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Abstract

Detecting anomalies in the vibrational features of age-old buildings is cru-
cial within the Structural Health Monitoring (SHM) framework. The SHM
techniques can leverage information from onsite measurements and environ-
mental sources to identify the dynamic properties (such as the frequencies) of
the monitored structure, searching for possible deviations or unusual behavior
over time. In this paper, the Temporal Fusion Transformer (TFT) network, a
deep learning algorithm initially designed for multi-horizon time series forecast-
ing and tested on electricity, traffic, retail, and volatility problems, is applied to
SHM. The TFT approach is adopted to investigate the behavior of the Guinigi
Tower located in Lucca (Italy) and subjected to a long-term dynamic mon-
itoring campaign. The TFT network is trained on the tower’s experimental
frequencies enriched with other environmental parameters. The transformer
is then employed to predict the vibrational features (natural frequencies, root
mean squares values of the velocity time series) and detect possible anomalies
or unexpected events by inspecting how much the actual frequencies deviate
from the predicted ones. The TFT technique is used to detect the effects of
the Viareggio earthquake that occurred on 6 February 2022, and the structural
damage induced by three simulated damage scenarios.
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1 Introduction

Maintaining heritage structures requires paying attention to possible damages caused
by natural calamities, environmental degradation, seismic events, aging, and atmo-
spheric changes. Such damages must be promptly detected to plan timely restoration
and strengthening operations. These activities are the final aim of Structural Health
Monitoring (SHM), an integrated approach to controlling and maintaining historical
buildings via long-term, continuous, dynamic monitoring. The environmental exci-
tations of natural and anthropic origin (e.g., earthquakes, wind, traffic, machinery,
moving crowds) acting on civil and historic constructions induce vibrations that can
be measured, recorded, stored, and analyzed to get information on their structural
behavior. Using ambient vibrations to characterize the dynamic properties of con-
structions dates back to the 1970s [1] and spread out in the last decades, thanks
to the availability of high-sensitivity instruments that measure very low levels of
accelerations and velocities. Monitoring ambient vibrations suits heritage buildings
since it is not invasive and allows measurements without artificial excitations. Data
recorded by the velocimeters and accelerometers installed on the building in oper-
ating conditions are processed using suitable numerical procedures to determine its
dynamic properties, such as frequencies, damping ratios and mode shapes. This ap-
proach is known as Operational Modal Analysis (OMA) [2]. Tracking the variation
of frequencies over time, assessing environmental effects, and analyzing changes and
anomalies in the dynamic behavior of a building are essential aspects of SHM. Apply-
ing SHM to a building can provide helpful information on the vibration sources, the
variation of dynamic properties, and the structural “safety” state of the structure,
making damage detection possible; in fact, changes in the dynamical properties over
time can represent structural damage indicators [3], [4], [5].

Literature on anomaly detection techniques is relatively recent and encompasses
model-based approaches exploiting Finite Element (FE) models of the monitored
structure and data-driven approaches, using data collected during the monitoring
campaigns. Model-based approaches use experimental frequencies and mode shapes
of a structure before and after the damage to predict damage location and quan-
tification in its FE counterpart within the framework of inverse problems. Relevant
applications are described in [6], [7] and [8]. Data-driven methods relying on re-
gression and output-only techniques, like the principal component analysis of the
frequencies time-histories, are adopted in [9], [5], [10].

The availability of large datasets recorded during long-term monitoring cam-
paigns makes it possible to investigate the rise of anomalies by comparing the fre-
quencies of the recent time intervals with the ones of the past. In particular, the
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frequencies of future days can be considered as variables of interest to be predicted at
multiple future time steps by accessing the already-known series of data in the past.
From this data-driven perspective, the collected data could be the training dataset
of artificial intelligence algorithms to extract features and predict the frequencies
at future time instants. This approach enters the perimeter of machine learning
(see, e.g., [11, 12, 13, 14, 15, 16, 17, 18]) and, more recently, of Deep Learning (DL)
techniques for time series forecasting (see, e.g., [19, 20]) and anomaly detection (see
e.g. [21, 22, 23, 24]), encountering several different architectures, such as convo-
lutional neural networks, capsule neural networks, recurrent neural networks, and,
more recently, transformer networks (see the review [25]).

The recorded time series coming from sensors on the buildings more naturally
fit the paradigm of multi-horizon time series forecasting, where a heterogeneous mix
of input data is considered, with no prior information about the relationship be-
tween them and the target variables (e.g., the frequencies) to predict. In order to
learn such a correlation, deep state-space models for time series forecasting (see, e.g.,
[26, 27, 28]) were joined by Recurrent Neural Networks (RNNs)[29, 30, 31, 32, 33, 34,
35, 36, 37], including auto-regressive models and attention-based methods [38, 39].
In particular, RNNs extract patterns from temporal sequences and cope with the
temporal dependencies between temporally distant inputs, thanks to the short-term
memory cabled into their recurrent connections. Such networks are expected to
model a larger class of processes versus feed-forward neural networks and seem to
filter noise more effectively (see, e.g., [40]). We recall that recent DL methods are
generally based on two different categories: iterative schemes (see, e.g., [39, 27, 36])
and direct methods (see, e.g., [38, 37]). The first class of methods uses one-step-ahead
prediction models and multi-step predictions by recursively feeding predictions into
future points but needs to assume that all the exogenous inputs are known into the
future, while time series forecasting usually deals with a certain number of inputs
changing with time. Direct strategies, in turn, are founded on multiple predefined
horizons at each time step, relying on sequence-to-sequence models. However, both
approaches depend on many nonlinear activations that make it difficult to under-
stand how the target prediction is effectively learned from the input, at the risk of
hindering debug operations. In this respect, the transformer architecture introduced
in [41], through the attention mechanisms, is able to select relevant partitions of in-
puts and the pairwise relationships between input tokens that are mostly required to
solve the downstream task, yielding more interpretable models. Initially, the trans-
former showed impressive results on natural language tasks, thanks to their ability
to capture long-range dependencies and therefore to handle large contexts, unlike
RNNs. However, in time-series processing literature, many important results are still
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obtained by employing RNNs, which are less data-hungry and capable of handling
short time series better. For example, [42] proposes modifying the RNN architecture
where the hidden layer is partitioned into separate modules, each processing inputs
at its temporal granularity, making computations only at its prescribed clock rate.
In addition, [43] presents a novel RNN model processing inputs sampled at asyn-
chronous times. To improve interpretability, also post-hoc explanation/inherently
interpretable methods (like [44, 45, 46, 47, 48]) have been exploited, yet not able to
capture the time ordering of the inputs.

DL approaches have been used in several fields, including road/internet traffic,
retail and health forecasting, but their application in the SHM of heritage structures
for anomaly detection is still relatively recent and limited ([49, 50, 51, 52, 53, 54, 55]).
For instance, in [53], data coming from a finite element analysis is used to train a DL
Convolutional Neural Network (CNN) classifier, while combining CNN with Long
Short Term Memory (LSTM) networks could help to learn long-term dependencies
([49]). Also, the paper [54] relies on CNNs for the estimation of the nodal loads of
a bridge structure and the spotting of damage information. Outliers detection via
DL-enhanced principal component analysis is performed in [50], moving towards the
online damage localization of [52], where simulation-based classification strategies
relying on model order reduction and fully convolutional networks are exploited.
However, almost all these papers focus on the safety and maintenance of bridges and
modern and slender towers (such as the television tower in [51]), with no reference to
transformer networks applied to the SHM of age-old masonry towers, widely spread
in the Italian architectural heritage.

