
EasyChair Preprint
№ 10385

XAI in Affective Computing: a Preliminary
Study

Elena Sajno, Alessio Rossi, Stefano De Gaspari, Maria Sansoni,
Giulia Brizzi and Giuseppe Riva

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 12, 2023



XAI in Affective Computing: A preliminary 

study 
Elena Sajno

a,b,1, Alessio Rossic, Stefano De Gasparia,b, Maria Sansonid, Giulia Brizzi 
e, 

and Giuseppe Riva 
a,e 

 
aHTLAB, Università Cattolica del Sacro Cuore, Milan, Italy 

b
 Department of Computer Science, University of Pisa, Pisa, Italy 

c
 Institute of Information Science and Technologies (ISTI), National Research Council 

of Italy (CNR), Pisa, Italy 
d

 Department of Psychology, Università Cattolica del Sacro Cuore, Milan 
e

 Applied Technology for Neuro- 

Psychology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy 
ORCiD ID: Elena Sajno https://orcid.org/0000-0002-9621-8981,  

Alessio Rossi https://orcid.org/0000-0002-6400-5914,  
Stefano De Gaspari https://orcid.org/0009- 0006-6083-2134, 

Maria Sansoni https://orcid.org/0000-0002-5189-7159,  
Giulia Brizzi https://orcid.org/0009-0000-7472-742X,   

and Giuseppe Riva https://orcid.org/0000-0003-3657-106X 

Abstract. Affective computing is a rapidly growing field that aims to understand 

human emotions through Artificial Intelligence. One of the most promising ways to 
achieve this goal is the use of physiological data (e.g. electrocardiogram - ECG) and 

Machine Learning (ML) algorithms to classify affective states. ECG correlates, such 

as Heart Rate Variability (HRV) and its features, are reported as viable indicators in 
both dimensional approaches, especially for valence, and in detecting discrete 

emotions. In this preliminary study, we used the ECG data from the open-source 

HCI Tagging Database, which includes physiological data and self-referred 
feedback from 30 subjects who watched videos designed to elicit different emotions. 

The subjects evaluated their reactions using a three-dimensional affective space 

defined by arousal, valence, and dominance levels and reported the emotions they 
felt. To classify the affective states, we trained and tested different classification 

algorithms on the HRV features, using as labels, each self-reported feedback (i.e., 

valence, arousal, dominance, and emotions). The results showed that HRV features, 
when combined with normalization methods and ML algorithms, were effective in 

recognizing emotions as experienced by individuals. In particular, the study showed 

that Decision Tree was the best-performing algorithm for predicting emotions based 
on HRV data. Additionally, an Explainable AI (XAI) model provided insights into 

the weight of these features in the ML discrimination phases. Overall, the study 

highlights the potential of HRV as a valid and unobtrusive source for detecting 
emotional states. 
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1. Introduction 

Affective Computing is an approach defined by Picard [1] that links computing and 

human emotions; one of its branches aims at the detection of emotional states by 

interpreting with Machine Learning (ML) physiological signals. Affective Computer 

models typically follow a standard workflow [2–4], in which the subjects are presented 

with different emotional stimuli, while their EEG or peripheral signals are recorded. 

These data are used to populate a database, with each condition paired with a label, 

extrapolated from the personal evaluation provided by the subject. Data are preprocessed, 

and features, typical of the used signal, are computed. In some cases, normalization and 

further feature selections or aggregations are performed. A classification ML model is 

afterward trained to predict the corresponding label from the physiological data. 

The labeling of the emotional state is defined in accordance with the selected 

emotion model, based on discrete emotions or continuous dimensions [3]. The first, 

initially proposed by Ekman [5] assumes that emotions are distinct, measurable, and 

universal. The idea of a continuous spectrum of emotions arises instead from Russell and 

his Circumplex Model of Affect [6], in which emotions are distributed in a cartesian 

space created around two perpendicular axes of pleasantness and activation. This idea 

would then be repurposed on a 3-axis space, Valence (from positive to negative), Arousal 

(from calm to excited), and Dominance (from submissive/controlled to Dominant) [7,8]. 

A viable solution for assessing these dimensions is the Self-Assessment Manikins (SAM), 

three graphical 9 or 5-point scales representing the affective experiences [8]. After data 

are correctly labeled in accordance with subjective perception, a classifier is trained to 

predict the emotional label from the physiological data: many algorithms are tested, and 

their performances compared. Literature reports a wide use of Support Vector Machine 

(SVM), K-nearest neighbors (KNN), Random Tree (RT), Decision Tree (DT), and more 

complex frameworks, like Deep Learning [3]. 

When a Database for Affective Computing is created, multiple sources of data are 

usually collected [3,9–11]: the most frequent signals are Electroencephalogram (EEG), 

Electrocardiogram (ECG), Electrodermal activity (EDA), Respiration patterns, 

Electromyography (EMG) of emotion-linked facial muscles, Skin Temperature, and Eye 

Gaze movements. In this work, we focus on ECG and, in particular, on Hearth Rate 

Variability (HRV) feature: these signals are found as a valid source for emotional [12,13] 

or arousal and valence levels discrimination [13,14]. ECG sensors are nowadays quite 

common (e.g., in smartwatches) and are particularly unobtrusive to the user [15]. 

