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ABSTRACT

Traffic assignment (TA) is crucial in optimizing transportation sys-
tems and consists in efficiently assigning routes to a collection of
trips. Existing TA algorithms often do not adequately consider real-
time traffic conditions, resulting in inefficient route assignments.
This paper introducesMetis, a coordinated, one-shot TA algorithm
that combines alternative routing with edge penalization and in-
formed route scoring. We conduct experiments in several cities to
evaluate the performance of Metis against state-of-the-art one-
shot methods. Compared to the best baseline,Metis significantly
reduces CO2 emissions by 18% in Milan, 28% in Florence, and 46%
in Rome, improving trip distribution considerably while still having
low computational time. Our study proposes Metis as a promising
solution for optimizing TA and urban transportation systems.

CCS CONCEPTS

• Information systems→ Geographic information systems; •
Computing methodologies→ Agent / discrete models; • Applied
computing→ Transportation.
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1 INTRODUCTION

Traffic Assignment (TA) has emerged as a crucial problem today
due to the rapid growth of urbanization and increasing traffic con-
gestion [2, 5, 6, 21, 24, 30, 32]. As cities expand and populations rise,
transportation networks face pressure to efficiently accommodate
the growing demand for mobility. Efficient TA plays a pivotal role
in achieving several Sustainable Development Goals (SDGs) set by
the United Nations [28], promoting effective traffic management
and reducing greenhouse gas emissions.

Existing approaches to TA can be broadly classified into one-
shot and iterative approaches. One-shot approaches assign routes
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to a collection of trips without any additional optimization [5, 6],
while iterative approaches involve multiple iterations to improve
efficacy [2, 21, 32]. However, these approaches predominantly rely
on basic road network information and travel times, failing to har-
ness the potential of more sophisticated measures based on human
mobility patterns. As a result, there is ample opportunity for further
advancements of TA solutions to enhance their effectiveness.

In contrast to one-shot and iterative approaches, alternative
routing (AR) ones adopt an individualistic approach. They focus on
providing alternative routes to individual users, aiming to strike a
balance between proximity to the fastest route and route diversity
[1, 7–9, 11, 14, 17, 18, 20, 26, 34]. However, their individualistic
nature overlooks vehicle interactions, leading to suboptimal out-
comes at the collective level. As a result, they often lead to increased
congestion and a higher environmental impact.

To overcome these limitations, we propose Metis, a novel coor-
dinated approach that improves TA by incorporating alternative
routing, edge penalization, and informed route scoring. Metis in-
troduces some key innovations. Firstly,Metis estimates vehicles’
current position to penalize road edges expected to be traversed,
discouraging future vehicles from using those congested edges. Sec-
ondly, Metis generates alternative routes using the penalized road
network and assigns them to individual trips favouring unpopu-
lar routes with high-capacity roads. These innovative components
enable Metis to promote a more balanced distribution of traffic,
improving the efficiency of TA and providing drivers with fast paths
while addressing the limitations of existing approaches.

Through comprehensive experiments conducted in three cities,
where we compare Metis with various state-of-the-art one-shot
approaches, we highlight its superior performance in optimizing
routing and while maintaining computational efficiency. Notably,
Metis significantly reduces total CO2 emissions compared to the
best baseline, ranging from 18% to 46%, depending on the city.

Metis is a significant step forward in TA, offering a dynamic
approach to provide drivers with efficient routes, alleviating urban
congestion. In summary, the key contributions of the paper are:

• We introduce Forward-Looking Edge Penalization (FLEP) to
estimate vehicles’ current positions and penalize road edges
that are expected to be traversed (Section 3.2);
• We integrate AR into TA, showing how generating alterna-
tive routes may improve traffic assignment (Section 3.3);
• We introduce a pattern-based route scoring to discourage
the selection of popular, congested routes (Section 3.4).
• We conduct extensive experiments to demonstrate Metis’
superior performance over existing AR and one-shot ap-
proaches in reducing CO2 emissions while maintaining com-
petitive computational performance (Section 5).
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Open Source. The code that implementsMetis, the baselines, and
the experiments can be accessed at https://bit.ly/metis_ta.

2 RELATEDWORK

Traffic assignment (TA) consists in allocating vehicle trips on a road
network to minimize congestion and travel time [2, 5, 6, 21, 30, 32].
We group TA solutions into individual approaches, providing a
route to a single trip, and collective approaches, providing a set of
routes for an entire collection of trips.

Individual approaches

The fastest path is the most straightforward approach to connect
two locations in a road network [33]. However, from a collective
point of view, aggregating all individual fastest paths may increase
congestion and CO2 emissions [10, 23].

Several works focus on alternative routing (AR) to distribute the
vehicles more evenly on the road network [17]. In particular, the
𝑘-shortest path problem [1, 34] aims to find the 𝑘 shortest paths be-
tween an origin and a destination. In practical scenarios, 𝑘-shortest
path solutions fail to provide significant path diversification, as the
generated paths exhibit a 99% overlap in terms of road edges [7].
The 𝑘-shortest disjointed paths problem [26] focuses on identifying
𝑘 paths that do not overlap. Solutions to this problem often result in
routes that significantly deviate from the optimal path, leading to a
notable increase in travel time. Several approaches lie between the
𝑘-shortest path and 𝑘-shortest disjoint paths, which can be divided
into edge weight, plateau, and dissimilarity approaches.

Edge weight approaches. They compute the shortest paths itera-
tively. At each iteration, they update the edge weights of the road
network to compute 𝑘 alternative paths. Edge weight updating may
consist of a randomization of the weights or a cumulative penal-
ization of the edges contributing to the shortest paths. Although
easy-to-implement, edge-weight approaches do not guarantee the
generation of paths considerably different from each other [17].

Plateau approaches. They build two shortest-path trees, one from
the source and one from the destination, and identify their common
branches, known as plateaus [20]. The top-𝑘 plateaus are selected
based on their lengths, and alternative paths are generated by ap-
pending the shortest paths from the source to the first edge of the
plateau and from the last edge to the target. As the plateaus are
inherently disjointed, they may create significantly longer routes
than the fastest path [20].