For these reasons, in this work, we will employ a state-of-the-art transformer
model – the Temporal Fusion Transformer (TFT) an attention-based deep neural
network architecture for multi-horizon forecasting introduced in [56] – to understand
structure dynamics and perform effective anomaly detection. First, the network
could contrast the already mentioned black-box characteristic of RNNs thanks to
specific components that facilitate interpretability. In addition, it is coupled with a
series of gating mechanisms to minimize the contribution of the less relevant inputs.
Furthermore, the TFT implements a sequence-to-sequence layer to process locally
known and observed inputs and a temporal self-attention decoder for the long-term
learning of dependencies within the dataset. Thanks to such a structure, TFT has
been shown to help identify globally relevant variables for the prediction problem,
persistent temporal patterns, and significant events.

TFT has been experimented on electricity, traffic, retail, and volatility problems,
and the only application to SHM is described in [57], where TFT has been preliminary
used to detect anomalies in the large dataset recorded during a long-term monitoring
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campaign conducted on the San Frediano bell tower in Lucca (Italy).
This paper more deeply inspects the application of TFT to SHM, considering the

Guinigi Tower located in Lucca, which is often the target of long-term monitoring
campaigns. The TFT network is trained on the hourly natural frequencies calcu-
lated by processing the velocities recorded by high-sensitivity sensors installed on
the tower, enriched with other environmental parameters measured in nearby sites.

The frequencies are computed by a Python procedure that uses the Stochastic
Subspace Identification (SSI) method [58] implemented in different open-source and
commercial software (e.g. [59, 60]), equipped with a fully-automatic strategy based
on an unsupervised hierarchical clustering scheme [61], whose aim is to get rid of
actions by the user as in the frameworks of [62] and, more recently, [63, 64].

The transformer is then employed to predict the vibrational features of the
Guinigi Tower (natural frequencies, root mean squares values as a measure of the
“energy” of the tower’s response) and detect possible anomalies or unexpected events
by inspecting how much the actual response deviates from the predicted one. The
case study presented in the paper is deeply investigated. The TFT technique is used
to detect the effects of the Viareggio earthquake that occurred on 6 February 2022
and the structural damage induced by three simulated damage scenarios. In addi-
tion, the paper investigates the predictive potential of TFT as an alternative tool to
compute the natural frequencies, besides the traditional approaches [2, 58].

The paper is organized as follows. The automatic DL strategy for SHM and
anomaly detection using TFT is described in Section 2. The results of the dynamic
monitoring campaign on the Guinigi Tower are reported in Section 3, where the
dynamic behavior of the tower is recalled along with a description of the dataset
to be used by the TFT network. Numerical tests concerning anomaly detection
and the use of the TFT network for predicting the frequencies of the tower under
standard conditions are considered in Section 4, also including a comparison with the
predictions by an Auto-Regression with eXogenous inputs (ARX) model. Finally,
some concluding remarks are sketched in Section 5.

2 An automatic deep learning strategy for SHM

This section describes a new approach to perform SHM and anomaly detection via
DL techniques; this approach fits within the unsupervised learning framework. From
a macroscopic viewpoint, the idea is to learn the normal dynamics of a structure (like
its natural frequencies under standard conditions) directly from the past time series
of velocity/acceleration and environmental data, and infer the future dynamics at
required time instants.
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To this aim, we train the TFT network in [56] on a portion of the available
dataset, splitting the remaining data into testing and validation sets. As usual,
the validation set is considered to tune the hyperparameters of the network, while
the test set serves for previsions and performance evaluations. The more significant
deviations from the learned structure’s dynamics are considered anomalies.

Such a strategy relies on two steps that will be deepened in the following sub-
sections: the suitable assembling of a representing dataset, essential for an effective
learning phase, and the proper use of the TFT network for anomaly detection.

2.1 Assembling a representative reference dataset

Generating an appropriate dataset is a challenging starting point in itself, which
can have a crucial influence on the success of the subsequent learning phase of the
TFT model. This dataset D is a matrix of m × n real values, m representing the
total number of samples and n the total number of variables. In the h-th row
(h ∈ {1, ...,m}) of the dataset, the first two columns list the reference date and the
hour slot in the monitoring period, the last n1 entries are filled with the values of
environmental parameters measured from weather stations and other relevant data
(e.g. markers for working and festival days, etc.), while the remaining n2 = n−n1−2
columns report the values of the natural frequencies for such date and hour slot.
The natural frequencies are calculated from the velocities time series recorded by
the sensors installed on the structure, using the numerical method described below.
In the case study presented in Section 3, along with the frequencies, the dataset
contains the values of the root mean squares of the velocities at each hour slot of
each monitored day.

The dynamic identification of the structure in operating conditions is conducted
within the framework of Operational Modal Analysis (OMA) [2], exploiting the struc-
ture’s vibrations induced by environmental excitations (like wind, pedestrians, and
traffic).

Among the broad domains of non-parametric (frequency-domain) and parametric
(time-domain) identification methods, we align with the SSI framework [65] of the
time-domain strategies, motivated by their more effective impact on civil engineer-
ing applications [66]. In particular, the reference-based covariance-driven stochastic
realization scheme in [58] is employed, whose discrete-time stochastic state-space
formulation is briefly recalled below.

Given the r × r state matrix A, the s × r influence matrix C (r, s ∈ N), the
state vector at the k-th time xk ∈ Rr and the vector of observations yk ∈ Rs, the

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4679906

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



stochastic state-space model (of order r) is defined as:

xk+1 = Axk +wk,

yk = Cxk + vk,
(1)

where wk ∈ Rr is the processes noise due to disturbance/modeling inaccuracies and
vk ∈ Rs is the measurement noise caused by sensor inaccuracy; wk and vk are
unmeasurable and modeled as zero mean, stationary, white noise random processes.
The state matrix A describes the dynamics of the system, whose modal properties
are characterized by the eigenvalues of A. [58].

In order to perform a frequencies’ estimation at a given time slot (lasting 1 hour),
the method takes as input a matrix of nc × nt components, encoding the nc time
series of length nt recorded by each of the nc channels of the sensors installed on
the structure (each sensor can handle one or more channels), measuring with a given
sampling frequency. To avoid the hourly generation of incomplete input matrices
caused by channels that skip data at some instants, isolated missing data in each time
series are restored through linear interpolation, neglecting the registered time series
affected by massive missing data. Pre-processing operations, like signal detrending
and filtering, are then carried out.

Commercial programs devoted to dynamic identification via SSI require users to
manually select the more significant frequencies in the stabilization diagram. Such a
feature hinders the use of these codes when the identification task has to be integrated
into cloud-based or wireless sensor network platforms for the massive acquisition of
data time series (an example of these platforms is described in [67]). For this reason,
we have realized a Python implementation of the covariance-driven method in [58],
embedded into a suitable clustering strategy to automatically select the significant
frequency values of each hour slot [61].

