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Abstract

Data-centric parallel programming models such as dataflows are well established
to implement complex concurrent software. However, in a context of a config-
urable software, the dataflow used in its computation might vary with respect
to the selected options: this happens in particular in fields such as Computa-
tional Fluid Dynamics (CFD), where the shape of the domain in which the fluid
flows and the equations used to simulate the flow are all options configuring the
dataflow to execute.

In this paper, we present an approach to implement product lines of dataflows,
based on Delta-Oriented Programming (DOP) and term rewriting. This ap-
proach includes several analyses to check that all dataflows of a product line
can be generated. Moreover, we discuss a prototype implementation of the
approach and demonstrate its feasibility in practice.

1. Introduction

Over the past decades, with the end of Moore’s law and the multiplication
of parallel architectures such as multi-core CPUs and GPUs, many data-centric
programming paradigms were developed in order to continue having always more
efficient programs with such new hardware. This trend is clearly visible in HPC
where many data-centric languages and libraries have been developed, such as
Chapel [1], StarPU [2], HPX [3], Charm++ [4], Legion [5] and DAPP [6, 7].
The core model of data-centric computation is the dataflow [8, 9] which can be
expressed as an acyclic directed graph stating how data is generated and used
by side-effect-free tasks.

While dataflows can efficiently be deployed on parallel and heterogeneous
architectures, their structure is very static with no conditional nor loops. Li-
braries like HPX [3] or Legion [5] alleviate this restriction by extending the
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model with conditional and runtime tasks creations, at the cost of a less effi-
cient computation model. Moreover such extensions are not well-suited to large
configuration spaces that occur in industrial tools like elsA [10] and Fun3D [11].

elsA is a tool that implements Computational Fluid Dynamics (CFD), i.e.,
it simulates the flow of fluids in a given input mesh and outputs information of
interest to the user (e.g., the pressure that a material pushed by the fluid must
be able to sustain, or some modification of its shape that would make the fluid
flow more efficiently). The principle of elsA’s computation is a fixpoint loop: it
executes the same code in loop until the computed flow is close enough to what
would happen in reality. And since the loop’s code could be executed millions
of time, expressing it as a dataflow would greatly improve the efficiency of elsA.

However, elsA has an infinite configuration space – structured into three
parts – that has a huge impact on the shape of the executed dataflow. The first
part of the configuration space consists of about 2000 options that configure
which fluid flow computation to perform. Indeed, fluid flow is given by the
Navier–Stokes equations that do not have an analytic solutions, and so hundreds
of approximations of these equations have been defined, with various precision
and stability characteristics: it is up to the user to decide which approximation
s/he wants to use. The second part of the configuration space is the output
information provided to the user: virtually any data could interest her/him
since it depends on which phenomena s/he’s studying. So s/he must provide
the list of these data to elsA which in turn must compute them by extending its
dataflow. The last part of the configuration space is the shape of the input mesh
itself. Meshes are usually structured in various zones (modelling the domain in
which the fluids flow) and boundaries (modelling walls of different materials,
fluid injection or extraction, or even infinite domains): fluid flow simulation
must be performed on every zone of the mesh, and specific computation must
be performed on each boundary depending on its type (e.g., the effect of a wall
on a flow is different from the effect of a fluid injection).

In this paper, we propose an approach to automatically generate dataflows
given a configuration space close to elsA’s: instead of considering an arbitrary
input mesh, we consider that its variability space could be expressed with fea-
tures. Our approach is structured in two main parts: first, it uses Software
Product Line (SPL) techniques [12, Sect. 6.6.1] to express the variability of
tasks w.r.t. the configuration space, and configures them given the options se-
lected by the user; then, it uses term rewriting to assemble these configured
tasks into a dataflow that computes the data requested by the user. Figure 1
details the structure of our approach:

• first, we use a Domain Specific Language (DSL) duly extended with con-
cepts from Delta-Oriented Programming (DOP) [13] to model the vari-
ability of the dataflow’s tasks. This DSL allows us to specify which tasks,
with which inputs and which outputs, are available to construct a dataflow.
Then,

• given an input Product specifying the values of the different options, the
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Figure 1: Dataflow generation pipeline

Product Line Flattening process automatically generates the Task Specifi-
cation corresponding to that specific product; then

• the Rewriting rules Generation process automatically translates the spec-
ification into term rewriting rules; and

• given a list of Values to Compute, we simply apply the generated rewriting
rules on this data to obtain a correct dataflow computing these values by
using the tasks available in the specification.

We presented a preliminary version of this approach in [14]. In this paper,
we: i) replace the ad-hoc dependency solver with rewriting; ii) give a precise
algorithm for each step of our dataflow generation process; and iii) add a static
analysis to guarantee that, for each product, a well-formed dataflow is generated.

Outline. Section 2 illustrates variability on dataflows with an example from
Computational Fluid Dynamics (CFD), and shows how such a dataflow can be
encoded with terms in order to motivate our approach of using term rewriting.
Section 3 introduces our DSL, its DOP extension, and how to use them to
generate a dataflow. Section 4 describes the different analyses guaranteeing that
a DSL can generate a correct dataflow for all its products. Section 5 introduces
our prototype implementation and presents some benchmarks illustrating the
feasibility of the approach in practice. Finally, Section 6 discusses related work,
while Section 7 concludes the paper.

2. Running Example

In this section, we present the running example that is used throughout the
paper to illustrate our approach. This example is inspired from the variability
and computation that occurs in elsA and is structured in three parts: first we
introduce a simple feature model; second we present two simple dataflows that
corresponds to some products of the feature model; and finally, we show how
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Figure 2: Simple CFD feature model

these dataflows could be encoded as terms. In this example and in the rest of
the paper, we will use the Maude term rewriting language [15] to write down
terms and rewriting rules.

2.1. Feature Model

Figure 2 shows the feature model of our running example, which is structured
in two main parts. The first part encodes the variability of the mesh and is
identified with themesh feature. A mesh always has a unique zone, and between
one and three boundaries of different types: inlet models the injection of fluid;
outpres models a possible output of the fluid flow; and wall models a wall. The
second part encodes which approximation of the fluid dynamics is considered
in the computation and is identified with the model feature. The mandatory
convective feature only considers convective dynamics (which are triggered
by pressure). The optional diffusive feature extends the flow dynamics by
also considering its viscosity. Finally, the optional order2 feature changes the
behaviour of the selected flow dynamics and asks them to have a more precise
computation (i.e., instead of approximating the equations with a polynomial of
degree one, they are now approximated with a polynomial of degree 2).

2.2. Dataflows

Figure 3 shows the dataflow computing the value Rhs only (i.e., the update
of the fluid flow fixpoint computation) while selecting the boundaries inlet and
outpres, and no optional model feature. The computation starts with the data
Conservative which models the currently computed flow on the unique zone
of the mesh. Then on one side, it uses one function per boundary (resp. inlet
and outpres) to compute data (resp. BC(Inlet) and BC(Outpres)) encoding
the effect of these boundaries on the flow. On the other side, it uses the prim-
itive function to normalize the Conservative data into Primitive. Then the
functions convectiveFluxBC and convectiveFlux compute the update of the con-
vective fluid flow respectively on the boundaries (FxcBC) and on the zone (Fxc)
of the mesh. Finally, these two flows are merged with the fluxBalance function
and normalized with the explicitIncrement to generate the data Rhs.
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Figure 3: Dataflow computing Rhs with inlet, outpres selected

Figure 4 shows a more complex dataflow that computes the value Rhs and the
gradient (i.e., the derivative) of the pressure (which is used to identify shocks)
while selecting the boundary wall and all optional model features. Compared
to the dataflow presented in Figure 3, this dataflow has one modified part and
three additional parts (depicted in gray). The part that is modified corresponds
to the management of the boundaries: since the boundary of the mesh only
contains a wall (and not an injection and exit flow as in Figure 3), the effect of
this boundary on the flow is now modelled by the data BC(Wall), computed by
the wall function. The first additional part occurs on the right of Primitive,
where some new tasks appeared to compute the gradient of the the pressure
grad(Pressure) requested by the user: the function pressure computes the
Pressure from Primitive, and then the gradient function is used to compute
grad(Pressure). The second additional part is triggered by the selection of the
order2 feature: the functions convectiveFlux and convectiveFluxBC now take
the additional parameter grad(Primitive), computed by the gradient function
applied on Primitive. The last additional part consists of the management
of the diffusive flow: in addition to the convectiveFlux and convectiveFluxBC
functions, the similar functions diffusiveFlux and diffusiveFluxBC were added,
that take an extra input grad(grad(Primitive)) (computed by the gradient
function applied on grad(Primitive)).

Finally, similarly to the dataflow in Figure 3, the function fluxBalance col-
lects all the computed flows into the Balance data, which is then normalized
with the explicitIncrement to generate the data Rhs.