Dissimilarity approaches. They generate 𝑘 paths that satisfy a
dissimilarity constraint and a desired property. Liu et al. [18] pro-
pose the 𝑘-Shortest Paths with Diversity (𝑘SPD) problem, defined
as top-𝑘 shortest paths that are the most dissimilar with each other
and minimize the paths’ total length. Chondrogiannis et al. [8]
propose an implementation of the 𝑘-Shortest Paths with Limited
Overlap (𝑘SPLO), seeking to recommend 𝑘-alternative paths that
are as short as possible and sufficiently dissimilar. Chondrogiannis
et al. [9] formalize the 𝑘-Dissimilar Paths with Minimum Collec-
tive Length (𝑘DPML) problem where, given two road edges, they
compute a set of 𝑘 paths containing sufficiently dissimilar routes
and the lowest collective path length. Hacker et al. [14] propose
𝑘-Most Diverse Near Shortest Paths (KMD) to recommend the set

of 𝑘 near-shortest paths (based on a user-defined cost threshold)
with the highest diversity (lowest pairwise dissimilarity). Dissimi-
larity approaches do not guarantee that a set of 𝑘 paths exists that
satisfies the desired property.

Collective approaches

Collective approaches consider the impact of traffic in a collective
environment where vehicles interact. There are twomain categories
of collective approaches: one-shot and iterative methods.

One-shot methods. They assign a route to each trip without fur-
ther optimizing the routes. They are computationally efficient and
provide a quick, yet not optimal, traffic allocation. The simplest
one-shot method is the All-Or-Nothing assignment (AON) [5], in
which each trip is assigned to the fastest path between the trip’s
origin and destination, considering the free-flow travel time.

Incremental Traffic Assignment (ITA) [6] extends AON incor-
porating the dynamic travel time changes within a road edge. ITA
splits the mobility demand into 𝑛 splits of a specified percentage
(𝑛=4 with 40%, 30%, 20%, and 10% are common values [29]). The
trips in the first split are assigned using AON and each edge’s travel
time is updated using the function proposed by the Bureau of Public
Roads (BPR) [4]. The trips in the second split are assigned using
AON, considering the updated travel time. Iteratively, ITA assigns
the trips in each split, updating the travel time at each iteration.

Iterative methods. Iterative approaches employ multiple itera-
tions to compute TA until a convergence criterion is satisfied. While
these approaches can be computationally demanding, they offer
the advantage of yielding the optimal solution once convergence is
achieved. Two main iterative approaches are the user equilibrium
(UE) and the system optimum (SO).

UE is based on the Wardrop principle [32], which states that
no individual driver can unilaterally improve their travel time by
changing their route. In UE, each individual selfishly selects the
most convenient path, and all the unused paths will have a travel
time greater than the selected route. UE assumes that drivers are
rational and have perfect network knowledge [21]. However, a sys-
tem in user equilibrium does not imply that the total travel time
is minimized [22]. Dynamic User Equilibrium (DUE) [13] approxi-
mates the user equilibrium by performing simulations to estimate
travel times more accurately.

In contrast with UE, SO is based on Wardrop’s second principle,
which suggests drivers cooperate tominimize the total system travel
time [31]. In SO, drivers are considered selfless and willingly adhere
to assigned routes to reduce congestion and travel time. Both UE
and SO may be solved using an iterative algorithm for optimization.
Beckmann et al. [2] provide the mathematical models for the traffic
assignment as a convex non-linear optimization problemwith linear
constraints that may be solved through an iterative algorithm to
solve the quadratic optimization problems [12].

One-shot methods are faster than iterative ones but offer only an
approximation of the solution. Therefore, the choice between these
approaches depends on the specific requirements of the problem,
balancing accuracy with computational efficiency.

https://bit.ly/metis_ta
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Position of ourWork. Metis is a one-shot, coordinated approach
that effectively and quickly solves TA by balancing environmental
concerns and drivers’ needs.

3 METIS

The idea behind Metis is to shift from an individualistic paradigm
to a collective, coordinated one.1 In contrast with existing AR al-
gorithms, Metis acts as a central unit that provides drivers with
suggested routes considering dynamic estimation of traffic condi-
tions.Metis estimates vehicles’ current positions to penalize edges
expected to be traversed, thus avoiding congested edges. Moreover,
Metis incorporates a pattern-based choice criterion that discour-
ages the selection of popular routes likely to be chosen by other
drivers. By doing so, Metis optimizes the routing process and pro-
vides drivers with efficient routes that minimize travel time and
alleviate traffic congestion.

Algorithm 1 presentsMetis’ high-level pseudocode. It takes four
inputs: (i) a mobility demand 𝐷 , i.e., a time-ordered collection of
trips, each represented by its origin 𝑜 , destination 𝑑 , and departure
time 𝑡 ; (ii) a directed weighted graph 𝐺 = (𝑉 , 𝐸), representing
the road network, where 𝑉 is the set of intersections and 𝐸 the
set of road edges, each associated with the expected travel time
estimated as its length divided by the maximum speed allowed;
(iii) a parameter 𝑝 > 0, which controls to what extent to penalize
crowded edges; (iv) a slowdown parameter 𝑠 ≥ 1 accounting for
reduced speeds on edges due to the presence of other vehicles and
various events like traffic lights.

The algorithm starts with the initialization phase (lines 1-2 of
Algorithm 1), where it computes two 𝐾road-based measures. Subse-
quently, the algorithm performs the traffic assignment (lines 3-7):
for each trip 𝑗 ∈ 𝐷 ,Metis employs FLEP (Forward-Looking Edge
Penalization) to penalize edges based on other vehicles’ estimated
current position, thus producing a penalized road network 𝐻 (line
4). Then, Metis employs KMD [14] to generate a set 𝑃 of 𝑘 alter-
native routes between each trip’s origin 𝑜 and destination 𝑑 , based
on 𝐻 (line 5). Then, the algorithm assigns to the trip 𝑗 the route 𝑟
with the minimum value of a route scoring function (line 6), adding
it to the routes collection 𝑅 (line 7). Once each trip in 𝐷 has been
associated with a route, Metis returns 𝑅 (line 8).