In practice, each of the hourly pre-processed nc × nt matrix is the input of the
Python solver, together with the sampling frequency of the sensors and suitable op-
tions for the stabilization diagram, consisting of the maximum and minimum order
method, the relative accuracy on the frequency, the damping and MAC values to ver-
ify the stability of the poles and the maximum tolerance on the damping ratio for the
corresponding stable pole to be considered. The solver then displays the stabilization
diagram to outline the stable poles (in frequency, damping and mode shapes), storing
the list of stable poles with related damping ratios and mode shape vectors. Once
this phase is completed, the automatic selection of the hourly most representative
poles is carried out by adopting the agglomerative hierarchical clustering strategy
([68, 69]) proposed in [61, section 3], which does not require manual selections by the
user. The algorithm first computes the pairwise Euclidean distances between pairs
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of poles of the list. The resulting matrix is used to perform a linkage, returning a
new matrix encoding a dendrogram (bottom-up tree) that contains the hierarchical
clusters of the list of poles. The shortest distance criterion has been adopted for
computing the clusters distances within the linking procedure. Then, each of the
poles in the list is assigned to the corresponding cluster based on a cutoff thresh-
old for the heights and the inconsistency coefficients of nodes in the agglomerative
hierarchical cluster tree of the linkage phase. The subsequent computation of the
centroids of each cluster enables detaching the resulting closest stable frequencies,
which are finally included in the j-th sample of the dataset to be given as input for
the TFT model, whose main features are recalled in the following subsection.

2.2 The TFT network for SHM

We here start by recalling the main features of the TFT network in [56]. Given a
reference input dataset D with collected data from time t = 0 up to time t = T , let
i ∈ I be the indexes of the output variables. For each time t and each output index i,
we have a target value yi,t (e.g., the i-th experimental frequency) to be predicted at
future time instants. For i ∈ I and t ∈ [0, T ], χt = (z⊤t ,x

⊤
t )

⊤ represents the vector of
time-dependent inputs, split into the inputs zt ∈ Rmz measured at each t ∈ [0, T ] by
the sensors (the observed inputs) and the inputs xt ∈ Rmx that are known without
measurements (such as the date at a prescribed time t).

The inputs of the TFT architecture are the classes mentioned above of observed
and known time-varying inputs, leveraging several architectural components to per-
form forecasting efficiently. In this respect, the depth of the network can be adap-
tively adjusted, making superfluous parts of the architecture inactive on the basis
of the dataset and the inputs at hand. Especially with noisy/small datasets, there
could be scenarios in which simpler models are beneficial. Except from such gating
mechanisms, TFT also deals with selecting of the most relevant input variables at
each time step, attempting to reduce the impact of noisy or unnecessary inputs. A
temporal fusion decoder is then employed to learn short and long-term temporal re-
lationships from the observed and known inputs, resulting in a sequence-to-sequence
(recurrent) layer for local processing and a multi-head attention block to capture
long-term dependencies.

TFT can simultaneously predict various percentiles (e.g., the 1-st, 50-th and
99-th) of the targets at each future time step of interest, from here the name of
multi-horizon forecasting, which can be denoted by

ŷi(q, t, τ) = fq(τ, yi,t−k:t, zt−k:t,xt−k:t+τ ;ω), (2)
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Trained Model
(ω)

Observed inputs z t-k:t

Known inputs x t-k:t+τ

yi,t-1

t

yi,t-2
yi,t-k

yi (q,t,1)  

yi(q,t,τ)

Past Targets

t+1 t+τ

Forecast

Figure 1: Illustrative diagram of multi-horizon forecasting using past observed and
known inputs.

where ŷi(q, t, τ) is the predicted quantile q ∈ Q = {0.01, 0.5, 0.99} of the i-th target
(i ∈ I) referring to the τ -step ahead the starting time t, for τ ∈ {1, ..., τmax} (t, t+τ ∈
[0, T ]) and fq(·;ω) is the model induced by the TFT architecture, depending on the
parameters ω. The model fq takes as input the past information from the starting
time t up to k time steps before, given by yi,t−k:t = {yi,t−k, yi,t−k+1, ..., yi,t} (known
past target values), zt−k:t = {zt−k, zt−k+1, ..., zt} (observed inputs) and xt−k:t+τ =
{xt−k,xt−k+1, ...,xt+τ} (known inputs). A synthetic scheme of the multi-horizon
forecasting is shown in Fig. 1, inspired by [56].

As one may easily notice, the evaluation of fq on each set of the prescribed input
variables (τ, yi,t−k:t, zt−k:t,xt−k:t+τ ) depends on the parameters vector ω, that can be
obtained as the minimizer of the following Quantile Loss:

L(ω) =
∑
yi,t∈Ω

∑
q∈Q

τmax∑
τ=1

QL(yi,t, ŷi(q, t− τ, τ), q)

Mτmax

, (3)
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with

QL(yi,t, ŷi(q, t− τ, τ), q)

= qmax{0, yi,t − ŷi(q, t− τ, τ)}+ (1− q)max{0, ŷi(q, t− τ, τ)− yi,t},
(4)

where Ω is the domain of the training data containing M samples and the prediction
ŷi is defined by (2). As stated by the authors of [56], the benefits of a quantile regres-
sion are usually shown when targets are not well captured by Gaussian distributions.

We refer to the original work [56] for more details on TFTs and related issues.

2.2.1 Anomaly Detection

Once the TFT has been trained on a set of non-anomalous data, we indeed expect it
to get the prediction ŷi(0.5, t, τ) of each of the desired targets yi,t+τ , τ ∈ {1, ..., τmax},
in the test set, together with its 1-st and 99-th percentiles, namely ŷi(0.01, t, τ) and
ŷi(0.99, t, τ). An anomaly occurs at time t+ τ if the observed value yi,t+τ lies outside
the confidence interval [ŷi(0.01, t, τ), ŷi(0.99, t, τ)] predicted by the network.

For computing the anomaly scores ai,t for target i and timestep t, we forecast a
single future sample (τ = 1), and check how much this prediction is far from the
observed value yi,t+1. Let us define the following quantities:

oi,t = max(0,max(yi,t+1 − ŷi(0.99, t, 1), ŷi(0.01, t, 1)− yi,t+1)), (5)

wi,t = ŷi(0.99, t, 1)− ŷi(0.01, t, 1), (6)

where oi,t quantifies how much the observed value falls outside the confidence in-
terval predicted by the network and wi,t is the width of the confidence interval at
each timestep. Notice that oi,t = 0, when ŷi(0.01, t, 1) ≤ yi,t+1 ≤ ŷi(0.99, t, 1), and
increases linearly outside that boundaries. At this point, the anomaly scores are
scaled on wi,t and normalized as follows:

ai,t = min

(
1,

ni,t −mint ni,t

1−mint ni,t

)
where ni,t =

oi,t
wi,t

. (7)

Through this formula we are setting the anomaly score to 1 when the observed
value overshoots the estimated window size by 100%. If we overshoot by over 100%,
we clamp the output to 1.

Finally, we compute the final anomaly score for each timestep t by taking the
maximum over all the frequencies, st = maxi ai,t. This score can be used with an
appropriate color map to visualize the magnitude of the anomaly lines, as in the
anomaly plots shown in Section 4.
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3 Case study: The Guinigi Tower

The Guinigi Tower, shown in Fig. 2, is a medieval tower sited in the historical center
of Lucca, adjacent to the homonymous palace (Fig. 3), which incorporates the first
23 m out of the about 44 m of total height. The main feature of the tower, regularly
open to the public, is the hanging garden on the top terrace, which makes the Guinigi
Tower one of the most famous and visited monuments in Lucca. The rectangular
underground basement, covering an area of 6.5 × 7.9 m2, is not accessible to tourists,
who start their visit from the ground level and follow the stairs crossing the Guinigi
Palace to the level of 23 m. At this level, a metallic staircase (Fig. 2) allows one
to enter the tower’s structure and reach the roof terrace. The masonry walls have a
constant thickness of about 1 m along the height.