Heart Rate Variability (HRV) measures the variability of the time intervals between 

heartbeats, which is related to changes in neuro-cardiac functions and is influenced by 

the autonomic nervous system [16]. Increases in HRV are associated with activation of 

the Parasympathetic Nervous System (SNP), while a decrease in HRV is linked to 

increased sympathetic activation. Furthermore, the different HRV frequency components 

can be linked to the individual's activation [17]. 

The aim of this preliminary study is the detection of patterns in HRV data that 

permits to predict the level of Valence, Arousal, and Dominance and the different 

underlying emotions.  We also hypothesize that HRV features, when combined with 

different normalization methods and ML algorithms, would be more effective in 

comparison with other peripheral signals at recognizing emotions as experienced by the 

individuals. The use of an Explainable AI (XAI) model would provide additional insights 

into the weight of these features in the discrimination of emotional states. Additionally, 



the study aims to identify the best-performing ML algorithm and normalization method 

for each classification task, as well as providing performance results. 

2. Methods 

MAHNOB-HCI database [9], licensable in Open mode [18], was used in this study. 

MAHNOB-HCI collects multimodal responses (EEG, ECG, EDA, Respiration pattern, 

and Skin Temperature) of 27 subjects to 20 emotionally connected videos. Participants 

were asked to evaluate them by kind of Emotion, Valence, Arousal, Dominance, and 

Predictability levels. 

A dataset was created with the ECG data paired with subject-given values (Arousal, 

Valence, and Dominance evaluated on a 9-point Likert Scale, and which emotion was 

stirred in them). Each row of the dataset refers to a specific emotion (both on discrete 

and continuous dimensions) perceived by a subject, paired with the ECG data of the 

baseline and of the emotion-stimulation task. Before extracting ECG information from 

the HR time series, outliers, and ectopic beats were removed from the signal and linear 

interpolation was computed to replace outlier values. Time and frequency HRV features 

were extracted from the corrected ECG time series.  

Three different normalization conditions were tested: no normalization, 

normalization before baseline subtraction, and normalization after baseline subtraction. 

The data normalization was performed by ranging the data from 0 to 1. For each of the 

three normalization conditions, five supervised learning algorithms were applied for 

classification, with a 67/33 train-test proportion: Decision Tree, Random Forest, 

KNeighbors, Support Vector Machine [19], and XGBoost [20]. The following HRV 

features were used as input features: Min HR, NNI 50, RMMSSD, SDNN, HF, LF, 

LF/HF ratio,  Total Power',  Max HR, Mean HR, and Median NNI. The algorithms were 

trained to predict three different levels of valence, arousal, and dominance, (1-3 low, 4-

6 medium, 7-9 high in the 3-step layout, as in [9,21]). Additionally, the algorithms were 

trained to predict which emotion (Neutral, Anger, Disgust, Fear, Joy, Happiness, Sadness, 

Surprise, Amusement, Anxiety) was being experienced. Each model also underwent a 

further Features Selection through a Recursive Feature Elimination with Cross-

Validation (RFECV) to select which and how many features should increase the 

functionality of the model and the dummy value, through a Dummy Classifier,  as a 

benchmark against randomness [19]. 

To understand the contribution of each feature to the classification tasks, a SHapley 

Additive exPlanations (SHAP) analysis was performed, both globally and locally, using 

the SHAP library [22]. SHAP values represent the contribution of each feature to the 

output of a model, and they help in understanding the decision-making process of the 

model. This approach is obtained through a model-agnostic explanator, i.e. functions on 

different kinds of models, without needing to be specifically set [23]. 

3. Results 

In Table 1 are reported the results of the best-performing algorithms for each 

classification: Arousal, Valence, Dominance, and Emotions. Random Forest and K-

Nearest Neighbors perform best for Arousal levels and Emotion discriminations, on not-

normalized data and without features-selection, while Decision Tree obtains the best 



results for Valence levels, on non-normalized data, and on Dominance levels, on data 

normalized after the subtraction of the baselines, both after an RFECV Features Selection 

 

Table 1. Performance results are divided into target experiences or emotions. The best performance is reported 

and, in brackets, the Dummy Classifier results. The best-performing algorithm is reported alongside the kind 
of normalization (NN = no normalization, BN = normalization applied before subtracting the baseline, AN= 

normalization applied after having subtracted the baseline) and feature selection (YF= yes, NF= no) on which 

the results were obtained. 

Target Best Performance Best performing Algorithm 

Arousal (3 levels) 51% (28%) Random Forest and K-nearest 
neighbors (NN, NF) 

Valence (3 levels) 51% (32%) Decision Tree (NN, YF) 

Dominance (3 
levels) 

46% (26%) Decision Tree (AN, YF) 

Emotion (9 

classes) 

27% (12%) Random Forest and K-nearest 

neighbors (NN, NF) 

 

In Table 2 more detailed results of the best performing algorithm for the recognition 

of distinct emotions are reported: the states Neutral, Joy/Happiness, Sadness, and 

Amusement are detected with more than 20% accuracy, Disgust, and Anxiety show a 

worse performance, while Anger, Fear, and Surprise are never detected. These results 

are usually influenced by the number of Supports (or examples) of that category: the 

emotions less represented in the dataset also have weak performance. 