The following sections provide details onMetis’ components.
Section 3.1 outlines the initialization phase and introduces the
𝐾r𝑜𝑎𝑑 -based measures, Section 3.2 introduces FLEP, Section 3.3
describes KMD, and Section 3.4 describes route scoring.

3.1 Initialization Phase

During the initialization phase (line 1 of Algorithm 1), Metis com-
putes 𝐾 (source)

road (𝑒) and 𝐾
(end)
road (𝑒) for every edge 𝑒 in the road network.

This computation requires a collection of routes to estimate sources
and destinations of traffic on the road network. In contrast to the
approach by Wang et al. [29], which utilizes real GPS data to com-
pute 𝐾road for each edge, we adopt a more adaptable strategy. We
establish connections between origin and destination points in 𝐷
with the fastest routes in the road network assuming free-flow

1The nameMetis has been inspired by the Greek goddess who personifies wisdom,
cunning, strategy, and prudence.

Algorithm 1: Metis
Input : road network 𝐺 , mobility demand 𝐷 , penalization

parameter 𝑝 , slowdown parameter 𝑠
Output :assigned routes 𝑅

// Initialization Phase
1 𝐾

(source)
road , 𝐾

(end)
road ← 𝐾𝑅𝑜𝑎𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛(𝐺, 𝐷);

2 𝑅 ← ∅;
// Perform the Traffic Assignment (TA)

3 foreach 𝑗 = (𝑜, 𝑑, 𝑡) ∈ 𝐷 do

// Apply the Forward-Looking Edge Penalization (FLEP)
4 𝐻 ← 𝐹𝐿𝐸𝑃 (𝐺, 𝑅, 𝑝, 𝑠, 𝑡);

// Generate 𝑘 candidates on the penalized road network
5 𝑃 ← 𝐾𝑀𝐷 (𝐻,𝑜, 𝑑);

// Select the route that minimizes the route scoring function
6 𝑟 ← 𝑅𝑜𝑢𝑡𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃, 𝐾 (source)

road , 𝐾
(end)
road);

// Update the assigned routes collection
7 𝑅 ← 𝑅 ∪ {𝑟 };
8 return 𝑅;

travel time, enabling us to estimate the 𝐾 (source)
road and 𝐾 (end)

road values for
each edge, even in situations where GPS data are unavailable.

K
r𝑜𝑎𝑑 measures. The 𝐾road of an edge quantifies how many areas

of the city (e.g., neighbourhoods) contribute to most of the traffic
flow over that edge [29]. The computation of 𝐾road involves con-
structing a road usage network, which is a bipartite network where
each road edge is connected to its major driver areas, i.e., those re-
sponsible for 80% of the traffic flow on that edge [29]. The 𝐾road (𝑒)
of an edge 𝑒 is the degree of 𝑒 within the road usage network. 𝐾road
indicates an edge’s popularity: an edge with a low 𝐾road is chosen
by only a limited number of traffic sources, indicating relatively
low popularity; an edge with a high 𝐾road attracts traffic from more
diverse areas, indicating higher popularity among them.

We expand upon the 𝐾road concept by introducing 𝐾 (source)
road and

𝐾
(end)
road as follows. First, an area 𝐴 is a driver source for an edge 𝑒 if

at least one vehicle originating from 𝐴 travels through 𝑒 . Similarly,
𝐴 is a driver destination for 𝑒 if at least one vehicle traverses 𝑒 and
completes its trip in𝐴. An area can be both driver source and driver
destination for a particular edge. In this work, an area is a square
tile of 1 km within a square tessellation of the city.

We define the major driver sources (MDS) and the major driver
destinations (MDD) as the areas to which 80% of the traffic flowing
through an edge starts or ends, respectively. To calculate these two
measures, we construct a bipartite network where a connection
is established from an area 𝐴 to an edge 𝑒 if 𝐴 is an MDS for 𝑒 .
Similarly, a connection is formed from an edge 𝑒 to an area𝐴 if𝐴 is
an MDD for 𝑒 . Specifically, for an edge 𝑒 , 𝐾 (source)

road (𝑒) is the in-degree
of 𝑒 within the bipartite network, while 𝐾 (end)

road (𝑒) is 𝑒’s out-degree.
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𝑒1

𝑒2

𝑒3

𝐴1

𝐴2

𝐾
(source)
road (𝑒1) = 2

𝐾
(end)
road (𝑒1) = 1

𝐾
(source)
road (𝑒2) = 1

𝐾
(end)
road (𝑒2) = 1

𝐾
(source)
road (𝑒3) = 2

𝐾
(end)
road (𝑒3) = 1

Figure 1: Graphical representation of the bipartite network

of road edges and areas. 𝐾
(source)

road
is the in-degree of edge nodes,

𝐾
(end)

road
is the out-degree of edge nodes.

We also define 𝐾 (source)
route (𝑟 ) of a route 𝑟 = (𝑒1, · · · , 𝑒𝑛) as the aver-

age 𝐾 (source)
road computed over its edges weighted with edge length:

𝐾
(source)
route (𝑟 ) =

∑𝑛
𝑖=1 𝐾

(source)
road (𝑒𝑖 ) · 𝑙 (𝑒𝑖 )∑𝑛
𝑖=1 𝑙 (𝑒𝑖 )

(1)

where 𝑙 (𝑒𝑖 ) is the length of edge 𝑒𝑖 . Similarly:

𝐾
(end)
route (𝑟 ) =

∑𝑛
𝑖=1 𝐾

(end)
road (𝑒𝑖 ) · 𝑙 (𝑒𝑖 )∑𝑛
𝑖=1 𝑙 (𝑒𝑖 )

(2)

Example. Figure 1 illustrates the concepts of 𝐾 (source)
road and 𝐾 (end)

road with
three edges (𝑒1, 𝑒2, 𝑒3, circles) connected with two areas (𝐴1, 𝐴2,
squares). Let us consider edge 𝑒1: it has one outgoing connection
towards 𝐴2, leading to an out-degree of 1, and thus 𝐾 (end)

road (𝑒1) = 1.
Moreover, edge 𝑒1 has incoming connections from areas 𝐴1 and 𝐴2,
resulting in an in-degree of 2 and, consequently, 𝐾 (source)

road (𝑒1) = 2.