In 2021, ISTI-CNR undertook an experimental campaign on the tower in collab-
oration with the Istituto Nazione di Geofisica e Vulcanologia (INGV). The structure
has been continuously monitored by high-sensitivity seismic stations recording the
structure’s response to the environmental excitations of natural and anthropic origin,
like earthquakes, wind, traffic, machinery, tourists, and moving crowds.

A dynamic monitoring system was installed on the tower, made up of three tri–
axial SARA velocimeters with eigenfrequency 4.5 Hz and a triaxial velocimeter with
eigenfrequency 2 Hz, each associated with a 24-bit digitizer (Fig. 2). In particular,
two stations were placed right below the terrace at 40 m (Fig. 3), one at 18 m height
and one at the underground level [70]. Two thermo-hygrometers with a sampling time
of 60 s completed the monitoring system. The seismic stations have been acquiring
data from August 2021 to July 2022, with a sampling frequency of 100 Hz.

3.1 Dynamic behavior of the tower

A detailed analysis of the results of the dynamic monitoring is presented in [70] and
[71], where the dependence of frequencies on temperature and humidity, as well as
the effect of the visitors and some seismic events on the tower’s dynamic behavior,
were investigated. In the following, we limit ourselves to recall the main results of
such analysis.

Table 1 reports information about the first six natural frequencies of the Guinigi
Tower calculated via the automated SSI-cov procedure described in [61], applied to
the entire monitoring period after dividing the dataset of the velocities recorded by
the two velocimeters placed at a height of 40 m (Fig. 3) into 1-hour long sequences.
The time history of each frequency measured from August 2021 to July 2022 is
analyzed to calculate the minimum value Min, the 1st percentile Min1, average Avg,

11

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4679906

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Figure 2: External and internal views of the Guinigi Tower.
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Figure 3: The Guinigi Palace and its tower: view from the S. Andrea street (courtesy
of the Municipality of Lucca) and layout of the seismic stations installed at +40 m.
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Figure 4: The tower’s first (blue) and second (red) natural frequency measured from
August 2021 to April 2022.

99th percentile Max99, maximum value Max and relative difference ∆ = (Max99 −
Min1)/Min1. The relative differences ∆ of the first two frequencies and the sixth
frequency are at most in the order of 7.72 % and these variations are in agreement
with the results presented in [72] and [10]. For the remaining three frequencies, ∆
reaches peaks up to 14.47 %. Regarding the frequencies’ daily trend, the maximum
daily variations are in the order of 3 - 4 %.

Several long–term vibration monitoring campaigns on ancient masonry towers
([4], [9], [5], [10]) have pointed out that the frequencies tend to increase with tem-
perature. The Guinigi Tower does not exhibit such a trend. Fig. 4, reporting the
plots of the tower’s first two frequencies measured from August 2021 to April 2022,
shows a very low correlation between temperature and frequencies, which, in turn,
are relatively sparse. Without a specific explanation of this experimental result, it
is worth noting that this scarce correlation also characterizes the Asinelli Tower in
Bologna, which, like the Guinigi Tower, is open to the public and visited annually
by many people [73].

The average velocities measured on the tower, located in a limited traffic area, are
very low and are mainly influenced by the wind and visitors. Regarding the velocity
peaks, Fig. 5 reports the maximum absolute values per hour of the velocities recorded
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Figure 5: Maximum absolute values per hour of the velocities recorded by the seismic
station set at +40 m in the x (red) and y (blue) directions from 5 November to 9
December 2021.

by a velocimeter set at 40 m in the x and y directions from 5 November to 9 December
2021. Velocity values greater than 2 mm/s occur in the windiest hours of the day –
highlighted in the dashed circles – when the wind velocity exceeds 30 km/h. Data
on the maximum wind speeds were recorded at Pieve di Compito, about 10 km from
the Lucca historic center*.

Between July 2021 and May 2022, the seismic stations recorded 17 earthquakes
of magnitude between 3.0 and 4.2 in a circular area centered on the Guinigi Tower
with a radius of 108 km. Among them, the Viareggio earthquake of 6 February 2022
with magnitude 3.7, located 20 km from Lucca, induced the maximum acceleration
on the top of the tower. Strong amplification of the signal along the tower’s height
was observed in the horizontal directions, along which the velocity at the top of the
tower was more than 3.5 times that recorded at the base.

Fig. 6 shows the spectrograms of the signals recorded by the velocimeters from
1 to 7 February 2022 in the x (upper) and y (lower) directions. Every day there is
an evident increase in the signal’s power spectral energy due to the people visiting
the tower (black rectangles). This phenomenon is connected with the relationship
between the velocities and the presence of visitors in the tower. People moving in

*Data are available at www.sir.toscana.it
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Figure 6: Spectrogram of the signal recorded at +40 m in the x (top) and y (bottom)
directions from 1 to 7 February 2022. The Viareggio earthquake that occurred on 6
February at 1:36 UTC is highlighted in the red boxes. The effects of visitors on the
tower’s dynamics are highlighted in the black boxes.
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Mode
Natural frequencies

Min [Hz] Min1 [Hz] Avg [Hz] Max99 [Hz] Max [Hz] ∆ [%]
1 (bending x) 1.12 1.183 1.210 1.255 1.275 6.05
2 (bending y) 1.276 1.293 1.345 1.393 1.823 7.72
3 (bending x) 2.195 2.570 2.679 2.942 3.125 14.47
4 (bending y) 2.860 3.107 3.375 3.518 3.825 13.23
5 (torsional) 3.656 3.889 4.108 4.358 4.653 12.05
6 (axial) 5.906 6.232 6.346 6.498 6.711 4.27

Table 1: The tower’s natural frequencies calculated via the SSI–cov algorithm
during the one-year monitoring period: minimum Min, 1st percentile Min1, av-
erage Avg , 99th percentile Max99, maximum Max, relative differences ∆ =
(Max99 −Min1)/Min1.

the tower (the tower’s entrance is scheduled from 9:30 a.m. to 7:30 p.m., weekends
included) produce an increase in the velocity, which rapidly vanishes at the end of
the visiting hours [71].

In addition, the occurrence of the Viareggio earthquake is visible in the spectro-
gram, which exhibits an energy peak of about -100 dB/Hz on 6 February at 1:36
UTC (red rectangles). It is worth noting that the energy increase due to the visiting
people is comparable to that induced by the Viareggio earthquake.

3.2 Description of the dataset for the TFT network

The reference dataset D of Subsection 2.1 is here given by a m × n matrix, with
m = 8384 samples and n = 19 variables. The construction of the h-th row of D
is described in Table 2. It is worth noticing that, at each row of the dataset, the
date, the hour slot, and the weekend days can be regarded as known inputs (x in
Subsection 2.2), the remaining entities are observed inputs z. The target values y
are the frequencies and/or the RMSs.