2.3. Dataflows as Terms

Listing 1 presents the abstract syntax that encodes a dataflow in the form
of a Maude module. In this encoding, a dataflow is a DAG that contains two
main kinds of nodes: data and tasks. We model these nodes with the term
constructors data of sort Data and task of sort Task. A data node can either
be a root of the dataflow, or be computed by a task. In both cases, data has
a value (of sort Value). A task is identified by the ID of its function (of sort
FunctionID) and the list of its data parameters.

5



Conservative

wall primitive
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Figure 4: Dataflow computing Rhs and Grad(Pressure)

with wall, diffusive and order2 selected

1 mod DATAFLOW is
2 sorts Data Task Value FunctionID DataList .
3
4 subsort Data < DataList .
5 op _ _ : Data DataList -> DataList [ctor] .
6
7 op data : Value -> Data [ctor] .
8 op data : Value Task -> Data [ctor] .
9

10 op task : FunctionID DataList -> Task [ctor] .
11 endm

Listing 1: The DATAFLOW Maude module: abstract syntax of a dataflow

In the rest of this section, we use the DATAFLOW Maude module as a basis to
encode the two dataflows in Figures 3 and 4 into terms.

First, the Maude module EXAMPLE-CORE in Listing 2 provides the sorts and
term constructors used to encode our dataflow examples. We have three sorts in
this module: Value and FunctionID are the same as in the DATAFLOW module,
and BC is a new sort for values held on a mesh boundary. The rest of the module
is structured in three parts, each one declaring the constructor for a specific
sort. First, the module declares the base values of our dataflow: Conservative,
Primitive, etc. These constructors do not have any parameters, except for BC
that takes a boundary value in parameter (this models the fact that these values
are somewhat special), and Grad that takes a value in parameter (as illustrated
in Figure 4, it is indeed possible to compute the gradient of any kind of value).
Second, the module declares the three BC of our example: Inlet, Outpres and
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1 mod EXAMPLE-CORE is
2 sort Value BC FunctionID .
3
4 *** values
5 op Conservative : -> Value [ctor] .
6 op Primitive : -> Value [ctor] .
7 op Fxc : -> Value [ctor] .
8 op Fxd : -> Value [ctor] .
9 op FxcBC : -> Value [ctor] .

10 op FxdBC : -> Value [ctor] .
11 op Balance : -> Value [ctor] .
12 op Rhs : -> Value [ctor] .
13 op Pressure: -> Value [ctor] .
14 op BC : BC -> Value [ctor] .
15 op Grad : Value -> Value [ctor] .
16
17 *** BCs
18 op Inlet : -> BC [ctor] .

19 op Outpres : -> BC [ctor] .
20 op Wall : -> BC [ctor] .
21
22 *** function ids
23 op inlet : -> FunctionID [ctor] .
24 op outpres : -> FunctionID [ctor] .
25 op wallslip : -> FunctionID [ctor] .
26 op primitive : -> FunctionID [ctor] .
27 op pressure : -> FunctionID [ctor] .
28 op gradient : -> FunctionID [ctor] .
29 op convectiveFlux : -> FunctionID [ctor] .
30 op convectiveFluxBC : -> FunctionID [ctor] .
31 op diffusiveFlux : -> FunctionID [ctor] .
32 op diffusiveFluxBC : -> FunctionID [ctor] .
33 op fluxBalance : -> FunctionID [ctor] .
34 op explicitIncrement : -> FunctionID [ctor] .
35 endm

Listing 2: The EXAMPLE-CORE Maude module: all declarations for our running example

Wall. And finally, the module declares all the FunctionID corresponding to
functions in our dataflow.

The Maude module EXAMPLE-1 in Listing 3 encodes the dataflow of Figure 3.
This module is structured in five parts:

1. we first include and merge the two modules performing the core declara-
tions, i.e., DATAFLOW and EXAMPLE-CORE;

2. we then declare the term dconservative, which corresponds to the root
node of our dataflow containing the value Conservative;

3. we then construct the part of the dataflow computing Fxc: Primitive (in
node dprimitive) is computed by applying the function primitive on
Conservative; and Fxc (in the node dFxc) is computed by applying the
function convectiveFlux on Primitive;

4. we then construct the part of the dataflow computing FxcBC: BC(Inlet)
(in the node dinlet) is computed by applying the function inlet on
Conservative; BC(Outpres) (in the node doutpres) is computed by ap-
plying the function outpres on Conservative; and FxcBC (in the node
dFxcBC) is computed by applying the function convectiveFluxBC on
Primitive, BC(Inlet), and BC(Outpres);

5. and finally, we conclude the dataflow with the computation of the Rhs

data: Balance (in the node dBalance) is computed by applying the func-
tion fluxBalance on Fxc and FxcBC; and Rhs (in the node dRhs) is com-
puted by applying the function explicitIncrement on Balance.

The Maude module EXAMPLE-2 in Listing 4 encodes the dataflow of Figure 4.
Since this dataflow is more complex than the one of Figure 3, it is structured
in seven parts (rather than in five parts as in Listing 3):

7



1 mod EXAMPLE-1 is
2 *** includes dataflow abstract syntax, value and function declaration
3 protecting DATAFLOW + EXAMPLE-CORE .
4
5 *** root of the dataflow
6 op dconservative : -> Data .
7 eq dconservative = data(Conservative) .
8
9 *** Fxc computation

10 op dprimitive : -> Data .
11 eq dprimitive = data(Primitive, task(primitive, dconservative)) .
12 op dFxc : -> Data .
13 eq dFxc = data(Fxc, task(convectiveFlux, dprimitive)) .
14
15 *** FxcBC computation
16 op dinlet : -> Data .
17 eq dinlet = data(BC(Inlet), task(inlet, dconservative)) .
18 op doutpres : -> Data .
19 eq doutpres = data(BC(Outpres), task(outpres, dconservative)) .
20 op dFxcBC : -> Data .
21 eq dFxcBC = data(FxcBC, task(convectiveFluxBC, dprimitive dinlet doutpres)) .
22
23 *** Rhs computation
24 op dBalance : -> Data .
25 eq dBalance = data(Balance, task(fluxBalance, dFxc dFxcBC)) .
26 op dRhs : -> Data .
27 eq dRhs = data(Rhs, task(explicitIncrement, dBalance)) .
28 endm

Listing 3: The EXAMPLE-1 Maude module: encodes the dataflow of Figure 3

1. and 2. these parts are identical to the ones in Listing 3: they first include
the modules DATAFLOW and EXAMPLE-CORE, and then declare the root node
of our dataflow dconservative that contains the value Conservative;

3. we then construct the chain of the Primitive data and its gradients:
Primitive (in node dprimitive) is computed by applying the function
primitive on Conservative; Grad(Primitive) (in node dgprimitive)
is computed by applying the function gradient on Primitive; and Grad(

Grad(Primitive)) (in node dggprimitive) is computed by applying the
function gradient a second time, on Grad(Primitive);

4. We then construct the computation of gradient of the pressure: Pressure
(in node dpressure) is computed by applying the function pressure on
Primitive; and Grad(Pressure) (in node dgpressure) is computed by
applying the function gradient on Pressure;

5. we then construct the computation of the convective and diffusive flows
on the zone: Fxc (in the node dFxc) is computed by applying the func-
tion convectiveFlux on Primitive and Grad(Primitive); Fxd (in the
node dFxd) is computed by applying the function diffusiveFlux on
Primitive, Grad(Primitive) and Grad(Grad(Primitive));

6. similarily, we construct the computation of the convective and diffusive
flows on the boundary: BC(Wall) (in the node dwall) is computed by ap-
plying the function wall on Conservative; FxcBC (in the node dFxcBC)
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1 mod EXAMPLE-2 is
2 *** includes dataflow abstract syntax, value and function declaration
3 protecting DATAFLOW + EXAMPLE-CORE .
4
5 *** root of the dataflow
6 op dconservative : -> Data .
7 eq dconservative = data(Conservative) .
8
9 *** Primitive with gradient computation