3.2 Forward-Looking Edge Penalization

Forward-Looking Edge Penalization (FLEP) is based on penalizing
road edges to reflect the dynamic changes in travel time caused by
increasing traffic volume.

Generally, existing methods penalize the entire routes assigned
to currently travelling vehicles [6, 14, 18]. However, this indiscrimi-
nate penalization of all edges, including those currently unoccupied,
may discourage the utilization of potentially efficient routes, leading
to congestion in alternative paths that are not penalized.

FLEP overcomes this problem by estimating the current positions
of vehicles in transit and penalizing the edges that these vehicles
are projected to visit. Assuming that a vehicle departed 𝑡 seconds
ago, FLEP computes the distance it has travelled during 𝑡 seconds,
assuming that the vehicle travelled at a speed of𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑/𝑠 on
each edge, where 𝑠 is a slowdown parameter accounting for reduced
speeds on edges due to the presence of other vehicles and various
events like traffic lights. Then, FLEP modifies the weights 𝑤 (𝑒)
assigned to the edges that the vehicle is expected to traverse by
applying a penalty factor 𝑝 :𝑤 (𝑒) ← 𝑤 (𝑒) · (1+𝑝). The penalization
is cumulative, i.e., the edge is penalized for each vehicle that will
traverse that edge. This penalization discourages the selection of
edges that vehicles are likely to traverse, promoting alternative
routes and a balanced distribution of traffic.

𝑤 (𝑒1 )=24

𝑤 (𝑒2 )=62

𝑤 (𝑒3 )=20
𝑤 (𝑒4 )=72

𝑤 (𝑒5 )=10

𝑤 (𝑒1 )=26.4

𝑤 (𝑒2 )=75.02

𝑤 (𝑒3 )=26.62
𝑤 (𝑒4 )=87.12

𝑤 (𝑒5 )=11

𝑐1

𝑐2

𝑐3
𝑐4

𝑐5

𝑐1

𝑐2

𝑐3
𝑐4

𝑐5

𝐺

𝐻

𝑜 𝑑

𝑜 𝑑

Figure 2: FLEP with 𝑝 = 0.1 applied to road network𝐺 , result-

ing in penalized network 𝐻 . Grey circles represent estimated

vehicle positions. FLEP applies cumulative penalization to

edges based on the vehicles’ expected traversal, with a multi-

plicative factor of (1 + 𝑝). Darker red color indicates higher

penalties imposed on road edges. For example, edge 𝑒4 is tra-
versed by vehicles 𝑐3 and 𝑐4, leading to a penalty of (1 + 𝑝)2,
resulting in𝑤 (𝑒4) = 72 · (1.1)2 = 87.12.

Algorithm 2 provides the pseudocode of FLEP. First, FLEP con-
siders each previously assigned route 𝑟 and calculates the time Δ𝑡
the vehicle spent travelling based on its departure time 𝑡 (𝑟 ) and
the current time 𝑡 (line 2). Then, it computes the required travel
time to reach each edge 𝑒 ∈ 𝑟 using 𝑠 (line 3). If the vehicle has yet
to reach its destination (line 4), FLEP determines the index of the
first unvisited edge in the route (line 5). Subsequently, it penalizes
every unvisited edge in route 𝑟 (lines 7-8). Finally, FLEP outputs
the penalized network (line 9).

Example. Figure 2 illustrates how FLEP works, assuming a pe-
nalization 𝑝 = 0.1. FLEP estimates the position of each vehicle in
transit (grey circles) within the road network considering 𝑠 . Sub-
sequently, FLEP applies cumulative penalization to the edges that
each vehicle will traverse to reach the destination 𝑑 . This penaliza-
tion is accomplished by multiplying the weights of these edges by
(1 + 𝑝) for each vehicle that will traverse it. For example, vehicles
𝑐3 and 𝑐4 are projected to pass through edge 𝑒4. Consequently, the
initial weight𝑤 (𝑒4) = 72 is penalized by (1+𝑝)2, resulting in a new
weight of 𝑤 (𝑒4) = 72 · (1.1)2 = 87.12. FLEP generates a modified
road network 𝐻 through this iterative process, penalizing edges
according to the anticipated vehicle movements.

3.3 KMD

𝑘-Most Diverse Near Shortest Paths (KMD) is an AR algorithm
that generates a collection of 𝑘 routes with the highest dissimilar-
ity among each other while still adhering to a user-defined cost
threshold 𝜖 [14]. As KMD becomes computationally challenging
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Algorithm 2: Forward-Looking Edge Penalization (FLEP)
Input : road network 𝐺 , collection of assigned paths 𝑅,

penalty parameter 𝑝 , slowdown parameter 𝑠 ,
current time 𝑡

Output :updated road network 𝐺

1 foreach 𝑟 ∈ 𝑅 do

// Compute the vehicle’s time spent travelling. 𝑡 (𝑟 ) is the
departure time of 𝑟

2 Δ𝑡 = 𝑡 − 𝑡 (𝑟 );
// list of travel times

3 𝑡𝑡_𝑙𝑖𝑠𝑡 ← 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑠𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑠);
// Penalize unvisited edges

4 if Δ𝑡 < 𝑡𝑡_𝑙𝑖𝑠𝑡 [𝑙𝑒𝑛(𝑟 )] then
5 𝑖 ← min{𝑥 ∈ [1, 𝑙𝑒𝑛(𝑟 )] |𝑡𝑡_𝑙𝑖𝑠𝑡 [𝑥] > Δ𝑡};
6 for 𝑗 ∈ [𝑖, . . . , 𝑙𝑒𝑛(𝑟 )] do
7 𝑒 ← 𝑟 [ 𝑗];
8 𝑤 (𝑒) ← 𝑤 (𝑒) · (1 + 𝑝);

// Return the road network with the penalized weights
9 return 𝐺 ;

10 Function 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑠𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑟, 𝑠):
11 𝑡𝑡𝑎𝑔𝑔 ← 0;
12 𝑙 ← [];
13 foreach 𝑒 ∈ 𝑟 do
14 𝑡𝑡𝑎𝑔𝑔 ← 𝑡𝑡𝑎𝑔𝑔 +𝑤 (𝑒) · 𝑠 ;
15 𝑙 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑡𝑎𝑔𝑔)
16 return 𝑙 ;

for 𝑘 > 2 due to its NP-hard nature, a penalization-based heuristic
is commonly employed to accelerate the computation process [14].