We recall that the six frequency values reported in each of the rows of dataset
D (see Table 2) are obtained by means of the SSI-cov Python solver described in
subsection 2.1. The values of the parameters used for the pre-processing operations
(just based on detrending), the tolerances considered to get the stabilization diagram
and the values of the parameters related to the clustering phase are summarized in
Table 3. In particular, the table reports the minimum minord and maximum maxord

order method needed for getting the stabilization diagram; the relative errors on
frequency ( δf ), damping (δd) and mode shape (δm); the upper bound κd on the
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Column index/indices h-th row of dataset D Description
1 date Reference date
2 hour slot Reference slot of hour

First six natural frequencies
[Hz] (f1 < f2 < ... < f6)

3–8 f1, f2, f3, f4, f5, f6 calculated via the automatic
SSI-cov Python solver
x, y and z-RMS (Root Mean
Squares) values of the time

9–11 x-RMS , y-RMS , z-RMS series of velocities registered
by one of the two triaxial sen-
sors of the terrace
Temperature [◦C] and humidi-

12–13 temp1, hum ty (%) values registered by the
thermo-hygrometers on the tower
Temperature [◦C] and rain [mm]

14–15 temp2, rain measurements from the Botanic
Garden of Lucca
Wind speed [m/s] and direction

16–17 windv, windd (degrees from the North, clockwi-
se positive direction) measured
in Pieve di Compito

18 tickets Number of sold tickets
19 we Boolean variable to mark

weekend days

Table 2: Entries of the h-th row of dataset D (h = 1, ..., 8384) with related descrip-
tions.
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Description Parameter Value
Minimum order method for
the stabilization diagram minord 2
Maximum order method for
the stabilization diagram maxord 80
Relative error on frequencies δf 10−2

Relative error on dampings δd 5 · 10−2

Relative error on mode shapes δm 2 · 10−2

Upper bound on the damping ratio
for a stable pole to be accounted κd 5 · 10−1

Cutoff distance value considered
in the automatic estimation
of the modal parameters cutoff 10−1

Minimum number of elements
of a cluster sizec 5

Table 3: Parameters adopted in the automatic SSI-cov Python solver.

damping ratio for a stable pole to be accounted; the cutoff distance value cutoff
considered within the automatic estimation of the modal parameters in which clusters
with less than sizec elements are neglected.

For the numerical tests, the splitting of the available data into the training,
validation, and test sets has been reported in Table 4. Data normalization was
performed using the standard Z-score normalization on the training set, i.e., the
mean and the variance were estimated over the entire training set and re-used at
inference time. Despite the need of retraining the network in case of consistent
changes in the tower dynamics, this normalization enables the network to overfit
the current dynamics, thus allowing a stronger response in case of severe structural
damage. In the following, we refer to this normalization as training normalization.
For comparison, in Subsection 4.1, we also report another criterion for normalization,
called encoder normalization, which instead computes mean and variance over the
moving time window traversed by the encoder during the inference.

The value of k = 96 has been employed in equation (2), i.e. a time window of 96
hours has been considered to individuate the past steps to be used for predictions
at time t + τ , τ ∈ {1, ..., τmax}. In particular, the value of τmax has been set to
1 for performing anomaly detection based on the predicted frequencies and/or the
predicted RMS values (Subsections 4.1 and 4.2), while τmax = 96 has been considered
in Subsection 4.3, i.e. for predicting the main frequencies of vibrations over long
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Training set Validation set Test set

Data of all the hour slots Data of all the hour slots Data of all the hour slots
in the following periods: in the following periods: in the following periods:

1 Aug. – 10 Sep. 2021 3 Nov. – 24 Nov. 2021 10 Oct. – 31 Oct. 2021
25 Nov. 2021 – 27 Jan. 2022 15 July – 31 July 2022 23 Jan. – 18 Feb. 2022

17 Feb. – 14 July 2022

Table 4: Splitting of the available data into the training, validation, and test sets.

time periods. Throughout the numerical experimentation, different TFT models
have been defined, depending on which of the n variables have been considered in
the training phase of the TFT model. The considered TFT models are listed below,
along with the vectors of the known (x), observed (z), and target (y) values.

� TFT: the TFT is trained on all the variables in Table 2 to predict frequency
and RMS values:

x = {date, hour slot , we}
z = {temp1, temp2, rain, hum,windv, windd, tickets,
f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}
y = {f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}

� TFTfreq: the TFT is trained considering only the environmental parameters
and the frequency variables to predict the frequency values:

x = {date, hour slot , we}
z = {temp1, temp2, rain, hum,windv, windd, tickets, f1, f2, f3, f4, f5, f6}
y = {f1, f2, f3, f4, f5, f6}

� TFTrms: the TFT is trained considering only the environmental parameters
and the RMS variables to predict the RMS values:

x = {date, hour slot , we}
z = {temp1, temp2, rain, hum,windv, windd, tickets, x-RMS , y-RMS , z-RMS}
y = {x-RMS , y-RMS , z-RMS}

� TFTno-env: the TFT is trained considering only the frequency and the RMS
values to predict frequency and RMS values:
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x = {date, hour slot , we}
z = {f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}
y = {f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}

� TFTno-tick: the TFT is trained neglecting the tickets information, to predict
frequencies and RMS values:

x = {date, hour slot , we}
z = {temp1, temp2, rain, hum,windv, windd,
f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}
y = {f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}

� TFTno-wind: the TFT is trained neglecting the wind information, to predict
frequencies and RMS values:

x = {date, hour slot , we}
z = {temp1, temp2, rain, hum, tickets,
f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}
y = {f1, f2, f3, f4, f5, f6, x-RMS , y-RMS , z-RMS}

4 Anomaly detection: the Viareggio earthquake

and simulated damage

This section investigates the potentiality of the TFT algorithm in predicting the
experimental values and revealing the anomalies of the tower’s dynamic behavior.
The analysis focuses on the testing set ranging from 23 January to 18 February 2022
(Table 4), during which the Viareggio earthquake occurred. Two damage indicators
are considered in the analysis: the natural frequencies of the tower (in subsection
4.1) and the RMS of the signals (in Subsection 4.2). When not explicitly declared in
the text, the results are reported for the training normalization rule. In Subsection
4.3 the predictive performance of the TFT technique is compared with the well
established Auto-Regression with eXogenous inputs (ARX) model.

All the TFT runs described in the following sections were obtained on an AMD
Ryzen 7 1700 Eight-Core Processor (16 Cores), 32 Gb RAM, and an RTX 2080Ti for
CUDA acceleration. We used the Pytorch Forecasting framework �, which provides

�https://pytorch-forecasting.readthedocs.io/en/stable/
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Figure 7: Period 4 - 8 February 2022, TFT model. First three predicted (red line)
and experimental frequencies (green line). The red dashed lines represent the 1st
and 99th percentiles predicted by the model.
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an implementation of the TFT network [56]. Given the relatively small training set
size, we found that instantiating the network with a few parameters helped achieve
better generalization. Specifically, we used a general hidden size of 32, with a hidden
size for continuous variables of 16 and only one attention head. We trained the
network until the validation loss did not decrease for three consecutive epochs. On the
hardware mentioned above, training took around 40 seconds per epoch. Considering
that, on average, the best validation metrics are obtained after the first eight epochs,
the total training phase took about 5 minutes. On the other hand, on our test set,
inference required only about around 1.3 seconds, which is more than acceptable for
practical applications of the system.

4.1 Frequency-based predictions and anomaly detection

This section reports the results of the numerical investigations for the models de-
scribed in the previous section, when the frequencies are considered as damage indi-
cators. Fig. 7 plots the observed (green line) and predicted (50th percentile, red line)
values of the first three frequencies from 4 to 8 February 2022, along with the 1st and
99th percentiles (dashed line) evaluated by the TFT model. The anomaly caused by
the Viareggio earthquake (6 February at 01:36 UTC) is highlighted in the figure; the
event affects all three frequencies of the tower, the first and third, corresponding to
bending mode shapes in the x direction, and the second corresponding to a bending
mode shape in the y direction (Table 1).