10 op dprimitive : -> Data .
11 eq dprimitive = data(Primitive, task(primitive, dconservative)) .
12 op dgprimitive : -> Data .
13 eq dgprimitive = data(Grad(Primitive), task(gradient, dgprimitive)) .
14 op dggprimitive : -> Data .
15 eq dggprimitive = data(Grad(Grad(Primitive)), task(gradient, dgprimitive)) .
16
17 *** Grad(Pressure) computation
18 op dpressure : -> Data .
19 eq dpressure = data(Pressure, task(pressure, dprimitive)) .
20 op dgpressure : -> Data .
21 eq dgpressure = data(Grad(Pressure), task(gradient, dpressure)) .
22
23 *** Fxc and Fxd computation
24 op dFxc : -> Data .
25 eq dFxc = data(Fxc, task(convectiveFlux, dprimitive dgprimitive)) .
26 op dFxd : -> Data .
27 eq dFxd = data(Fxd, task(diffusiveFlux, dprimitive dgprimitive dgprimitive)) .
28
29 *** FxcBC and FxdBC computation
30 op dwall : -> Data .
31 eq dwall = data(BC(Wall), task(wall, dconservative)) .
32 op dFxcBC : -> Data .
33 eq dFxcBC = data(FxcBC, task(convectiveFluxBC, dwall dprimitive dgprimitive)) .
34 op dFxdBC : -> Data .
35 eq dFxdBC = data(FxdBC, task(diffusiveFluxBC, dwall dprimitive dgprimitive dggprimitive)) .
36
37 *** Rhs computation
38 op dBalance : -> Data .
39 eq dBalance = data(Balance, task(fluxBalance, dFxc dFxd dFxcBC dFxdBC)) .
40 op dRhs : -> Data .
41 eq dRhs = data(Rhs, task(explicitIncrement, dBalance)) .
42 endm

Listing 4: The EXAMPLE-2 Maude module: encodes the dataflow of Figure 4

is computed by applying the function convectiveFluxBC on BC(Wall),
Primitive and Grad(Primitive); FxdBC (in the node dFxdBC) is com-
puted by applying the function diffusiveFluxBC on BC(Wall), Primitive,
Grad(Primitive) and Grad(Grad(Primitive));

7. and finally, we conclude the dataflow with the computation of the Rhs

data: Balance (in the node dBalance) is computed by applying the
function fluxBalance on Fxc, Fxd, FxcBC and FxdBC; and Rhs (in the
node dRhs) is computed by applying the function explicitIncrement on
Balance.
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3. Model

This section presents the main elements of our approach. First, we recall the
concepts of signatures and terms used in rewriting. We then present our DSL
without its DOP extension and describe the algorithm that transforms any DSL
program into rewriting rules. Finally, we describe the full version of our DSL,
and introduce the flattening algorithm that generates the variant of an input
DSL program L for an input product p of the associated SPL.

3.1. Dataflow Term Signature

As illustrated in Section 2, a signature that encodes our dataflow is struc-
tured into two parts: one part that creates the dataflow structure (with, e.g.,
constructors data and task) and is common to all dataflows, and one user part
that declares which values and functions are available in the dataflow construc-
tion, which is specific to each dataflow.

Here, we first recall the definitions for order-sorted signatures and terms.
We then define the two parts of a dataflow signature.

3.1.1. Preliminary Definitions

We provide some notation and a basic definition over sets and ordered sets.

Definition 1 (S-sorted set). Given a set S and an S-indexed family V =
{Vs}s∈S, we write v : s ∈ V for v ∈ Vs. Moreover, we denote by S∞ the set⋃∞

i=1 S
i.

Given a partially ordered set (poset) S = (S,<), an S-sorted set is an S-
indexed family V = {Vs}s∈S such that s < s′ implies Vs ⊆ Vs′ . Moreover, we
add a partial order to S∞ with

(s1, . . . , sn) < (s′1, . . . , s
′
n) iff (∃1 ≤ i ≤ n, si < s′i) ∧ (∀1 ≤ j ≤ n, si ≤ s′i)

The following definition specifies the arity of term constructors for a given
ordered set of sorts S.

Definition 2 (S-arity). Given a poset S = (S,<), an S-arity A is a subset
of S∞ such that for all (s1, . . . , sn), (s

′
1, . . . , s

′
n) ∈ A with si ≤ s′i for all 1 ≤

i ≤ n − 1, then sn ≤ s′n. For all (s1, . . . , sn) ∈ A with n > 1, we write
(s1, . . . , sn−1) → sn as syntactic sugar for (s1, . . . , sn).

The following definition introduces an order-sorted signature for a given
ordered set of sorts S.

Definition 3 (S-sorted signature). Given a poset S = (S,<), an S-sorted
signature is an A-sorted set F with A being an S-arity.

Finally, we can define the set of terms given an ordered set of sorts S and a
signature F .
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Definition 4 (S-sorted set of terms). Given a poset S = (S,<), an S-sorted
signature F , and an S-sorted set of variables V , the S-sorted set T (F, V ) of
terms is inductively defined as follows:

• v : s ∈ T (F, V ) if v : s ∈ V

• f(t1, . . . , tn) : s ∈ T (F, V ) if t1 : s1, . . . , tn : sn ∈ T (F, V ), f : s1, . . . , sn →
s′ ∈ F and s′ ≤ s.

3.1.2. Dataflow

The next definition states when a signature is dataflow-safe, i.e., it is a valid
user part of a dataflow signature.

Definition 5 (Dataflow-safe poset and S-sorted signature). A poset S = (S,<)
is dataflow-safe iff both of the following hold:

1. S contains Value and FunctionID

2. S contains neither Data, nor Task

An S-sorted signature F is dataflow-safe iff for all s ∈ S, data : Value → s ̸∈ F .

Example 1 (A dataflow-safe signature). The Maude module EXAMPLE-CORE in
Listing 2 is a dataflow-safe signature.

For the remainder of this paper, we assume a given dataflow-safe ordered set
S = (S,<) and an S-sorted signature F .

3.2. Function Specification

We now present the syntax of our function specification DSL, shown in
Figure 5. We use the following name categories: f is a function name; v is a
term variable; and s is a sort. Moreover, t is a term.

A specification starts with the declaration of a list of term variables, which
is then followed by the list of function specifications. A function has a name f ,
a list of inputs, and a list of outputs (modelled by terms of sort Value).

The declaration order of variables and functions does not matter, so we
consider this syntax up to declaration reordering (this will be used later to
simplify specification transformation).

Example 2 (Dataflow specification). Listing 5 shows the specification for the
dataflow in Figure 3. This specification starts with the functions used in the
Fxc computation part of Listing 3: primitive takes the value Conservative

S ::= vars (v : s)∗ (F)∗ Specification
F ::= fun f : inputs (t)∗ outputs (t)∗ Function Specification

Figure 5: Static syntax of function specification
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1 // Fxc computation
2 fun primitive: inputs Conservative outputs Primitive
3 fun convectiveFlux: inputs Primitive outputs Fxc
4
5 // FxcBC computation
6 fun inlet: inputs Conservative outputs BC(Inlet)
7 fun outpres: inputs Conservative outputs BC(Outpres)
8 fun convectiveFluxBC: inputs Primitive, BC(Inlet), BC(Outpres) outputs FxcBC
9

10 // Rhs computation
11 fun fluxBalance: inputs Fxc, FxcBC outputs Balance
12 fun explicitIncrement: inputs Balance outputs Rhs

Listing 5: Function specification for the dataflow in Listing 3

fun f : inputs i1, . . . , in outputs o1, . . . , om

▷


rl data(o1) => data(o1, task(f, data(i1). . .data(in))).
. . .
rl data(om) => data(om, task(f, data(i1). . .data(in))).

F1 ▷ r1 . . . Fm ▷ rm

vars v1 : s1, . . . , vn, sn F1 . . . ,Fm ▷ var v1 : s1 . . . . var vn : sn . r1 . . . rm

Figure 6: Translation rules from function specifications into Maude

in parameter and returns the value Primitive; and convectiveFlux takes
Primitive in parameter and returns Fxc.

The second part of the specification describes the functions used in the FxcBC
computation part of Listing 3: inlet takes Conservative in parameter and
returns BC(Inlet); then outpres takes Conservative in parameter and returns
BC(Outpres); and finally convectiveFluxBC takes Primitive, BC(Inlet), and
BC(Outpres) in parameter and returns FxcBC.

Finally, the last part of the specification describes the functions used in the
Rhs computation part of Listing 3: fluxBalance takes Fxc and FxcBC in pa-
rameter and returns Balance, while explicitIncrement takes Balance in pa-
rameter and returns Rhs.

3.3. From Function Specifications to Maude Rewriting Rules

Figure 6 shows the rules to translate function specifications into Maude
rewriting rules. The first rule takes the specification of a function f and for each
of its outputs oi, it generates a rewriting rule that adds to any node containing oi
not being computed (modelled by data(oi)) the task that uses f to compute oi
(modelled by task(f, data(i1). . .data(in)) with i1, . . . , in the inputs of f).

The second rule takes a complete specification, and translates it into Maude
by: replacing the variables declarations by equivalent Maude declarations; and
replacing all function specifications by rewriting rules.
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1
2 *** Fxc computation
3 rl data(Primitive) => data(Primitive, task(primitive, data(Conservative) )) .
4 rl data(Fxc) => data(Fxc, task(convectiveFlux, data(Primitive) )) .
5
6 *** FxcBC computation
7 rl data(BC(Inlet)) => data(BC(Inlet), task(inlet, data(Conservative) )) .
8 rl data(BC(Outpres)) => data(BC(Outpres), task(outpres, data(Conservative) )) .
9 rl data(FxcBC) =>

10 data(FxcBC, task(convectiveFluxBC, data(Primitive) data(BC(Inlet)) data(BC(Outpres)) )) .
11
12 *** Rhs computation
13 rl data(Balance) => data(Balance, task(fluxBalance, data(Fxc) data(FxcBC) )) .
14 rl data(Rhs) => data(Rhs, task(explicitIncrement, data(Balance) )) .