Given an origin 𝑜 and a destination 𝑑 , KMD first calculates the
fastest path between 𝑜 and 𝑑 . The cost 𝑐 of the fastest path, along
with the parameter 𝜖 , determines the maximum allowed cost thresh-
old 𝑐 · (1+𝜖) for a path to be considered near-shortest. Next, KMD it-
eratively applies the penalization-based heuristic to compute a new
near-shortest path 𝑝 , which is then added to the set of near-shortest
paths 𝑆 . Subsequently, it generates all subsets of 𝑆 composed of 𝑘
elements. Among these subsets, KMD identifies the most diverse
using the Jaccard coefficient, which compares the dissimilarity be-
tween pairs of paths. When no more near-shortest paths can be
found using the penalization approach, KMD returns the subset
of 𝑘 paths with the highest diversity. The detailed pseudo-code of
KMD is in [14].

Metis applies KMD on the road network penalized by FLEP to
discourage routes passing pass through potentially congested edges.
We use parameter values 𝑘=3 (three alternative routes) and 𝜖=0.3
(maximum cost increase of 30% compared to the fastest path) for
KMD, which are common values used in the literature [14, 17].

3.4 Route Selection

In the final step, Metis scores and ranks the set of alternative
routes generated by KMD. To determine the best route among the

alternatives,Metis assigns a score (the lower, the better) to each
route 𝑟 based on the following formula:

𝑠𝑐𝑜𝑟𝑒 (𝑟 ) =
𝐾

(source)
road (𝑟 ) · 𝐾

(end)
road (𝑟 )

𝐶𝑟
(3)

where 𝐶𝑟 is the average of the capacities 𝐶 (𝑒) of the edges in route
𝑟 , taking into account the edge length. The capacity𝐶 (𝑒) of an edge
𝑒 is computed as follows:

𝐶 (𝑒) =


1900 · 𝑙 · 𝑞 if 𝑠m𝑎𝑥 ≤ 45
(1000 + 20 · 𝑠m𝑎𝑥 ) · 𝑙 if 45 < 𝑠m𝑎𝑥 < 60
(1700 + 10 · 𝑠m𝑎𝑥 ) · 𝑙 if 𝑠m𝑎𝑥 ≥ 60

(4)

where 𝑠m𝑎𝑥 is the speed limit associated with edge 𝑒 (in miles/hour),
𝑙 is the number of lanes in edge 𝑒 , and 𝑞 = 0.5 is the green time-
to-cycle length ratio. The equation and the values above are taken
from the 2000 Highway Capacity Manual [27, 29].

Route scoring combines two essential elements. In the denom-
inator, the average capacity 𝐶𝑟 favours routes composed mainly
of high-capacity edges, which are expected to handle larger traffic
volumes. In the numerator, the product 𝐾 (source)

road (𝑟 ) · 𝐾
(end)
road (𝑟 ) penal-

izes routes that predominantly consist of popular edges, promoting
a balanced traffic distribution.

4 EXPERIMENTAL SETUP

This section describes the experimental settings (Section 4.1), an
overview of the baselines we compare with Metis (Section 4.2),
and the measures used for the comparison (Section 4.3).

4.1 Experimental Settings

We conduct experiments in three Italian cities: Milan, Rome, and
Florence. These cities represented diverse urban environments with
varying traffic dynamics, sizes, and road networks (Table 1).

Road Networks. We obtain a road network for each city using
OSMWebWizard. The three cities’ road network characteristics are
heterogeneous (see Table 1). While the smallest city, Florence’s road
network exhibits the highest density (9.11). Milan and Rome are
sparse compared to Florence, although they have extensive road
networks. This difference in road network characteristics provides
a valuable basis for evaluating the performance of TA algorithms
in different urban contexts.

Mobility Demand. We divided each city into a grid of 1 km square
tiles to discretize the geographical space. Then, we created realistic
synthetic OD data that mirror real-world mobility patterns, main-
taining the typical distribution of trip distances and the power-law
behavior in the number of trips between two locations. These ref-
erence distributions were inferred from real GPS data samples in
the three cities [3, 25]. We derive an origin-destination matrix 𝑀 ,
where 𝑚𝑜,𝑑 represents the number of trips starting in tile 𝑜 and
ending in tile 𝑑 . To generate a mobility demand 𝐷 of 𝑁 trips, we
randomly select a trip 𝑇𝑣 = (𝑒𝑜 , 𝑒𝑑 ) for a vehicle 𝑣 , choosing matrix
elements𝑚𝑜,𝑑 with probabilities 𝑝𝑜,𝑑 ∝𝑚𝑜,𝑑 . We then select with
random uniform probability two edges 𝑒𝑜 and 𝑒𝑑 within tiles 𝑜 and
𝑑 from the road network 𝐺 . For our experiments, we set 𝑁 = 10k
trips in Florence, 𝑁 = 20k trips in Rome, and 𝑁 = 30k in Milan.
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city |𝑉 | |𝐸 | 𝐿(𝐸) area den # trips 𝑁

Florence 6,140 11,804 1,050 115.28 9.11 4,076 10k
Milan 24,063 46,488 4,340 495.55 8.76 5,617 30k
Rome 31,798 63,384 6,569 788.11 8.34 7,622 20k
Table 1: Road network characteristics in the three cities. The

columns show the number of vertices |𝑉 | and edges |𝐸 |, the
total road length 𝐿(𝐸), the area of the city, the ratio of road

length to surface area (den, in km road/km
2
), the total num-

ber of trips described by synthetic OD data, and the number

𝑁 of routes generated in each city.