Fig. 8–9 summarise the results for the period 23 January - 12 February 2022 and
show the observed frequencies (orange line) and the ones predicted by the algorithm
(corresponding to the 50th percentile, blue line), together with the estimate of un-
certainty, which is represented by the grey area between the 1st and 99th percentiles
at every prediction time step, for each predicted frequency (confidence interval). The
vertical bars show the time locations where at least one predicted frequency does not
fall within the estimated confidence interval. The magnitude scale introduced in the
figures follows the rules defined in (5)–(7), in which ni,t is replaced by

ni,t = ρi
oi,t
wi,t

, ρi =
ō1
ōi

(8)

and ōi is the mean value of the i-th frequency over all the time axis. Coefficients
ρi ∈ [0, 1] are weights that reduce the contribution to the anomaly score of the higher
frequencies, whose evaluation is usually uncertain.

As shown in the figures, the algorithm captures the anomaly behavior induced
by the Viareggio earthquake on 6 February at 01.36 UTC, for the five models TFT,
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Figure 8: Period 23 January - 12 February 2022, Viareggio earthquake. Anomaly
plots for models TFT (top), TFTfreq (middle) and TFTno-env (bottom). Observed
(orange line) and predicted (blue line) frequencies (Hz) and confidence interval (grey
shadow).
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Figure 9: Period 23 January - 12 February 2022, Viareggio earthquake. Anomaly
plots for models TFTno-tick (top) and TFTno-wind (bottom). Observed (orange line)
and predicted (blue line) frequencies (Hz) and confidence interval (grey shadow).
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TFTfreq, TFTno-env, TFTno-tick and TFTno-wind introduced in Subsection 3.2 (model
TFTrms is used for the RMS prediction in Subsection 4.2). As expected, the seismic
event does not represent the only anomaly detected in the period. In fact, several
vertical lines are spotted in the figures and can be attributed mainly to the presence
of the tourists on the tower; the magnitude of such events is mostly lower than that
of the earthquake. The seismic event does not induce a permanent change in the
dynamic behavior of the tower: in fact, the anomaly bar is focused on the hour of the
earthquake, and in the next hours, the frequency predictions return to the canonical
trend.

The procedure gives satisfactory results for every model shown in the Fig. 8–9.
Nevertheless, the distribution of the anomaly bars changes depending on the model.
In particular, models TFTno-env and TFTno-wind, although still able to catch the
Viareggio earthquake, seem less sensitive to abnormal values. Such models forecast
large confidence intervals and the 50th percentile frequency values do not exhibit
significant variations during time. This behavior suggests that the information on the
environmental variables, which is missing in these models, increases the capability
of the algorithm to understand the system’s behavior in time. Moreover, model
TFTno-tick shows the narrower amplitudes of the confidence interval, thus suggesting
that the information on the number of people in the tower has a low influence on the
frequency prediction.

In order to test the algorithm’s capability to detect possible damage, we have
considered simulated damage scenarios in which the tower’s six observed frequencies
are reduced by a given percentage starting from 6 February at 1:00 UTC, the hour
slot during which the Viareggio earthquake occurred.

Three damage scenarios are considered, in which the values of the six experimental
frequencies f1 < f2 < ... < f6 are lowered according to the following rules:

Scenario 1: by 2%, 1%, 0.5%, 0.5%, 0.5% and 0.5%, respectively. This damage sce-
nario is inspired by that observed on the Gabbia tower in Mantua after the Emilia
earthquake of May 2012 [9].

Scenario 2: by 4%, 2%, 1%, 1%, 1% and 1%, respectively.

Scenario 3: by 4% (uniform reduction of all frequencies).

Fig. 10 to 15 show the anomalies detected by the algorithm for the three damage
scenarios and the five tested models. The algorithm highlights the change in the
tower’s dynamic properties after the earthquake for every model and every damage
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Figure 10: Simulated damage, Scenario 1. Anomaly plots for models TFT (top),
TFTfreq (middle) and TFTno-env (bottom). Observed (orange line) and predicted
(blue line) frequencies (Hz) and confidence interval (grey shadow).
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Figure 11: Simulated damage, Scenario 1. Anomaly plots for models TFTno-tick

(top) and TFTno-wind (bottom). Observed (orange line) and predicted (blue line)
frequencies (Hz) and confidence interval (grey shadow).

28

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4679906

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



06
/0

2 
h0

1

06
/0

2 
h1

4

07
/0

2 
h0

6
07

/0
2 

h1
1

08
/0

2 
h1

3

09
/0

2 
h1

2

Date

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y 
(H

z)

Observed
Predicted
Predicted 1-99% Quantiles

Week days

S S M T W T F S S M T W T F S S M T W T F S

06
/0

2 
h0

1

06
/0

2 
h1

4

07
/0

2 
h1

0

08
/0

2 
h1

4

09
/0

2 
h1

2

10
/0

2 
h1

2

11
/0

2 
h1

2

Date

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y 
(H

z)

Observed
Predicted
Predicted 1-99% Quantiles

Week days

S S M T W T F S S M T W T F S S M T W T F S

06
/0

2 
h0

1
06

/0
2 

h0
8

08
/0

2 
h0

8

09
/0

2 
h0

6

09
/0

2 
h1

8

10
/0

2 
h0

9

11
/0

2 
h0

8

12
/0

2 
h0

8

Date

0

1

2

3

4

5

6

7

Fr
eq

ue
nc

y 
(H

z)

Observed
Predicted
Predicted 1-99% Quantiles

Week days

S S M T W T F S S M T W T F S S M T W T F S

Figure 12: Simulated damage, Scenario 2. Anomaly plots for models TFT (top),
TFTfreq (middle) and TFTno-env (bottom). Observed (orange line) and predicted
(blue line) frequencies (Hz) and confidence interval (grey shadow).
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Figure 13: Simulated damage, Scenario 2. Anomaly plots for models TFTno-tick

(top) and TFTno-wind (bottom). Observed (orange line) and predicted (blue line)
frequencies (Hz) and confidence interval (grey shadow).
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Figure 14: Simulated damage, Scenario 3. Anomaly plots for models TFT (top),
TFTfreq (middle) and TFTno-env (bottom). Observed (orange line) and predicted
(blue line) frequencies (Hz) and confidence interval (grey shadow).
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Figure 15: Simulated damage, Scenario 3. Anomaly plots for models TFTno-tick

(top) and TFTno-wind (bottom). Observed (orange line) and predicted (blue line)
frequencies (Hz) and confidence interval (grey shadow).
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Figure 16: Simulated damage, Scenario 3. Anomaly plots for the TFT model using
the training normalization (top) and encoder normalization. Observed (orange line)
and predicted (blue line) frequencies (Hz) and confidence interval (grey shadow).
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scenario. The magnitude of the detected anomalies increases as the damage intensity
increases from Scenario 1 to Scenario 3. The anomaly is permanently highlighted
after the earthquake in all the cases shown in the figures.

Nevertheless, in some applications, the algorithm is expected to learn from the
data characterizing the damage scenarios and adapt the procedure to the new situa-
tion without further training. This result can be achieved using different normaliza-
tion rules, as shown in Fig. 16. Here, the results obtained via training normalization
are compared with those achieved by normalizing data on the time window k (equa-
tion (2)), thus updating the normalization during the test (encoder normalization).
This kind of normalization allows the algorithm to estimate the mean and variance
of input data from the moving time window having width k; as a result, in the case
of Fig. 16, the procedure highlights the anomaly induced by Scenario 3 in the first
hours after the earthquake (for about 36 hours) and, unlike the train normaliza-
tion, progressively adapt the prediction to the new situation. After a few days, the
algorithm has learned that the conditions of permanent damage have become the
normality.

