determines representative values, and (ii) ⌧rc (threshold RC),
which sets the minimum number of MAT points for a cell to qualify for summarization.

We performed experiments by executing MAT-SGT in each ground truth, i.e., we
consider each user as the criterion to cluster MATs into groups. The method was repeated
for each user with different parameter settings for ⌧rv and ⌧rc, varying from 0% to 25% (0,
1, 5, 10, 15, 20, 25), to evaluate the sensitivity and robustness of the RMMAT measure.

We established our criteria since we did not identify a common strategy to evaluate
a representative MAT to be used as a benchmark in the existing literature. For each group,
we select the MAT ti with the median similarity score as the baseline, computed across
all trajectories in the group. This ensures that the baseline acts as a reference point for
comparison purposes.

5.2.2. Similarity Measure setup

To compute similarity using MUITAS, settings must be defined, including features,
weight, and proximity functions. Each attribute in the input dataset is defined as a sin-
gle feature. Proximity functions consider spatial, temporal, and semantic aspects with
weight-balanced dimensions. Since RT by MAT-SGT follows a different structure (rank
values for categorical values of the semantic and temporal dimensions), analysis and
different settings are required. Adopted functions are: (i) Euclidean distance for spa-
tial dimension. A match occurs if the distance between a trajectory tj in the group
and RT coordinates is within a predefined threshold (4 × pointDispersionMeasure).
The pointDispersionMeasure is determined by the spatial dispersion of MAT points in
MAT-SGT; (ii) for the temporal dimension, we assess the match between RT and other
trajectories tj in the group by evaluating the temporal interval of RT . A match occurs if
the timestamp of tj lies within the interval. The baseline, which follows the same format
as input trajectories, uses a 30, 45, or 60-minute threshold for analysis; (iii) for semantic
dimension, we evaluate attribute matching for numeric and categorical data types. For
numeric data types, a match occurs if the difference in attribute values is <= 10% of the
RT value. For categorical data types, a match occurs if the attribute value falls within the
range of RT values.
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5.3. Running Example
We introduce a Running Example to illustrate the functionality of RMMAT. It consists
of a set of input MATs D, each representing a trajectory attributed to a different indi-
vidual. The input MATs and their corresponding RT are shown in Figure 3. They are
represented by spatial and temporal information, along with the price and category of the
PoIs, weather conditions, and precipitation.

Figure 3. Set of input MATs D = hq, r, si, where q = hpq1 , pq2 , ..., pqni, r =
hpr1 , pr2 , ..., prmi, and s = hps1 , ps2 , ..., psti (left), and their correspondent RT (right).

For computing RMMAT, we first compute the similarity between each trajec-
tory in D and RT, where MUITAS(q, RT ) = 0.686, MUITAS(r, RT ) = 0.835, and
MUITAS(s, RT ) = 0.871. Then, according to Equation 1, the |Similarity (RT,D)| =
0.835. Regarding the covered information, Equation 2,

�PD
p2T p✓RT

|D.points|

�
=

10
17 = 0.5882.

Finally, considering the computation of RMMAT with balanced weights strategy
by setting !sim = !cover = 1

2 and according to Equation 3: RMMAT = (0.5 ⇥ 0.835) +

(0.5⇥0.5882) = 0.7116, aiming that the RT have a representativeness measure of 0.7116
of D, considering both similarity and covered information.

5.4. Analyzing RMMAT Regarding Similarity Information
We analyzed a sample of user trajectories to gain insights into RMMAT behavior and
presented illustrative examples of evaluations based on the standard deviation (SD) of
average and median similarity scores of each user’s baseline. We selected three users for
analysis: (i) user 185, with a lower SD for average similarity scores; (ii) user 730, with a
lower SD for median similarity scores; and (iii) user 708, showcasing the highest SD for
both average and median similarity scores.

This experiment analyzes the representativeness of RTs in similarity information
with different threshold values for RC and RV, using !sim = 1 and !cover = 0 based on
MUITAS. The investigation examines how different combinations of these thresholds af-
fect the computation of RTs. Figure 4 shows the similarity evaluation results for each user
with different input parameter configurations, compared to the baseline, while varying the
temporal threshold. The threshold RC is abbreviated as tauRC.