4.2 Baselines

We evaluate Metis against several one-shot TA solutions, both
individual and collective. We exclude iterative solutions like User
Equilibrium (UE) [13, 32] and System Optimum (SO) [31] from our
analysis. While these iterative approaches may offer optimal re-
sults after convergence, their computationally intensive nature and
multiple iterations make them unsuitable for real-time applications.
Furthermore, we exclude navigation system services (e.g., Google
Maps and TomTom) from our analysis because a direct comparison
withMetis and the baselines under identical traffic conditions is
unfeasible. Indeed, navigation services APIs recommend routes
based on real-time, real-world traffic conditions, which inherently
differ from those generated and considered within our simulation.

AR baselines. AR algorithms are designed to generate 𝑘 alterna-
tive routes for an individual trip. We extend these algorithms to
TA by aggregating the recommended routes for each trip within a
mobility demand. In particular, we use an AR algorithm to compute
𝑘 = 3 alternative routes for each trip in mobility demand 𝐷 , and we
randomly select one of them uniformly. In this study, we consider
the following state-of-the-art methods:
• PP (Path Penalization) generates 𝑘 alternative routes by
penalizing the weights of edges contributing to the fastest
path [7]. In each iteration, PP computes the fastest path
and increases the weights of the edges that contributed to
it by a factor 𝑝 as 𝑤 (𝑒) = 𝑤 (𝑒) · (1 + 𝑝). The penalization
is cumulative: if an edge has already been penalized in a
previous iteration, its weight will be further increased [7].
• GR (Graph Randomization) generates 𝑘 alternative paths
by randomizing the weights of all edges in the road network
before each fastest path computation. The randomization is
done by adding a value from a normal distribution, given by
the equation 𝑁 (0,𝑤 (𝑒)2 · 𝛿2) [7].
• PR (Path Randomization) generates 𝑘 alternative paths
randomizing only the weights of the edges that were part of
the previously computed path. Similar to GR, it adds a value
from a normal distribution to the edge weights, following
the equation 𝑁 (0,𝑤 (𝑒)2 · 𝛿2) [7].
• KD (𝑘-shortest disjointed paths) returns 𝑘 alternative
non-overlapping paths (i.e., with no common edges) [26].
• PLA (Plateau) builds two shortest-path trees, one from
the origin and one from the destination, and identifies their
common branches (plateaus) [20]. The top-𝑘 plateaus are

selected based on their lengths, and alternative paths are
generated by appending the fastest paths from the source to
the plateau’s first edge and from the last edge to the target.
• KMD (𝑘-Most Diverse Near Shortest Paths) generates 𝑘
alternative paths with the highest dissimilarity among each
other while adhering to a user-defined cost threshold 𝜖 [14].

One-shot baselines. In contrast with AR approaches, one-shot
(OS) ones assign a route to each trip of a mobility demand with-
out further optimization on the assigned routes. In this study, we
consider the two most common OS approaches:
• AON (All-Or-Nothing) assigns each trip to the fastest path
between the trip’s origin and destination, assuming free-flow
travel times [5].
• ITA (Incremental Traffic Assignment) [6] uses four splits
(40%, 30%, 20%, 10%, as recommended in the literature [29])
to assign routes to trips. In the first split, ITA uses AON
considering free-flow travel time 𝑡free. It then updates the
travel times using the Bureau of Public Roads (BPR) function
𝑡𝑎 = 𝑡free · (1 + 𝛼 · VOC𝛽 ) [4], where VOC indicates an edge’s
traffic volume over its capacity and 𝛼 = 0.15 and 𝛽 = 4 are
values recommended in the literature [22, 29]. This process
is repeated for each split, progressively updating the travel
times and assigning trips accordingly.

Table 2 shows the parameter ranges tested for each baseline and
the best parameter combinations obtained in our experiments.

best params

algo params range Florence Milan Rome

PP 𝑝 ∈ { .1, .2, . . . , .5} 𝑝 = .2 𝑝 = .1 𝑝 = .2
GR Δ ∈ { .2, .3, .4, .5} Δ = .2 Δ = .2 Δ = .2
PR 𝛿 ∈ { .2, .3, .4, .5} Δ = .2 Δ = .2 Δ = .3
KMD 𝜖 ∈ { .01, .05, .1, .2, .3} 𝜖 = .2 𝜖 = .1 𝜖 = .01

Metis 𝑝 ∈ { .01, .015, .02, . . . , .1} 𝑝 = .025 𝑝 = .01 𝑝 = .01
𝑠 ∈ {1.5, 1.75, 2, 2.25} 𝑠 = 2.25 𝑠 = 2.25 𝑠 = 1.75

Table 2: Parameter values explored for each algorithm and

the best values obtained for each approach.

4.3 Measures

To assess the effectiveness ofMetis and the baselines, we use three
measures: total CO2 emissions, road coverage, and redundancy.

Total CO2. To accurately account for vehicle interactions and cal-
culate CO2 emissions, we utilize the traffic simulator SUMO (Simu-
lation of Urban MObility) [10, 19], which simulates each vehicle’s
dynamics, considering interactions with other vehicles, traffic jams,
queues at traffic lights, and slowdowns caused by heavy traffic.

For each city and algorithm, we generate 𝑁 routes (with 𝑁

depending on the city, see Table 1) and simulate their interaction
within SUMO during one peak hour, uniformly selecting a route’s
starting time during the hour.

To estimate CO2 emissions related to the trajectories produced
by the simulation, we use the HBEFA3 emission model [3, 15],
which estimates the vehicle’s instantaneous CO2 emissions at a
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trajectory point 𝑗 as:

E( 𝑗) = 𝑐0 + 𝑐1𝑠𝑎 + 𝑐2𝑠𝑎2 + 𝑐3𝑠 + 𝑐4𝑠2 + 𝑐5𝑠3 (5)

where 𝑠 and 𝑎 are the vehicle’s speed and acceleration in point 𝑗 ,
respectively, and 𝑐0, . . . , 𝑐5 are parameters changing per emission
type and vehicle taken from the HBEFA database [16]. To obtain
the total CO2 emissions, we sum the emissions corresponding to
each trajectory point of all vehicles in the simulation.