 

Table 2. Detailed performance results for the Emotion detection, obtained through Random Forest. Results are 

divided by emotion. Precision is the percentage of samples that are positive, based on predictions, Recall is the 

proportion of positive samples that the predictions successfully capture, F-score is equal to the harmonic mean 

of recall and precision, and Support is the number of samples in the specific class [24] 

Emotion Precision Recall F1-score Support 

Neutral 0.28 0.39 0.32 18 

Anger 0.00 0.00 0.0 3 

Disgust 0.14 0.11 0.1 9 
Fear 0.00 0.00 0.00 5 

Joy, Happiness 0.30 0.2 0.27 16 

Sadness 0.38 0.66 0.48 12 
Surprise 0.00 0.00 0.00 4 

Amusement 0.20 0.17 0.18 17 

Anxiety 0.16 0.20 0.18 5 
Accuracy 0.27 0.27 0.27 0.27 

Macro average 0.16 0.20 0.17 89 

Weighted average 0.22 0.27 0.24 89 

 

Explanations of the result have been reached with Shap. Figure 1 reports the global 

explanations (features importance) for Arousal, Valence, and Dominance levels and the 

different emotions. HR mean appears as an important feature for Arousal, Valence, and 

Emotions discrimination, LF/HF ratio for Dominance, and Emotions, total ECG power 

for Arousal and Dominance, LF for Arousal and Valence, while RMSSD seems to be 

particularly influent in the discrimination of different emotions. 



 

Figure 1. Global SHAP explanation for the result of the best performer algorithm for Arousal, Valence, 

Dominance, and Emotions. The features are classified for influence to reach the prediction. 

 

For local explanations, a specific example is instead selected, and the weight of the 

feature is calculated, differentiating for positive or negative influences. Some local 

explanations for correctly detected emotions are reported in Figure 2, offering some 

insight into the weight of the features. 

 

Figure 2. Local SHAP explanation for same selected Sessions of correctly detected emotions. The features 

are classified for influence to reach the prediction, both in positive and in negative directions. 



4. Discussion and conclusions 

The main finding of this preliminary study is that Valence, Arousal, and Dominance 

levels are characterized by different HR responses. Conversely, only a few emotions 

seem to affect the HR responses, but this result is deemed due to the low sample size in 

each emotion. Future research with a larger dataset should be performed to better 

understand the role of HR in emotion detection.  

The results obtained in this study are in line with results reported on the same 

database. Compared to the results in Soleymani et al., the use of only HRV features 

reaches better results than including all the peripheral physiology (the reported 

performance is 46% for Arousal, and 45.5% for Valence) [9]. Ferdinando et al. 

considered also the ECG signals alone: they raised the performance from 42.6% to 64.1% 

for Valence and 47.7% to 69.6% for Arousal by applying multiple kinds of 

Dimensionality Reductions [21]: these techniques, however, render the interpretability 

of the model more complex, as they modify the input data and make them less 

recognizable. ECG seems a good signal for detecting Arousal, Valence, and Dominance, 

especially considering the ease of use and the scarce invasiveness to the subject. 

With regard to emotion detection, the performance appears low but higher than the 

baseline (+15%accuracy): this can partially be explained by the number of examples for 

each emotion that reduces the training process accuracy. In fact, emotions with the 

highest sample size can be accurately distinguished and recognized (Table 2). If literature, 

with different databases, sometimes reports really high results, it needs to be noted how 

often the discrimination is performed just between two classes, without including results 

from a dummy classifier that indicates the validity of the prediction [3,4]. 

The local explanation provided in Figure 2 allows us to evaluate the decision-making 

process of the ML algorithm to assign an emotion to an example. For example, the low 

normalized difference between baseline and emotion state in each HRV feature indicates 

a Neutral emotion. This result indicates that the Neutral emotion does not affect the HRV 

responses. Differently, the probability to perceive Joy increases as LF-HF ratio, minimal 

HR, total power, HF, and LF differences increase, while it decreases as the other HRV 

feature differences increase. Similar results were detected for the other emotions (i.e., 

Sadness and Amusement) indicating these emotions activate both sympathetic and 

parasympathetic nervous systems.  

In conclusion, the study evaluates the feasibility of using different activation of 

sympathetic and parasympathetic nervous systems detected by HRV analysis to 

accurately detect valence, arousal, and dominance levels, showing promising results. 

Furthermore, even if the accuracy of detecting emotion is low, the results of this work 

are encouraging, and suggest that with adequate sample size, it will be possible to create 

an ML model which accurately detects emotions. These preliminary findings are a first 

step that could lead to the creation of more complex applications aimed at detecting a 

variety of mental and emotional states. [25,26].  
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