Listing 6: Rules generated from the specification in Figure 5

Example 3 (Rules generated from a dataflow specification). Listing 6 shows the
rules generated from the specification in Figure 5. For clarity, we added sections
in this generated set of rewriting rules to illustrate its relation to Listing 5.
This generated file starts with the rewriting rules corresponding to the functions
declared in the Fxc computation part of Listing 5: adding to the node data(

Primitive) the task task(primitive, data(Conservative)); and adding to
node data(Fxc) the task task(convectiveFlux, data(Primitive))).

The second part of the set describes the rewriting rules corresponding to the
functions declared in the FxcBC computation part of Listing 5: it adds to the
node BC(Inlet) the task task(inlet, data(Conservative)); it adds to the
node BC(Outpres) the task task(outpres, data(Conservative)); and it adds
to the node data(FxcBC) the following task

task(convectiveFluxBC,

data(Primitive) data(BC(Inlet)) data(BC(Outpres)))

Finally, the last part of the specification describes rewriting rules correspond-
ing to the functions declared in the Rhs computation part of Listing 5: adding to
node data(Balance) the task task(fluxBalance, data(Fxc) data(FxcBC));
and to node data(Rhs) the task task(explicitIncrement, data(Balance)).

Rewriting the term data(Rhs) with these rules will give the same term dRhs
as in EXAMPLE-1 in Listing 3. Indeed, rewriting consists of applying the rewriting
rules wherever on the input term, until none can be applied anymore. First, data
(Rhs) matches the pattern of the rule in Line 14: the rule is applied, resulting
in the term data(Rhs,task(explicitIncrement, data(Balance))). Second,
within that term, data(Balance) matches the pattern of the rule in Line 13:
the rule is applied, resulting in the term

data(Rhs,task(explicitIncrement,

data(Balance, task(fluxBalance, data(Fxc) data(FxcBC) ))))

Following this principle, the subterms data(Fxc) and data(FxcBC) will be
then rewritten with the rules in lines 4 and 9 which expands further our encoding
of the dataflow. Ultimately, all data and all tasks of the dataflow in EXAMPLE-1

will be added by different applications of the rules in Figure 5.
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t ∈ dom(Γ)

Γ ⊢ t : Γ(t)

Γ ⊢ ti : si f : s1, . . . , sn → s ∈ F

Γ ⊢ f(t1, . . . , tn) : s

Γ ⊢ t1 : s1 s1 ≤ Value . . . Γ ⊢ tm : sm sm ≤ Value

Γ ⊢ fun f : inputs t1, . . . , tn outputs tn+1, . . . , tm

v1 : s1, . . . , vn : sn ⊢ F1 . . . v1 : s1, . . . , vn : sn ⊢ Fm

⊢ vars v1 : s1, . . . , vn : sn F1 . . . ,Fm

Figure 7: Checking the correctness of Input / Output definition

3.4. Specification Correction
Specifications in our DSL must validate some sanity conditions to ensure that

the generated rewriting rules are well formed. Next we list these conditions.

3.4.1. Naming

A first standard condition is the absence of name clashes: all variables and
all functions must have different names. Since this condition is standard, in
the remainder we assume that it is always satisfied. This condition can be
straightforwardly checked by a standard static analysis.

3.4.2. Term Construction

The second set of sanity conditions ensures that the left-hand side and the
right-hand side of every generated rewriting rules are well sorted, with sort
data. First, all function names must be declared in the signature F , with sort
FunctionID. Moreover, the inputs and outputs of the functions need to have
sort Value in F . The rules to check the sort of the input and output terms of
every function specification in a DSL program are shown in Figure 7.

The first rule states that the sort of a variable is given by its declaration
(stored in Γ). The second rule states that if the term constructor f has arity
s1, . . . , sn → s and has parameters ti of sorts si, then f(t1, . . . , tn) has sort s.
The third rule states that all inputs and outputs of a function declaration must
have sort (or subsort of) Value. Finally, the fourth rule creates the store Γ
from the variable declaration (as previously stated) and ensures that all function
specifications are correct.

Any variable in a function’s input must be present in all of the function’s out-
put. In any term rewriting system, rewriting rules should not introduce fresh
variables, i.e., the variables in the right-hand side of a rule must all be present
in the left-hand side. This constraint translates into our DSL by the fact that
for every function specification, all variables in the inputs of the function must
be declared in every output of the function. This constraint is formalized by
the following equation, where fv(t) denotes the set of variables in t for any term
t:

∀k ∈ I, fv(tk) ⊆
⋂
o∈O

fv(to) (1)
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L ::= features (o)∗ with ϕ; S (Dd)∗ CK Software Product Line
Dd ::= delta d; (Do)∗ Delta
Do ::= add F | remove f | modify f (Dm)∗ Delta Operation

| add var v : s | remove var v
Dm ::= Op Cat t Function Modification
Op ::= add | remove Modification Operation
Cat ::= input | output Modification Category
CK ::= DAC DAO Configuration Knowledge
DAC ::= delta d when ϕ Activation Condition
DAO ::= (d)+(< (d)+)+ Delta Ordering

Figure 8: Syntax of deltas

Optional: data-driven functions. This last condition is not mandatory to ensure
the correct construction of the rewriting rules, but ensures that every function
specification corresponds to a data-driven function, i.e., a function’s outputs
only depend on its inputs. This dependency translates into our DSL by the fact
that for every function specification, the variables in the function’s outputs are
declared in its inputs. This constraint is formalized by the following equation:⋃

k∈I

fv(tk) =
⋃
o∈O

fv(to) (2)

3.5. Variable Function Specification

Finally, the syntax of an SPL over function specifications is given in Figure 8.
An SPL starts with the definition of a feature model, with features (o)∗ and

a propositional formula ϕ over features. This feature model is then followed by
the core of the SPL, i.e., the initial set of variables and function declarations S,
using the syntax presented in Figure 5. The rest of the SPL declares a set of
deltas (Dd)∗ that manipulate S, and a configuration knowledge CK.

Each delta specifies a number of changes to S. A delta comprises the key-
word delta followed by the delta’s name, a semicolon, and a sequence of delta
operations (Do)∗. A delta operation Do can add/remove a function specification
definition, or modify it by adding/removing inputs and outputs (via modifying
operations Dm). Moreover, a delta operation can declare or remove variables.

Configuration knowledge CK provides a mapping from products to variants
by describing the connection between deltas and features. First, the DAC entries
specifies an activation condition ϕ (a propositional formula over features) for
each delta in the SPL. Second, the DAO entries specify an application order
between deltas: each of these entries specifies a partial order over the set of
deltas in terms of a total order on disjoint subsets of delta names.

The overall delta application order ≺ is the transitive closure of the union
of these partial orders. In this paper, we assume that ≺ is consistent (i.e., ≺
is a partial order) and unambiguous (i.e., all the total delta application orders
that respect ≺ generate the same variant for each product). Techniques that
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allow one to check that ≺ is unambiguous are described in the literature [16, 17].
Without loss of generality, we assume that the total order in which delta defi-
nitions are listed is compatible with ≺.

Flattening rules. Figure 9 shows the flattening rules that, given an input SPL L
and a product p of that SPL, apply the activated deltas in L in order on the core
part of L. The first two rules describe the flattening process at the SPL level.
Rule (SPL-1) first ensures that p is a product of the SPL (with p ⊢ ϕ), takes
the first delta Dd of the SPL, and applies it to the core S. This application is
written [Dd][ϕ′](S) where ϕ′ is the activation condition of the delta Dd. Rule
(SPL-2) is used when all delta have been applied (i.e., the list of deltas that are
left is empty): it still ensures that p is a product of the SPL, and then simply
returns the core S of the SPL.

The next two rules deal with the application of deltas. Rule (D-1) is used
when the delta is activated (checked with p ⊢ ϕ) and contains at least one
operation Do: in that case, we apply that operation on the core S (denoted by
[Do][S]), and use this as parameter for the rest of the operations in the deltas.
Rule (D-2) is used when the delta is not activated (checked with p ⊬ ϕ) or does
not contain any operations: in that case we simply return the core S unchanged.

The next three rules describe the flattening of delta operations on functions.
Rule (F-add) states that to add a function F to a core S, that function must not
be declared already in S (this is checked by name(F) ̸∈ {name(Fi) | 1 ≤ i ≤ n}).
If this condition is validated, we return S extended with the new function. Rule
(F-rem) states that to remove a function named f from a core S, that function
must be present in S (this is checked with extracting from S the function F with
name(F) = f). If this condition is validated, we return S without its function f .
Rule (F-mod) states that to modify a function named f in a core S, that
function must be present in S (this is checked as in rule (F-rem)). If this
condition is validated, we return S with its function f modified by the set of
operations (Dm)∗.