Our RMMAT consistently outperformed the baseline for low parameter configura-
tions. This analysis aims to provide insights into the interplay between different threshold
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Figure 4. This graph analyzes the similarity evaluation (Y-axis) by comparing
varying threshold RC (tauRC), shown as distinct lines, and the threshold RV in
relation to baseline for users 185, 708, and 730. It explores different parameter
configurations of the threshold RV (X-axis) to evaluate similarity.

parameters and their impact on RT computed from MUITAS. Users 708 and 730 exhibit a
specific RT behavior pattern across different RV threshold values. Regarding the thresh-
old RC, determining relevant cells for RT computation seems to influence RT changes
significantly. As the value of this parameter configuration increases, RMMAT decreases.
The behavior of user 185, in turn, underscores the impact of the choice of parameter
configurations in RT computation concerning the representativeness of RT.

Using correlation coefficients, we analyzed how threshold values for RC and RV
in MAT-SGT impact the RMMAT measure. These coefficients reveal relationships be-
tween input parameters and RMMAT scores for RT and input trajectories. Positive coeffi-
cients imply higher thresholds lead to higher RMMAT scores, while negative coefficients
suggest the opposite. The results in Table 1 shed light on the influence of threshold pa-
rameters on the accuracy of computed representative trajectories.

Table 1. Impact of Input Parameters on the Representativeness Measure of RT
correlation coefficient threshold RC threshold RV
User 185 0.408 -0.788
User 708 -0.154 -0.829
User 730 -0.817 -0.243

User 185 exhibits a positive correlation (0.408) between RMMAT scores and
threshold RC. The RMMAT scores increase as threshold RC values increase. User 708,
characterized by greater SD in similarity scores, shows a slight negative correlation (-
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44



0.154), indicating that increasing threshold RC leads to a minor decrease in RMMAT
scores. For user 730, who displays more consistent patterns, a negative correlation (-
0.817) suggests that higher threshold RC values lead to lower RMMAT scores.

The threshold RC and RV significantly influence the behavior and accuracy of
the computed representative trajectory. Understanding their impact helps make informed
decisions about their selection to capture relevant input data patterns.

This analysis of RMMAT about similarity information provides valuable insights
into the RT computation. It highlights the improvements achieved through the RMMAT
measure and underscores its power in enhancing data comprehension. The results empha-
size the effectiveness of RMMAT as a tool for gaining a deeper understanding of data.

5.5. Analyzing RMMAT Regarding Covered Information

To analyze the impact of covered information in RMMAT, we assess the utility of RT
by employing the Average Recall (AR) metric in an experimental evaluation based on
MUITAS. We adopted the MUITAS methodology and dataset for our evaluation. We
intend to quantify the quality of RT summarization and representative data computation.

AR measures the recall based on the RMMAT computed between the RT and other
MATs in the dataset. The objective is to ensure that the RT of each user achieves a high
measure score when compared to MATs within the same group. This alignment stems
from the likelihood that trajectories from the same user tend to exhibit higher scores.

To evaluate the recall information for each trajectory, we have modified an internal
programming mechanism of MAT-SGT. This mechanism dynamically determines the op-
timal grid size for computing RTs by iteratively calculating it. Initially, this process only
relied on the similarity measure. However, our modified approach now incorporates cov-
ered information in a balanced manner, taking advantage of the mapping data inherently
present in MAT-SGT. This mechanism enables us to compute and evaluate this crucial
aspect of representativeness comprehensively.

We tested two scenarios: (i) using the original MAT-SGT without covered infor-
mation and (ii) using our adapted version of MAT-SGT with covered information. We
evaluated the results by computing RT for each user group, calculating similarity using
MUITAS, ordering trajectories based on similarity scores, and computing the recall met-
ric. The recall metric measures the ability of RT to rank trajectories within the same group
accurately.

Tables 2 and 3 show the AR values for user 185 in both scenarios, respectively.
Table 4 compiles the results of the AR analysis. The variations are underlined in Tables 2
and 3. It is important to note that instances with missing values, indicated by ”-”, denote
situations where RT computation with specific parameter configurations is not feasible
due to the particular data patterns present in the input dataset.

After analyzing the summarized outcomes of the AR analysis in Table 4, we ob-
serve some relevant variations between including and excluding covered information for
User 185. Specifically, we see an average AR growth of 0.707 when analyzing the sce-
nario without covered information, compared to 0.771 when combining covered informa-
tion.
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Table 2. The AR of User 185 -
without covered information

H
H

H
H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 1 0.98 0.98
0.10 0 0 0.81 0 - - -
0.15 0 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -

Table 3. The AR of User 185 -
with covered information

H
H
H

H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 0.98 0.98 0.98
0.10 0.83 0 0.81 0 - - -
0.15 0.86 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -

Table 4. AR Analysis regarding covered information in User 185
With Cover Without Cover

Missing values 18 18
Best Value 1 1
Worse Value 0 0
AVG AR 0.771 0.707
Median AR 0.93 0.93

In the case of User 708, Tables 5 and 6 present the AR values for both scenarios.
Table 4 provides a summary of the AR analysis results for this user. Although some minor
variations in specific values were observed, the overall assessment presented in Table 7
does not indicate a substantial difference. The AR values for this user remain relatively
stable, irrespective of whether the covered information was included or excluded during
the analysis.