Road Coverage (RC). It quantifies the extent to which the road
network is utilized by vehicles. It is calculated by dividing the
cumulative length of the edges visited by any vehicle by the road
network’s overall length. Mathematically, given a set of routes 𝑅
and the set of edges in these routes 𝑆𝑅 =

⋃
𝑟 ∈𝑅{𝑒 ∈ 𝑟 }, we define

RC as:

𝑅𝐶 (𝑅) =
∑
𝑒∈𝑆𝑅 𝑙 (𝑒)
𝐿(𝐸) · 100 (6)

where 𝑙 (𝑒) is the length of edge 𝑒 and 𝐿(𝐸) = ∑
𝑒∈𝐸 𝑙 (𝑒) is the total

road length of the road network.
Road coverage characterizes a TA algorithm’s road infrastructure

usage. A higher road coverage indicates a larger proportion of the
road network being utilized, which typically results in improved
traffic distribution and reduced congestion. However, excessively
high road coverage may increase vehicle travel distances, poten-
tially producing higher emissions. Therefore, road coverage is a
critical metrics for evaluating the effectiveness of TA algorithms in
effectively utilizing the road infrastructure.

Time redundancy (RED). In the literature, redundancy is defined
as the popularity of edges in a set of routes, also interpreted as the
average utilization of edges that appear in at least one route [7].
Specifically, it is the fraction of the total number of edges of all
routes divided by the total number of unique edges of all routes.
Formally, given a set of routes 𝑅 and a set of edges in these routes
𝑆𝑅 =

⋃
𝑟 ∈𝑅{𝑒 ∈ 𝑟 }, we define it as:

𝑅𝐸𝐷 (𝑅) =
∑
𝑟 ∈𝑅 |𝑟 |
|𝑆𝑅 |

(7)

If 𝑅𝐸𝐷 (𝑅) = 1, there is no overlap among the routes in 𝑅, while
𝑅𝐸𝐷 (𝑅) = |𝑅 | when all routes are identical.

Note that RED does not consider traffic’s dynamic evolution. To
account for it, we define time redundancy as:

𝑅𝐸𝐷 (𝑅, 𝑡) = 1
|𝐼 |

∑︁
𝑖∈𝐼

RED(𝑅𝑖,𝑡 ) (8)

where 𝑡 is the length of the timewindow, 𝐼={𝑡0, 𝑡0+𝜎, 𝑡0+2𝜎, . . . , 𝑡𝑚𝑎𝑥 }
is the set of the starting times of each time window in the observa-
tion period [𝑡0, 𝑡𝑚𝑎𝑥 ) shifted by 𝜎 , and RED(𝑅𝑖,𝑡 ) is the RED of trips
in 𝑅 departed within time interval [𝑖, 𝑖 +𝑡). Low 𝑅𝐸𝐷 (𝑅, 𝑡) indicates
that routes close in time are better distributed across edges.

5 RESULTS

Table 3 and Figure 4 compareMetis with all the baselines for all
cities and measures. For each model, we show the results regarding
the combination of parameter values leading to the lowest CO2
emissions (see Table 2). We use total CO2 emissions to assess the al-
gorithms’ effectiveness, while RC and RED are used to characterize
the properties of the assigned routes.

Metis emerges as a significant breakthrough, with impressive
reductions of CO2 emissions of 28% in Florence, 18% in Milan, and
46% in Rome compared to the best baseline (see Figure 4a-c and
Table 3). This remarkable result is due to the synergistic combina-
tion of its unique core components: FLEP, KMD, and route scoring.
FLEP is crucial in identifying less congested routes by estimating
vehicles’ current positions and dynamically adjusting edge weights.
Complementing FLEP, KMD offers alternative routes that substan-
tially cover the road network. Lastly, route scoring prioritizes less
popular routes with higher capacity, helping accommodate traffic
volume over uncongested routes.

Indeed, Metis achieves the highest road coverage in Florence
(79.66%) andMilan (86.68%) and the second-highest in Rome (48.51%)
(see Figure 4d-f and Table 3). Moreover, Metis achieves the lowest
time redundancy in Florence (7.81) and Milan (7.41) and the second
lowest in Rome (5.57): on average, the number of routes on each
edge within a 5-minute temporal window is relatively low.

Figure 3 visually illustrates the spatial distribution of sample
routes generated by Metis and KMD (the second-best model) in
Milan. It is evident from the figure thatMetis produces routes that
are more evenly distributed across the city, leading to higher road
coverage and lower time redundancy compared to KMD.

Among the baselines, GR shows the lowest CO2 emissions in
Florence and KMD the lowest in Milan and Rome. GR has a high
road coverage of 78.35% in Florence, 86.57% in Milan, and 51.57% in
Rome (Figure 4d-f and Table 3).

KD and PLA exhibit high road coverage and time redundancy,
resulting in the highest levels of CO2 emissions across all three
cities. This is primarily because these methods have a tendency to
assign trips to considerably long routes. Despite their simplicity,
AON and ITA achieve CO2 emissions comparable to edge-weight
methods (PP, PR, and GR).

Role of time redundancy. Figure 5 shows a strong correlation
between time redundancy and CO2 emissions in Florence (𝑟=0.92)
and Milan (𝑟=0.98) and a moderate correlation in Rome (𝑟=0.52). As
time redundancy decreases, CO2 emissions also decrease: low re-
dundancy implies that trips close in time are likely to take different
routes, alleviating congestion on edges. This means that, by utiliz-
ing the equations of Figure 5, we can estimate the CO2 emissions of
TA algorithms based solely on the characteristics of the generated
routes without the need for time-consuming simulations.

Ablation study. To understand the role of Metis’ components,
we selectively remove them creating three models: (i)𝑀1 uses KMD
and route scoring but penalizes the entire routes of vehicles in
transit instead of using FLEP; (ii) 𝑀2 uses KMD and route scoring
but no edge penalization; and (iii) 𝑀3 uses FLEP and KMD but
selects among alternative routes uniformly at random.

We find that removing components fromMetis increases CO2
emissions compared to the completeMetis algorithm (Figure 6). In
Milan and Rome,𝑀1, 𝑀2, 𝑀3 all outperform the best baseline (KMD).
Only𝑀1 surpasses the best baseline in Florence, while𝑀2 and𝑀3
show slightly inferior performance. These findings highlight the
importance of the synergistic combination of Metis’ components.