The next two rules deal with the delta operations on variables, and are very
similar to rules (F-add) and (F-rem): to add a variable, that variable must not
be present already in the core; and, dually, to remove a variable, that variable
must be declared in the core.

Finally, the last four rules describe the flattening of modification operations
Dm. Rule (I-add) states that to add an input to a function specification, the
added term must not already be an input of that function. Rule (O-add)
states that to add an output to a function specification, the added term must
not already be an output of that function. Rule (I-rem) states that to remove
an input from a function specification, the removed term must be an input of
that function. Rule (O-rem) states that to remove an output from a function
specification, the removed term must be an output of that function.

Example 4 (A delta-oriented SPL of dataflows). Listing 7 presents the SPL
that contains the complete specification for our running example. Lines 1–4
present the feature model of our running example, with the root feature solver,
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[SPL-1]
p ⊢ ϕ name(Dd) = d

(features (o)∗ when ϕ;S Dd (Dd)∗ delta d when ϕ′; CK)
▷p (features (o)∗ when ϕ; [Dd][ϕ′](S) (Dd)∗ CK)

[SPL-2]
p ⊢ ϕ

(features (o)∗ when ϕ;S CK)▷p S

[D-1]
p ⊢ ϕ

[delta d;Do (Do)∗][ϕ](S)
▷p [delta d; (Do)∗][ϕ]([Do](S))

[D-2]
p ⊬ ϕ ∨ (Do)∗ = ε

[delta d; (Do)∗][ϕ](S)▷p S

[F-add]
name(F) ̸∈ {name(Fi) | 1 ≤ i ≤ n}

[add F](vars (v : s)∗ F1 . . . Fn)▷p vars (v : s)∗ F1 . . . Fn F

[F-rem]
name(F) = f

[remove f ](vars (v : s)∗ F (F)∗)▷p vars (v : s)∗ (F)∗

[F-mod]
name(F) = f

[modify f (Dm)∗](vars (v : s)∗ F (F)∗)▷p vars (v : s)∗ [(Dm)∗](F) (F)∗

[V-add]
v ̸∈ {vi | 1 ≤ i ≤ n}

[add var v : s](vars v1 : s1, . . . , vn : sn (F)∗)▷p vars v1 : s1, . . . , vn : sn, v : s (F)∗

[V-rem]
[remove var v](vars v : s, (v : s)∗ (F)∗)▷p vars (v : s)∗ (F)∗

[I-add]
t ̸∈ {ti | 1 ≤ i ≤ n}

[add input t](fun f : inputs t1 . . . tn outputs (t′)∗)
▷p fun f : inputs t1 . . . tn t outputs (t′)∗

[O-add]
t ̸∈ {ti | 1 ≤ i ≤ n}

[add output t](fun f : inputs (t′)∗ outputs t1 . . . tn)
▷p fun f : inputs (t′)∗ outputs t1 . . . tn t

[I-rem]
[remove input t](fun f : inputs t (t′)∗ outputs (t′′)∗)

▷p fun f : inputs (t′)∗ outputs (t′′)∗

[O-rem]
[remove output t](fun f : inputs (t′)∗ outputs t (t′′)∗)

▷p fun f : inputs (t′)∗ outputs (t′′)∗

Figure 9: Flattening Rules

17



1 features solver mesh zone boundary inlet outpres wall
2 model convective diffusive order2 with
3 solver /\ mesh /\ boundary /\ zone /\ model /\

convective
4 /\ (inlet \/ outpres \/ wall);
5
6 vars valueV: Value
7
8 //// Base Artifact
9 // functions on zone

10 fun primitive: inputs Conservative
11 outputs Primitive
12 fun gradient: inputs valueV
13 outputs Grad(valueV)
14 fun pressure: inputs Primitive
15 outputs Pressure
16 fun convectiveFlux: inputs Primitive
17 outputs Fxc
18 fun diffusiveFlux: inputs Primitive
19 Grad(Primitive) outputs Fxd
20
21 // functions on boundaries
22 fun inlet: inputs Conservative
23 outputs BC(Inlet)
24 fun outpres: inputs Conservative
25 outputs BC(Outpres)
26 fun wall: inputs Conservative
27 outputs BC(Wall)
28 fun convectiveFluxBC: inputs Primitive
29 outputs FxcBC
30 fun diffusiveFluxBC: inputs Primitive
31 Grad(Primitive) outputs FxdBC
32
33 // Rhs
34 fun fluxBalance: inputs Fxc, FxcBC
35 outputs Balance
36 fun explicitIncrement: inputs Balance
37 outputs Rhs

38 //// DELTA
39 // boundaries
40 delta d_inlet;
41 modify convectiveFluxBC
42 add input BC(Inlet)
43 modify diffusiveFluxBC
44 add input BC(Inlet)
45 delta d_outpres;
46 modify convectiveFluxBC
47 add input BC(Outpres)
48 modify diffusiveFluxBC
49 add input BC(Outpres)
50 delta d_wall;
51 modify convectiveFluxBC
52 add input BC(Wall)
53 modify diffusiveFluxBC
54 add input BC(Wall)
55
56 // computation
57 delta d_diffusive;
58 modify fluxBalance
59 add input Fxd add input FxdBC
60 delta d_order2;
61 modify convectiveFlux
62 add input Grad(Primitive)
63 modify convectiveFluxBC
64 add input Grad(Primitive)
65 modify diffusiveFlux
66 add input Grad(Grad(Primitive))
67 modify diffusiveFluxBC
68 add input Grad(Grad(Primitive))
69
70 delta d_inlet when inlet;
71 delta d_outpres when outpres;
72 delta d_wall when wall;
73 delta d_diffusive when diffusive;
74 delta d_order2 when order2;

Listing 7: Complete Software Product Line of our running example

the features mesh, zone, boundary, inlet, outpres and wall for the structure
of the mesh, and the features model, convective, diffusive and order2 for
the computation.

Line 6 declares the variable valueV of sort Value that is used for the decla-
ration of the gradient function.

Lines 10–19 define the base specification of all the functions working on the
mesh’s zone that are used in our dataflow construction: primitive takes the
value Conservative in parameter and returns the value Primitive; gradient
can take any value in parameter (modelled with the variable valueV), and re-
turns the gradient of that value (modelled with the term Grad(valueV)); pressure
takes the value Primitive in parameter and returns the value Pressure; the
function convectiveFlux takes Primitive in parameter and returns Fxc; and,
finally, diffusiveFlux takes Primitive and Grad(Primitive) in parameter
and returns Fxd.

Lines 22–31 define the base specification of all the functions working on
the mesh’s boundaries that are used in our dataflow construction: inlet takes
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Conservative in parameter and returns BC(Inlet); outpres takes Conser-

vative in parameter and returns BC(Outpres); wall takes Conservative in
parameter and returns BC(Wall); convectiveFluxBC takes Primitive, in pa-
rameter and returns FxcBC; and diffusiveFluxBC takes Primitive, in param-
eter and returns FxdBC.

Finally, lines 34–37 define the base specification of the remaining functions:
fluxBalance takes Fxc and FxcBC in parameter and returns Balance; while
explicitIncrement takes Balance in parameter and returns Rhs.

The rest of the SPL declares the deltas that modify the base specifications
with respect to the selected features.

Lines 40–44 describe the delta d_inlet that adds BC(Inlet) as input of the
functions convectiveFluxBC and diffusiveFluxBC in case the feature inlet

is selected. Lines 45 to 49 describe the delta d_outpres that adds BC(Outpres)
as input of the functions convectiveFluxBC and diffusiveFluxBC in case the
feature outpres is selected. Lines 50–54 describe the delta d_wall, which adds
BC(Wall) as input of the functions convectiveFluxBC and diffusiveFluxBC

in case the feature wallslip is selected. Lines 57–59 state that if the user want
to also compute the diffusive part of the flux (i.e., if the feature diffusive

is selected), the function fluxBalance now takes two more arguments: Fxd

and FxdBC. Lines 60–68 state that if the user wants to compute the flux with
an order 2 precision, i.e., when the feature order2 is selected, the functions
convectiveFlux and convectiveFluxBC now take also Grad(Primitive) in
arguments, and the functions diffusiveFlux and diffusiveFluxBC now take
also Grad(Grad(Primitive)) in arguments.

Finally, lines 70–74 define the previously described activation conditions of
the deltas. No order between deltas is specified: there are no restrictions on the
order in which they can be applied.