Table 5. The AR of User 708 -
without covered information

H
H

H
H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.01 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.9
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8

Table 6. The AR of User 708 -
with covered information

H
H
H

H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.01 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8

Table 7. AR Analysis regarding covered information in User 708
With Cover Without Cover

Missing values 0 0
Best Value 0.9 0.9
Worse Value 0.8 0.8
AVG AR 0.862 0.87
Median AR 0.9 0.9

The AR values for User 730 in both scenarios are presented in Tables 8 and 9.
Additionally, Table 10 compiles the AR analysis outcomes for this user. It is evident that
there is a substantial variation in AR values across different scenarios, which highlights
the significant impact of covered point data on the AR measure. This disparity emphasizes
how the inclusion of covered information can significantly influence the outcomes of a
representativeness measure.
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Table 8. The AR of User 730 -
without covered information

H
H

H
H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.97 0.97 0.9 0.9 0.9 0.9 0.9
0.01 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.05 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.10 0.97 0.97 0.83 0.83 0.83 0.83 0.83
0.15 0.9 0.9 0.77 0.77 0.77 0.77 0.77
0.20 0.9 0.9 0.83 0.83 0.83 0.83 0.83
0.25 0.87 0.87 0.83 0.83 0.83 0.83 0.83

Table 9. The AR of User 730 -
with covered information

H
H
H

H
HH

⌧rv

⌧rc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.9 0.9 0.87
0.01 1 1 1 1 0.93 0.93 0.87
0.05 1 1 1 1 0.9 0.9 0.87
0.10 1 1 1 1 0.87 0.87 0.83
0.15 1 1 1 1 0.9 0.9 0.73
0.20 1 1 1 1 0.87 0.87 0.9
0.25 1 1 1 1 0.93 0.93 0.87

Table 10. AR Analysis regarding covered information in User 730
With Cover Without Cover

Missing values 0 0
Best Value 1 0.97
Worse Value 0.73 0.77
AVG AR 0.94 0.878
Median AR 1 0.87

The inclusion or exclusion of covered point data presents a high impact for some
users, like user 730, whose outcomes were notably affected. However, when considering
covered point data, the retrieved trajectories from the same user exhibit better results than
computed RT trajectories from the same user. It suggests that covered point data can
affect RMMAT scores, indicating potential differences in underlying data patterns. This
emphasizes the importance of considering each component in the RMMAT calculation to
create a customized configuration that suits specific datasets and analysis objectives.

6. Conclusion
This paper introduces the RMMAT, a standardized metric for evaluating the effectiveness
of representative data given by summarization methods. It measures how well a represen-
tative trajectory captures the essence of the original dataset, which is particularly useful
given the increasing complexity and growth of trajectory data.

RMMAT uses similarity metrics and covered information to provide a compre-
hensive evaluation approach. This helps analysts estimate the similarity between repre-
sentative and input trajectories and the coverage of information within the dataset. This
measure empowers researchers and analysts to make informed decisions regarding the
quality and relevance of representative data for analytical goals.

RMMAT effectively quantifies the representativeness of computed representative
data compared to the original MATs, yielding valuable insights. For instance, in the case
of MAT-SGT, the evaluations highlighted the key role of parameter selection in achieving
optimal results. This observation emphasizes how RMMAT offers insights that can guide
researchers in refining their trajectory summarization methods for improved outcomes.

One of the notable strengths of RMMAT lies in its adaptability. The configurable
nature of its components permits analysts to tailor the evaluation process to match the
unique demands of different analytical scenarios, providing a versatile tool that aligns
with varying objectives and data characteristics.

Our work bridges a critical gap in the field of trajectory data summarization, allow-
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ing researchers and analysts to evaluate and measure trajectory summarization methods
by a quantitative metric. By overcoming the limitations of previous subjective evalua-
tion methods, RMMAT opens the door to more accurate and informed decision-making,
deeper insights, and advancements in the field of data-driven mobility analysis.

The effectiveness of computing an RT depends on the specific use case, requiring
varying levels of granularity and information preservation. The evaluation of this ap-
proach also depends on the purpose to be analyzed. This work focused on similarity and
covered information, while future work aims to explore other views of summarized MAT
representativeness, like reduced information.
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