4.1.1 Analysis of the TFT internal state

Finally, we analyzed the TFT internal state change after the simulated damage.
Specifically, we extracted 64-dimensional features from the internal self-attention
mechanism of the TFT [56] at time τmax = 1 for consecutive temporal windows in
the period January–February 2022. We call this set of vectors feature trajectories,
as it depicts the evolving internal state of the network. We then performed reduc-
tion to the main three components using the Principal Component Analysis (PCA)
algorithm [74]. Specifically, we took the three main eigenvalues obtained from PCA,
for each of the 64-dimensional vectors in the trajectory. Fig. 17 shows the obtained
feature trajectories in this reduced 3-dimensional space. We can notice how the tra-
jectories deviate after the damage (orange traces), with respect to the base case with
no damage (blue traces). This suggests that the model’s internal state is aware of the
anomaly, and further studies may be conducted on the latent features of the TFT
network for performing a post hoc classification of the anomalies (e.g., to distinguish
structural damage from a temporarily overcrowded environment).

4.2 RMS-based anomaly detection

Fig. 18-19 report the results of a TFT anomaly detection procedure based on RMS
predictions.
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No damage Scenario 1

Scenario 2 Scenario 3

Figure 17: Feature trajectories in the space of the first three principal components for
different damage scenarios. Orange lines represent the trajectories after the damage
occurred.

The confidence intervals for the predicted values are larger than those predicted
for the frequencies, probably due to the RMS’s lower correlation with the environ-
mental data and the low energy content of the signal.

In addition, the prediction of the TFTrms model (trained neglecting the frequen-
cies) is much more accurate than that of the TFT model, in which the entire dataset
is used to train the algorithm. This result suggests a weak correlation between RMSs
and frequencies, acting as a noise which increases the model’s uncertainty. Never-
theless, both models can detect the anomaly induced in the signals by the Viareggio
earthquake. The models can also predict the trend of the RMSs during the central
hours of the day when the tower is open to tourists and during the weekends when
the number of visitors tends to increase. Finally, Fig. 20 shows the x- and y- RMS
predictions of the TFTrms model and the corresponding observed values for the test-
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Figure 18: February 2022, Viareggio earthquake. TFT model, RMS-based anomaly
detection for the signals in x (top) and y (bottom) direction. Observed (orange line)
and predicted (blue line) RMS values (m/s) and confidence interval (grey shadow).
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Figure 19: February 2022, Viareggio earthquake. TFTrms model, RMS-based
anomaly detection for the signals in x (top) and y (bottom) direction. Observed
(orange line) and predicted (blue line) RMS values (m/s) and confidence interval
(grey shadow).
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Figure 20: October 2021. TFTrms model, RMS-based anomaly detection for the
signals in x (top) and y (bottom) direction. Observed (orange line) and predicted
(blue line) RMS values (m/s) and confidence interval (grey shadow).
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ing period 10-31 October 2021: good accuracy is achieved by the model for these
data in the absence of earthquakes or other relevant events.

4.3 Investigating the predictive model

In this section, we use the multi-horizon forecasting capabilities of the TFT network
(Fig. 1) to predict the dynamic behavior of the Guinigi Tower. For such a purpose,
we choose a temporal horizon of 96 hours (k = τmax = 96 in equation (2)), on
which the tower’s frequencies are predicted by the TFT model and compared with
the experimental values. In order to assess the performances of the network, we
introduce a comparison with the well-established Auto-Regression with eXogenous
inputs (ARX) model [75], whose description is briefly recalled in Subsection 4.3.1.
The two models are compared in Subsection 4.3.2 in terms of prediction capabilities
with respect to the experimental values measured on the tower.

4.3.1 The ARX baseline

In order to assess the predictive performance of TFT, numerical tests employing the
ARX model implemented in Matlab have been performed. ARX models, devoted
to modeling and analyzing the behavior of dynamic systems, are widely employed
in SHM to simulate the dependence of experimental frequencies on environmental
parameters and detect abnormal structural changes [9], [10]. They are a combination
of an Auto-Regression (AR) and an eXogenous input (X) model. A time series is
represented by a linear combination of its past values, a set of exogenous input
variables and a stochastic process:

y(ℓ)p =

n
(ℓ)
a∑

i=1

a
(ℓ)
i y

(ℓ)
p−i +

n
(1)
b∑

j=1

b
(1)
j u

(1)

p−n
(1)
p −j+1

+ ...+

n
(s)
b∑

j=1

b
(s)
j u

(s)

p−n
(s)
p −j+1

+ e(ℓ)p , (9)

where, with reference to the ℓ-th experimental frequency fℓ (f1 < f2 < ... < f6),
ℓ ∈ {1, ..., 6} in this case, we have

� y
(ℓ)
p (ℓ ∈ {1, ..., 6}) is the output frequency at the p-th time instant;

� a
(ℓ)
i , for i ∈ {1, ..., n(ℓ)

a }, are the n
(ℓ)
a autoregressive coefficients of the ℓ-th

frequency;

� y
(ℓ)
p−i, for i ∈ {1, ..., n(ℓ)

a }, are the n
(ℓ)
a past values of the ℓ-th frequency;
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� u
(ν)

p−n
(ν)
p −j+1

, for j ∈ {1, ..., n(ν)
b }, are n

(ν)
b past values of each of the exogenous

input variable u(ν), starting from the instant of time p−n
(ν)
p , for ν ∈ {1, ..., s},

with s = 11 the number of variables related to column indices 9–19 in Table 2.

� b
(ν)
j , for j ∈ {1, ..., n(ν)

b }, are the n
(ν)
b coefficients that capture the relationship

between each of the input variable u(ν) and the output yℓp, for ν ∈ {1, ..., s};

� n
(ℓ)
a is the so-called auto-regressive order; for ν ∈ {1, ..., s}, n(ν)

b is the exogenous

order of the input variable u(ν), while n
(ν)
p is the time delay between the input

variable u(ν) and the output;

� e
(ℓ)
p is a white Gaussian disturbance noise.

With reference to equation (9), we underline that when n
(ℓ)
a = 0 for ℓ ∈ {1, ..., 6},

n
(ν)
b = 1 and n

(ν)
p = 0 for ν ∈ {1, ..., s} are considered, then the ARX model (9)

reduces to a multidimensional (static) linear regression.