4. Static Analysis

This section describes the different analyses ensuring the correct definition
of an SPL L. These analyses are structured in three categories: the first analysis
ensures that all products generate a variant by checking that the application
conditions of all delta in L are validated; the second set of analyses ensures
that a generated variant is well constructed, i.e., all the input and output terms
are well sorted, with sort Value, and the constraints modelled by Equations 1
and 2 are validated; and, finally, the last analysis ensures that a dataflow can
be generated from a variant by ensuring that the corresponding rewriting rules
always terminate.

Most of these analyses are inspired by [18] and follow the same principle of
generating a SAT constraint that is valid if and only if the analysed property
holds. The exception is the analysis of termination, which generates a univer-
sally quantified SAT constraint. Moreover, like in [18], our analysis is based on
the type uniformity guideline, which is stated as follows in our context.
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Type Uniformity Guideline Ensure that every time a variable v is declared
or added, it always has the same sort.

This guideline ensures that in all variants, given that every used variable is
declared, the analysis checking that the functions’ inputs and outputs are well
sorted, with sort Value, is always the same and can be performed on the SPL
directly with the rules already given in Figure 7. That way, we reduce checking
the term well-sortedness in variants into checking that all used variables are
declared.

Example 5 (Type uniformity). Our complete running example presented in
Listing 7 contains only one variable valueV, declared in the base artifact with
sort Value. Hence this variable always has the same sort every time it is de-
clared, and so our running example is type uniform.

To simplify the presentation of our analysis, we consider in the rest of this
section that the base artifact of an SPL is modelled by a delta named base
which is always activated and always applied before the other deltas. Before
we present the different analyses, we introduce a set of getters on top of which
these different analyses are constructed.

4.1. Getters on SPLs

All our analyses are based on only two sets of getters. First, we have getters
that introspect the variability of an SPL.

Notation 1. Given an SPL L, we denote by fm(L) the constraint over feature
names corresponding to the feature model of the SPL. Moreover, we denote by
act(L) the constraint stating that every delta name in L is equivalent to its
activation condition.

Second, we need to relate the SPL variability to the variable names, function
names, inputs, and outputs, which are manipulated during the application of the
SPL’s deltas. So, we first define the notion of path to have a common notation
for all these manipulated elements, and then introduce the three getters we use.

Definition 6 (Paths in an SPL). A path is either a variable name v, a function
name f , or a word of the form f.field t.T , where f is a function name; field t
is an element of {input, output}; and T is a term of sort Value.

For a specification SPL L, we denote by P(L) the set of paths occurring in L.

Definition 7 (Getters on paths). Given a specification SPL L and a path ρ ∈
P(L), we denote by:

• add(L, ρ) the set of delta names d that add the path ρ in L;

• rem(L, ρ) the set of delta names d that remove the path ρ in L;

• mod(L, ρ) the set of delta names d that modify the path ρ in L.

Moreover, given a path ρ, we denote by prefix(ρ) the set of prefixes of ρ.
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Example 6 (Paths and getters). We illustrate the previous two definitions
by giving the value of the path getters for the running example L presented in
Listing 7. Since this list is long, we split it into 13 different parts.

1. The variable valueV corresponds to the path valueV, and since that variable
is declared in the base artifact without ever being manipulated, we have
add(L, valueV) = {base} and rem(L, valueV) = mod(L, valueV) = ∅.

2. The function primitive corresponds to the three paths

primitive, primitive.input.Conservative, primitive.output.Primitive

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

3. The function gradient corresponds to the three paths

gradient, gradient.input.valueV, gradient.output.Grad(valueV)

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

4. The function pressure corresponds to the three paths

pressure, pressure.input.Primitive, pressure.output.Pressure

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

5. The function convectiveFlux corresponds to the four paths

convectiveFlux, convectiveFlux.input.Primitive,
convectiveFlux.input.Grad(Primitive), convectiveFlux.output.Fxc

This function is first declared in the base artifact, and then modified by
the d_order2 delta, which gives:

• add(L, ρ) = {base} for

ρ ∈
{

convectiveFlux, convectiveFlux.input.Primitive,
convectiveFlux.output.Fxc

}
• add(L, convectiveFlux.input.Grad(Primitive)) = {d_order2}
• rem(L, ρ) = ∅ for ρ being any path related to convectiveFlux

• mod(L, convectiveFlux) = {d_order2}

6. The function diffusiveFlux corresponds to the five paths
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diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive),

diffusiveFlux.input.Grad(Grad(Primitive)), convectiveFlux.output.Fxd

This function is first declared in the base artifact, and then modified by
the d_order2 delta, which gives:

• add(L, ρ) = {base} for

ρ ∈
{

diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive), diffusiveFlux.output.Fxd

}
• add(L, diffusiveFlux.input.Grad(Grad(Primitive))) = {d_order2}
• rem(L, ρ) = ∅ for ρ being any path related to diffusiveFlux

• mod(L, diffusiveFlux) = {d_order2}

7. The function inlet corresponds to the three paths

inlet, inlet.input.Primitive, inlet.output.BC(Inlet)

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

8. The function outpres corresponds to the three paths

outpres, outpres.input.Primitive, outpres.output.BC(Outpres)

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

9. The function wall corresponds to the three paths

wall, wall.input.Primitive, wall.output.BC(Wall)

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

10. The function convectiveFluxBC corresponds to the seven paths

convectiveFluxBC, convectiveFluxBC.input.Primitive,
convectiveFluxBC.input.Grad(Primitive),

convectiveFluxBC.input.BC(Inlet),
convectiveFluxBC.input.BC(Outpres), convectiveFluxBC.input.BC(Wall),

convectiveFluxBC.output.FxcBC

This function is first declared in the base artifact, and then modified by
the d_inlet, d_outpres, d_wall and d_order2, deltas, which gives:
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• add(L, ρ) = {base} for

ρ ∈
{

convectiveFluxBC, convectiveFluxBC.input.Primitive,
convectiveFluxBC.output.FxcBC

}
• add(L, convectiveFluxBC.input.BC(Inlet)) = {d_inlet}
• add(L, convectiveFluxBC.input.BC(Outpres)) = {d_outpres}
• add(L, convectiveFluxBC.input.BC(Wall)) = {d_wall}
• add(L, convectiveFluxBC.input.Grad(Primitive)) = {d_order2}
• rem(L, ρ) = ∅ for ρ being any path related to convectiveFluxBC

• mod(L, convectiveFluxBC) = {d_inlet, d_outpres, d_wall, d_order2}

11. The function diffusiveFluxBC corresponds to the eight paths

diffusiveFluxBC, diffusiveFluxBC.input.Primitive,
diffusiveFluxBC.input.Grad(Primitive),

diffusiveFluxBC.input.Grad(Grad(Primitive)),
diffusiveFluxBC.input.BC(Inlet), diffusiveFluxBC.input.BC(Outpres),

diffusiveFluxBC.input.BC(Wall), diffusiveFluxBC.output.FxcBC

This function is first declared in the base artifact, and then modified by
the d_inlet, d_outpres, d_wall and d_order2, deltas, which gives:

• add(L, ρ) = {base} for

ρ ∈

 diffusiveFluxBC, diffusiveFluxBC.input.Primitive,
diffusiveFluxBC.input.Grad(Primitive),

diffusiveFluxBC.output.FxcBC


• add(L, diffusiveFluxBC.input.BC(Inlet)) = {d_inlet}
• add(L, diffusiveFluxBC.input.BC(Outpres)) = {d_outpres}
• add(L, diffusiveFluxBC.input.BC(Wall)) = {d_wall}
• add(L, diffusiveFluxBC.input.Grad(Grad(Primitive))) = {d_order2}
• rem(L, ρ) = ∅ for ρ being any path related to convectiveFluxBC

• mod(L, diffusiveFluxBC) = {d_inlet, d_outpres, d_wall, d_order2}

12. The function fluxBalance corresponds to the six paths

fluxBalance, fluxBalance.input.Fxc, fluxBalance.input.Fxd,
fluxBalance.input.FxcBC, fluxBalance.input.FxdBC,

fluxBalance.output.Balance

This function is first declared in the base artifact, and then modified by
the d_diffusive delta, which gives:
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• add(L, ρ) = {base} for

ρ ∈
{

fluxBalance, fluxBalance.input.Fxc,
fluxBalance.input.FxcBC, convectiveFlux.output.Balance

}
• add(L, ρ) = {d_diffusive} for

ρ ∈ {fluxBalance.input.Fxd, fluxBalance.input.FxdBC}

• rem(L, ρ) = ∅ for ρ being any path related to fluxBalance

• mod(L, fluxBalance) = {d_diffusive}

13. Finally, the function explicitIncrement corresponds to the three paths

explicitIncrement, explicitIncrement.input.Balance,
explicitIncrement.output.Rhs

and since that function is declared in the base artifact without ever being
manipulated, we have add(L, ρ) = {base} and rem(L, ρ) = mod(L, ρ) = ∅
for ρ being any of these paths.