Parameter Sensitivity. Figure 7 shows the relationship be-
tween Metis’ parameter 𝑝 , which controls penalization in FLEP,
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algo CO2 [t] RC (%) RED(𝑅, 5𝑚)

Fl
or
en
ce A

R

PP 38.94 (2.99) 70.83 (.30) 9.70 (.03)
GR 34.78 (1.21) 78.35 (.26) 8.87 (.03)
PR 35.20 (1.88) 71.65 (.37) 10.45 (.03)
KD 69.13 (6.96) 77.48 (.30) 11.94 (.06)
PLA 67.00 (1.67) 72.56 (.37) 11.83 (.04)
KMD 36.93 (.93) 73.40 (.35) 8.72 (.03)

O
S AON 49.02 62.41 10.58

ITA 48.16 62.42 10.58
Metis 25.19 81.06 7.81

M
ila
n A

R

PP 114.66 (1.62) 80.44 (.12) 9.27 (.01)
GR 108.47 (1.80) 86.57 (.09) 7.87 (.02)
PR 119.54 (1.44) 80.47 (.10) 9.27 (.01)
KD 148.84 (2.14) 86.30 (.14) 10.41 (.02)
PLA 265.51 (2.53) 79.71 (.12) 14.30 (.04)
KMD 106.11 (1.31) 79.83 (.09) 8.93 (.02)

O
S AON 126.61 76.40 9.70

ITA 125.44 76.40 9.71
Metis 87.42 86.68 7.41

Ro
m
e A

R

PP 143.85 (4.14) 34.44 (.07) 6.82 (.02)
GR 138.36 (3.77) 51.57 (.26) 5.41 (.02)

PR 141.74 (2.70) 42.02 (.14) 6.40 (.02)
KD 133.95 (4.05) 43.61 (.11) 7.39 (.03)
PLA 197.95 (2.11) 43.74 (.20) 10.19 (.04)
KMD 118.89 (3.10) 26.90 (.03) 8.58 (.01)

O
S AON 124.14 26.31 8.78

ITA 123.23 26.36 8.77
Metis 64.07 48.51 5.57

Table 3: Results of Metis and the baselines on CO2 emis-

sions, road coverage (RC), and time redundancy (five-minute

window). Std deviation in parentheses for non-deterministic

methods. In bold, the lowest value of each measure and city.

and CO2 emissions: apart from small values, higher values of 𝑝 are
associated with higher emissions. As 𝑝 increases, FLEP penalizes
more the edges that will be traversed by in-transit vehicles, forcing
KMD to find alternative routes that may diverge considerably from
the fastest route, resulting in increased congestion and CO2 emis-
sions. In Milan and Rome, there is a clear increasing trend, showing
that as 𝑝 increases, CO2 emissions also increase (Figure 7b-c). Al-
though there is a generally increasing trend in Florence, there are
multiple peaks, indicating a complex relationship between 𝑝 and
CO2 emissions (Figure 7a). We also conduct a sensitivity analysis
of the slowdown parameter 𝑠 and observe no significant differences
compared to the optimal parameter value shown in Table 2.

Execution times. Figure 8 comparesMetis’ response time with
the baselines for 1,000 trips on 16 Intel(R) Core(TM) i9-9900 CPU
3.10GHz processors with 31GB RAM on Linux 5.15.0-56-generic.

AON and ITA are the fastest approaches: the former only re-
quires computing the fastest path; the latter involves a single weight
update for each of the four splits. PP, PR, and KMD are the second-
fastest baselines, while GR and PLA are the slowest. GR is time-
consuming because it modifies the weights of every edge in the
network at each iteration; PLA because it computes the shortest
path trees for each trip, which is time-intensive for large graphs.

RC=16.4%
RED=1.84

(a) KMD

RC=22.4%
RED=1.48

(b) Metis
Figure 3: Routes generated by KMD (a) andMetis (b) inMilan

for 150 trips. RC is the road coverage, and RED is the time

redundancy (5-minute window). Note how Metis exhibits a

more spatially uniform traffic distribution than KMD.

Metis’ average response times are within the same order of
magnitude of baselines: 0.034s per request in Florence, 0.116s in
Milan, and 0.125s in Rome, making it suitable for real-time TA
where both efficiency and promptness matter (Figure 8).

Figure 8 also shows the response time of DUE, an iterative ap-
proach approximating the Dynamic User Equilibrium [13]. DUE
has much longer execution times than Metis: 9 minutes for Flo-
rence (14.5 times slower), 25 for Milan (11.72 times slower) and 31
for Rome (14.44 times slower). However, this longer time does not
always lead to lower CO2 emissions: in Milan, DUE achieves an
18% reduction in emissions compared toMetis, but in Florence and
Rome, DUE increases them by 13% and 11%.
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Figure 4: Comparison of Metis (black bar) with the baselines in Florence, Milan, and Rome on CO2 emissions (in tons), road

coverage (in %), and time redundancy. For statistical reliability, we run non-deterministic algorithms (GR, PR, KMD, PP, PLA,

KD) ten times and present the average values and the corresponding standard deviation.
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Figure 6: Comparison of Metis with models based on its

components (𝑀1, 𝑀2, 𝑀3) and the best baseline (horizontal

dashed line) in terms of total CO2 emissions.
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Figure 7: Relationship between Metis’ parameter 𝑝 and CO2

emissions. The vertical dashed line indicates the 𝑝 value lead-

ing to the lowest emissions.
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Figure 8: Comparison of response time (seconds) of Metis

with the baselines and DUE for 1,000 trips.

6 CONCLUSION

In this paper, we introducedMetis, a one-shot algorithm for traffic
assignment that effectively reduces CO2 emissions while maintain-
ing computational efficiency. Future enhancements include incor-
porating additional measures to prioritize or discourage specific
routes, refining FLEP using machine learning techniques for posi-
tion estimation, estimating the slowdown factor for each road, and
developing a distributed version for faster traffic assignments.
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