For each output y
(ℓ)
p , ℓ ∈ {1, ..., 6}, setting

ϑ(ℓ) =

(
a
(ℓ)
1 , ..., a

(ℓ)

n
(ℓ)
a

, b
(1)
1 , ..., b

(1)

n
(1)
b

, ..., b
(s)
1 , ..., b

(s)

n
(s)
b

)⊤

, (10)

φ(ℓ)
p = −

(
y
(ℓ)
p−1, ..., y

(ℓ)

p−n
(ℓ)
a

, u
(1)

p−n
(1)
p

, ..., u
(1)

p−n
(1)
p −n

(1)
b +1

, ..., u
(s)

p−n
(s)
p

...., u
(s)

p−n
(s)
p −n

(s)
b +1

)⊤

,

(11)
the ARX model (9) can be recast as

y(ℓ)p = φ(ℓ)⊤

p ϑ(ℓ) + e(ℓ)p . (12)

Of course, once the past values on the scalar vector φ
(ℓ)
p are known and the white

noise term e
(ℓ)
p is modelled, the computation of y

(ℓ)
p = y

(ℓ)
p (ϑ(ℓ)) depends on the value

of the scalar vector ϑ(ℓ), ℓ ∈ {1, ..., 6}. Given this, assume that the values of y
(ℓ)
p are

known (measured) for p ∈ {1, ..., N} and denote such known quantities as ȳ
(ℓ)
p , for

ℓ ∈ {1, ..., 6}. Then, the parameters vector ϑ(ℓ) can be obtained by solving a linear
least squares problem,

argmin
ϑ(ℓ)

g(ϑ(ℓ)) = argmin
ϑ(ℓ)

1

N

N∑
p=1

(
ȳ(ℓ)p − y(ℓ)p (ϑ(ℓ))

)2
. (13)
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Since the loss function g(ϑ(ℓ)) in (13) is quadratic in ϑ(ℓ), a minimizer can be
found requiring the vanishing of its gradient, thus leading to a system of normal
equations that can be ill-conditioned when the dimension of the Z(ℓ)⊤Z(ℓ) matrices

is large, being Z(ℓ) the matrix whose p-th row is φ
(ℓ)⊤
p , p ∈ {1, ..., N}. For such a

reason, Matlab uses of suitable built-in functions based on the QR factorization of
the (rectangular) Z(ℓ) matrix involved with the definition of y(ℓ)(ϑ(ℓ)), to solve the
over-determined linear system y(ℓ)(ϑ(ℓ)) = ȳ(ℓ) in the sense of least squares and, thus,
estimating the parameters in (10) that minimize the loss g(ϑ(ℓ)), for ℓ ∈ {1, ..., 6}.

4.3.2 TFT-ARX comparison results

The performances of the TFT and ARX models are tested on a set of time intervals
centred on the starting points of Table 5. The ARX parameters are calculated using
as training sets the 96 hours before each starting point and then using the obtained
ARX model to predict the six natural frequencies from each starting point up to the
next 95 hours. For all the numerical tests, the orders n

(ℓ)
a , {n(ν)

b }sν=1, {n
(ν)
p }sν=1 of

the linear combinations in (9) range in the interval [0, 6]. Table 5 summarises, for
each frequency and each time interval listed in the first column, the optimal values
g∗ of the loss function at the end of the training phase, which mainly fall within the
interval [1.19 · 10−5, 8.64 · 10−4].

The prediction capabilities of the ARX and TFT models are compared in Table
6, highlighting that TFT outperforms ARX. Specifically, Table 6 reports the Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Mean Absolute Percentage
Error (MAPE) computed over the cumulative set of prediction hours given by the 95
hours from each of the starting points in Table 5. These metrics are widely used in
regression problems and characterize the predictive capability of the developed sys-
tem from the absolute (MAE, MSE) and relative (MAPE) perspectives. Remarkably,
the metrics calculated by TFT are always better than the ARX counterparts and, in
many cases, an order of magnitude below. In addition, to figure out representative
plots about ARX and TFT predictions on the single frequencies, Fig. 21 is reported.
The experimental values (blue) of the second and fourth frequencies of the Guinigi
Tower are compared to the values predicted by the ARX (red) and TFT (black)
models in the time interval centred on 15 October 2021, 00:00 a.m., confirming that
TFT is more reliable in capturing the frequency evolution.
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Starting point
g∗

f1 f2 f3 f4 f5 f6
10/10/21 6 a.m. 2.74e-05 4.67e-05 7.39e-05 2.74e-04 5.51e-04 4.66e-04
15/10/21 0 a.m. 1.88e-05 2.84e-05 3.06e-05 6.66e-04 1.78e-04 3.39e-04
25/10/21 6 p.m. 1.30e-05 4.49e-05 4.79e-05 1.38e-04 1.72e-04 2.42e-04
01/02/22 12 a.m. 6.15e-06 1.18e-05 1.74e-04 2.31e-04 1.85e-04 7.17e-04
04/02/22 4 p.m. 1.20e-05 9.00e-06 1.32e-03 2.68e-04 1.51e-04 1.61e-03
08/02/22 0 a.m. 2.74e-05 2.11e-05 6.43e-04 2.67e-04 6.77e-04 8.64e-04
12/02/22 4 a.m. 1.37e-05 1.91e-05 4.81e-04 3.09e-04 4.13e-04 7.93e-04

Table 5: Starting points and correspondent optimal values g∗ of the loss function at
the end of the ARX training phase, for each of the six natural frequencies.

MAE MSE MAPE

Frequency ARX TFT ARX TFT ARX TFT

f1 1.51e-02 7.96e-03 6.17e-04 1.27e-04 1.25e-02 6.57e-03
f2 1.19e-01 1.57e-02 1.33e-01 3.92e-04 8.78e-02 1.16e-02
f3 1.29e-01 3.98e-02 1.24e-01 3.86e-03 4.84e-02 1.48e-02
f4 4.78e-02 2.78e-02 1.15e-02 1.35e-03 1.44e-02 8.35e-03
f5 9.30e-02 6.73e-02 2.65e-02 7.06e-03 2.23e-02 1.60e-02
f6 7.63e-02 3.58e-02 3.33e-02 2.53e-03 1.21e-02 5.64e-03

Table 6: MAE, MSE and MAPE given by ARX and TFT models over the cumulative
set of prediction hours related to the starting points in Table 5, for each of the six
natural frequencies.
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Figure 21: Second (top) and fourth (bottom) frequency [Hz] of the Guinigi Tower
versus time [h]. Measured values (blue), ARX (red) and TFT (black) predicted
values starting from 15 October 2021 at 0 a.m. (x=0).
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5 Conclusions

This paper investigates the application of state-of-the-art time-series prediction mod-
els powered by transformer networks to the SHM of heritage structures. In particu-
lar, the Temporal Fusion Transformer model, an attention-based deep neural network
architecture for multi-horizon time series forecasting, is employed to predict the dy-
namic properties of the Guinigi Tower in Lucca and detect anomalies in its behavior
over time.

The paper represents the first detailed and comprehensive application of a TFT
network to the SHM, already investigated by the Authors in 2022 in a preliminary
research on the San Frediano bell tower in Lucca.

The approach adopted combines soundness and originality and relies on the the-
oretical setting of TFT, explicitly oriented to analyzing and predicting multivariate
time series, such as the data sets collected during long-term continuous dynamic
monitoring of historic buildings.

Anomaly detection has been performed on two damage indicators: the tower’s
natural frequencies and the measured signals’ energy level. The paper has debated
different aspects, from the procedure to automatically assemble a representative
database to the influence of the various input variables and normalization techniques
on the network’s performance. The TFT predictions have been finally compared to
those of the well-established ARX model. Such a comparison proves that the ap-
proach proposed by the Authors outperforms standard regression models regarding
prediction accuracy.

Concluding, the use of TFT models seems well suited to SHM applications: the
network proved to be sensitive to anomalies and accurate in the prediction. Moreover,
once trained, the model can infer the results in a few seconds, and the training
phase itself requires a few minutes to analyze a one-year monitoring database: these
computation times are promising and suited to real-time applications.

Future work on the topic will focus on using the networks’ internal features to
discriminate among different anomaly categories (i.e., to distinguish severe structural
damage from a temporarily overcrowded environment), which is of utmost impor-
tance for a fully automated pipeline for anomaly detection and characterization.
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