4.2. Applicability Constraints

Applicability corresponds to the fact that delta operations do not fail (i.e.,
they all can be applied). As previously stated, this analysis corresponds to the
generation of a constraint, which comprises three validation parts: checking if
delta operations adding a path are valid; checking if delta operations removing
a path are valid; and checking if delta operations modifying a path are valid.

4.2.1. Addition Operation
Given a specification SPL L, the constraint for checking that no addition

operation of a path ρ ∈ P(L) fails is as follows:

predADD(L, ρ) =
∧
d̸=d′

(d ∧ d′ ⇒
∨
d′′

d′′)

with

{
d, d′ ∈ add(L, ρ), d′′ ∈

⋃
ρ′∈prefix(ρ) rem(L, ρ

′)

and d′ ≺ d′′ ≺ d

This constraint states that if two deltas add the same path, then there must be
a third one in between that removes it.

Example 7 (predADD(L, ρ) constraint). Consider the running example L pre-
sented in Listing 7: since each path ρ in this product line is introduced only
once, add(L, ρ) is a singleton. Hence, predADD(L, ρ) is true for every path in
L.
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4.2.2. Removal Operation
Given a specification SPL L, the constraint for checking that no removal

operation of a path ρ ∈ P(L) fails is as follows:

predREM(L, ρ) =
∧
d

(
d ⇒

(∨
d′′

(d′′∧
∧
d′

¬d′)
))

with

{
d ∈ rem(L, ρ), d′ ∈

⋃
ρ′∈prefix(ρ) rem(L, ρ

′), d′′ ∈ add(L, ρ)

and d′′ ≺ d′ ≺ d

This constraint states that for a removal operation to succeed (in delta d), there
must be a previous delta d′′ that added the path to remove, with no other
delta d′ in between removing it first.

Example 8 (predREM(L, ρ) constraint). Consider the running example L pre-
sented in Listing 7: since this example does not contain any removal operation
(i.e., rem(L, ρ) = ∅ for all path ρ in L), predREM(L, ρ) is true for every path ρ
in L.

4.2.3. Modification Operation
Given a specification SPL L, the constraint for checking that no modification

operation of a path ρ ∈ P(L) fails is as follows:

predMOD(L, ρ) =
∧
d

(
d ⇒

(∨
d′′

(d′′∧
∧
d′

¬d′)
))

with

{
d ∈ mod(L, ρ), d′ ∈

⋃
ρ′∈prefix(ρ) rem(L, ρ

′), d′′ ∈ add(L, ρ)

and d′′ ≺ d′ ≺ d

This constraint has the same structure as predREM(L, ρ) before: for a modifi-
cation operation to succeed (in delta d), there must be a previous delta d′′ that
added the path to remove, with no other delta d′ in between removing it first.

Example 9 (predMOD(L, ρ) constraint). Consider the running example L pre-
sented in Listing 7. In Example 6, we have seen that several paths corresponding
to functions are modified. And since all functions are declared in the base ar-
tifact, which is always executed before any delta, we thus have the following
equalities:

predMOD(L, convectiveFlux) = (d_order2 ⇒ base)
predMOD(L, diffusiveFlux) = (d_order2 ⇒ base)

predMOD(L, convectiveFluxBC) =

(
(d_inlet ⇒ base) ∧ (d_outpres ⇒ base)
∧(d_wall ⇒ base) ∧ (d_order2 ⇒ base)

)
predMOD(L, diffusiveFluxBC) =

(
(d_inlet ⇒ base) ∧ (d_outpres ⇒ base)
∧(d_wall ⇒ base) ∧ (d_order2 ⇒ base)

)
predMOD(L, fluxBalance) = (d_diffusive ⇒ base)
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4.2.4. Full Applicability Constraint
We can now combine all the previous constraints to ensure that all delta

operations are valid:

predAPP(L) =
∧

ρ∈P(L)

(
predADD(L, ρ)∧ predREM(L, ρ)∧ predMOD(L, ρ

)
Finally, we can bind this constraint to the variability model of the SPL to

obtain the formula
(fm(L) ∧ act(L)) ⇒ predAPP(L)

This formula states that if we take a product p (i.e., a model of fm(L)), and
extend it to the set of delta’s activated by p (i.e., a model of act(L)), then if
the resulting model validates the constraints, then all delta operations triggered
by the product p will succeed, i.e., the corresponding variant can be generated.
This property is formalized in the following theorem.

Theorem 1. (Applicability consistency). Consider an SPL L and the following
two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ predAPP(L) is valid.

2. All variants of L can be generated.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.3.

Example 10 (Applicability consistency). We illustrate Theorem 1 by using
the running example L presented in Listing 7. In Examples 7 and 8 we have
seen that predADD(L, ρ) and predREM(L, ρ) are valid for all paths ρ. With
Example 9, we thus have that

predAPP(L) =

predMOD(L, convectiveFlux) ∧ predMOD(L, diffusiveFlux)
∧predMOD(L, convectiveFluxBC)

∧predMOD(L, diffusiveFluxBC) ∧ predMOD(L, fluxBalance)


By removing duplicate implications, we thus have

predAPP(L) = (d_inlet ⇒ base) ∧ (d_outpres ⇒ base)

∧ (d_wall ⇒ base) ∧ (d_order2 ⇒ base) ∧ (d_diffusive ⇒ base)

On the other hand, we have by definition:

fm(L) = solver ∧ mesh ∧ boundary ∧ zone ∧ model ∧ convective

∧(inlet ∨ outpres ∨ wall)
act(L) = base ∧ (d_inlet ⇔ inlet) ∧ (d_outpres ⇔ outpres) ∧ (d_wall ⇔ wall)

∧(d_order2 ⇔ order2) ∧ (d_diffusive ⇔ diffusive)

Hence, looking at the definition of the constraint in Theorem 1, since act(L)
(in the left hand side of the implication) selects the Boolean variable base, all
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implications in the right hand side are satisfied. This constraint is thus valid,
and indeed, we can see that every product of the SPL can be generated.

Now consider an erroneous definition of the SPL: suppose that the diffu-

siveFlux function is declared in the d_diffusive delta instead of in the base
artifact. This changes the path getters into add(L, ρ) = {d_diffusive} for

ρ ∈
{

diffusiveFlux, diffusiveFlux.input.Primitive,
diffusiveFlux.input.Grad(Primitive), diffusiveFlux.output.Fxd

}
But more importantly in our case, predMOD(L, diffusiveFlux) is modified into

d_order2 ⇒ False

since the delta that adds diffusiveFlux (i.e., d_diffusive) may not be applied
before d_order2. Consequently, the contraint in Theorem 1 is not valid in this
case, because the Boolean variable d_order2 may be selected in the left hand side
of the implication which leads the right hand side to be false (and indeed, the
variant generation will fail for any product with the feature d_order2 selected).

4.3. Specification Validation

The analyses presented in this section check the correct definition of the
generated variants, i.e., if the input and output terms are well sorted, and if the
function specifications validate Equation 1 and optionally Equation 2. Since
these analyses manipulate the paths and the variables that are present in a
variant, we first define several constraints that state the presence status of these
different elements in a variant.

4.3.1. Path Presence
Given a specification SPL L, the fact that a path ρ ∈ P(L) is present in a

variant is given by the following constraint:

Pre(L, ρ) =
∨
d

(
d∧ (

∧
d′

¬d)
)
with

{
d ∈ add(L, ρ), d′ ∈

⋃
ρ′∈prefix(ρ) rem(L, ρ

′)

and d ≺ d′

This constraint states that for ρ to exist, a delta must add it with no delta
removing it later. Furthermore, we denote by input(L, f) (by output(L, f), re-
spectively) the set {T | f.input.T ∈ P(L)} (the set {T | f.output.T ∈ P(L)},
respectively).

Example 11 (Pre(L, ρ) constraint). Since our running example L in Listing 7
has no remove operation, and since add(L, ρ) is a singleton for any path ρ, we
have that Pre(L, ρ) is equal to the name of the delta adding ρ for any path ρ.
For instance, Pre(L, convectiveFlux.input.Grad(Primitive)) = d_order2 and
Pre(L, valueV) = base.
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4.3.2. Variable Presence

Given a specification SPL L, for all function names f ∈ P(L), we define the
set of term variables as follows:

fv(L, f) =
⋃

ft∈{input,output}

{fv(T ) | f.ft.T ∈ P(L)}

For all v ∈ fv(L, f), we define:

PrI(L, f, v) =
∨

T∈input(L,f)∧v∈fv(T )

Pre(L, f.input.T )

PrO(L, f, v) =
∨

T∈output(L,f)∧v∈fv(T )

Pre(L, f.output.T )

AbsO(L, f, v) =
∨

T∈output(L,f)∧v ̸∈fv(T )

Pre(L, f.output.T )

Here, PrI(L, f, v) states when the variable v is present in an input of f ;
PrO(L, f, v) states when the variable v is present in an output of f ; and, fi-
nally, PrO(L, f, v) states whether there are outputs of f that do not contain the
variable v.

Example 12 (Variable presence constraints). Looking at Example 6, with L
being the running example in Listing 7, we have that

fv(L, ρ) =

{
{valueV} if ρ = gradient

∅ else

Consequently, the getters PrI, PrO, and AbsO are only defined on the pair
(gradient, valueV) and we have:

PrI(L, gradient, valueV) = PrO(L, gradient, valueV) = base

AbsO(L, gradient, valueV) = False

4.3.3. Validating Function Specifications

Our first analysis in this section ensures that all declarations in a variant
are well sorted. First, we need to ensure that all declared functions are in
the signature F , sorted with FunctionID. This check does not depend on the
variability, and can be done by simply parsing the SPL and checking that every
function name in the SPL is declared in F with the correct sort.

Second, we need to check that the inputs and outputs of every function
specification are well sorted, with sort Value. As discussed in the beginning of
this section, we use the type uniformity guideline to reduce this check to two
simpler tests: first, we use the rules in Figure 7 to check the well sortedness
of the inputs and outputs on the SPL directly; and second, we check that the
variables used in any term present in a variant are declared in that variant. This
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second test is modelled by the following constraint:

decl(L) =
∧

f∈P(L)

( ∧
T∈input(L,f)

Pre(L, f.input.T ) ⇒
∧

v∈fv(T )

Pre(L, v)
)

∧
( ∧
T∈output(L,f)

Pre(L, f.output.T ) ⇒
∧

v∈fv(T )

Pre(L, v)
)

The following theorem states the property expressed by the decl predicate.

Theorem 2. (Variable presence). Consider an SPL L such that all variants
are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ decl(L) is valid.

2. All variants of L are such that all their variables are declared.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.5.

Example 13 (Variable presence). We illustrate Theorem 2 using the running
example L presented in Listing 7. From our discussion in Example 12, we can
see that

decl(L) = (Pre(L, gradient.input.valueV) ⇒ Pre(L, valueV))

∧ (Pre(L, gradient.output.Grad(valueV)) ⇒ Pre(L, valueV))

From Example 11, we can apply the definition of Pre to get

decl(L) = (base ⇒ base) ∧ (base ⇒ base)

which is valid, and so the constraint in Theorem 2 is also valid.

If instead the variable valueV were declared in the d_order2 delta, decl(L)
would have been equal to d_order2 ⇒ base. And since act(L) states that base is
always selected while d_order2 is not, the constraint in Theorem 2 would not
be valid (and indeed, any variant generated from a product without d_order2
selected would be erroneous).

4.3.4. Validating Equation 1
The second analysis of this section ensures that Equation 1 is validated by

every function in every variant of the SPL. As before, we define this analysis
with the constrution of a SAT constraint, namely, given a specification SPL L,
we define the following formula:

nFree(L) =
∧

f∈P(L)

∧
v∈fv(L,f)

(
PrI(L, f, v) ⇒ (PrO(L, f, v)∧ ¬AbsO(L, f, v))

)
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This constraint states that if a function f has an input or attribute T , then the
variables of T must be present in one output of f . The property expressed by
this constraint is stated in the following theorem.

Theorem 3. (Input variable relevance). Consider an SPL L such that all
variants are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nFree(L) is valid.

2. All variants of L validate Equation 1 from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.5.

Example 14 (Input variable relevance). We illustrate Theorem 3 using the
running example L presented in Listing 7. From our discussion in Example 12,
we can see that

nFree(L) = (PrI(L, gradient, valueV) ⇒
(PrO(L, gradient, valueV) ∧ ¬AbsO(L, gradient, valueV)))

= base ⇒ (base ∧ ¬False)
≡ True

Consequently, the constraint in Theorem 3 is valid.

Suppose now that another variable valueVV of sort Value is declared in the
delta d_order2, and that the gradient function has a second output valueVV
added in the delta d_order2. Since valueVV never appears in the input of
gradient, we have that

PrI(L, gradient, valueVV) = False

PrO(L, gradient, valueVV) = d_order2

AbsO(L, gradient, valueVV) = base

In this case, we thus have

nFree(L) = (PrI(L, gradient, valueV) ⇒
(PrO(L, gradient, valueV) ∧ ¬AbsO(L, gradient, valueV)))

∧(PrI(L, gradient, valueVV) ⇒
(PrO(L, gradient, valueVV) ∧ ¬AbsO(L, gradient, valueVV)))

= (base ⇒ (base ∧ ¬False)) ∧ (False ⇒ (d_order2 ∧ ¬base))
≡ True

Consequently, the constraint in Theorem 3 is valid also in this case: indeed, the
considered modification added a new output, which is transparent for Equation 1.

Suppose finally that the new variable valueVV is now used as an input of the
function gradient when the delta d_order2 is activated. Since valueVV never
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appears in the output of gradient, we have that

PrI(L, gradient, valueVV) = d_order2

PrO(L, gradient, valueVV) = False

AbsO(L, gradient, valueVV) = base

In this case, we thus have

nFree(L) = (PrI(L, gradient, valueV) ⇒
(PrO(L, gradient, valueV) ∧ ¬AbsO(L, gradient, valueV)))

∧(PrI(L, gradient, valueVV) ⇒
(PrO(L, gradient, valueVV) ∧ ¬AbsO(L, gradient, valueVV)))

= (base ⇒ (base ∧ ¬False)) ∧ (d_order2 ⇒ (False ∧ ¬base))
≡ d_order2 ⇒ False

Since d_order2 may be selected in the left hand side of the constraint in Theo-
rem 3 (i.e., fm(L)∧act(L)), this constraint is not valid in this case. And indeed,
in this case, if d_order2 is selected, the gradient function has an input valueVV
that contains a variable that is not in its outputs, invalidating Equation 1.

4.3.5. Validating Equation 2
This third analysis of this section ensures that Equation 2 is validated by

every function in every variant of the SPL. As before, we define this analysis by
the construction of a SAT constraint, namely, given a specification SPL L, we
define the following formula:

nAmbiguous(L) =
∧

f∈P(L)

∧
v∈fv(L,f)

(
PrI(L, f, v) ⇔ PrO(L, f, v)

)
This constraint states that for all functions f in a variant of the SPL, if a variable
v is in an input or attribute, then it must also be in an output, and reciprocally.
The property expressed by this constraint is stated in the following theorem.

Theorem 4. (Output variable dependency). Consider an SPL L such that all
variants are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nAmbiguous(L) is valid.

2. All variants of L validate Equation 2 from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.5.

Example 15 (Output variable dependency). We illustrate Theorem 4 using the
running example L presented in Listing 7. From our discussion in Example 12,
we can see that

nAmbiguous(L) = (PrI(L, gradient, valueV) ⇔ PrO(L, gradient, valueV))
= base ⇔ base

≡ True
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Consequently, the constraint in Theorem 3 is valid.

Suppose now that another variable valueVV of sort Value is declared in the
delta d_order2, and that the gradient function has a second output valueVV
added in the delta d_order2. Since valueVV never appears in the input of
gradient, we have that

PrI(L, gradient, valueVV) = False

PrO(L, gradient, valueVV) = d_order2

AbsO(L, gradient, valueVV) = base

In this case, we thus have

nAmbiguous(L) = (PrI(L, gradient, valueV) ⇔ PrO(L, gradient, valueV))
∧(PrI(L, gradient, valueVV) ⇔ PrO(L, gradient, valueVV))

= (base ⇔ base) ∧ (False ⇔ d_order2)
≡ False ⇔ d_order2

Since d_order2 may be selected in the left hand side of the constraint in The-
orem 3 (i.e., fm(L) ∧ act(L)), this constraint is not valid in this case. And in-
deed, in this case, if d_order2 is selected, the gradient function has an output
valueVV that contains a variable that is not in its inputs, invalidating Equa-
tion 2.

Suppose finally that the new variable valueVVis now used as an input of the
function gradient when the delta d_order2 is activated. Since valueVV never
appears in the output of gradient, we have that

PrI(L, gradient, valueVV) = d_order2

PrO(L, gradient, valueVV) = False

AbsO(L, gradient, valueVV) = base

In this case, we thus have

nAmbiguous(L) = (PrI(L, gradient, valueV) ⇔ PrO(L, gradient, valueV))
∧(PrI(L, gradient, valueVV) ⇔ (PrO(L, gradient, valueVV))

= (base ⇔ base) ∧ (d_order2 ⇔ False)
≡ d_order2 ⇔ False

Since d_order2 may be selected in the left hand side of the constraint in Theo-
rem 3 (i.e., fm(L)∧act(L)), this constraint is not valid in this case. And indeed,
in this case, if d_order2 is selected, the gradient function has an input valueVV
that contains a variable that is not in its outputs, invalidating Equation 2.

4.4. Terminating Specification

Our last analysis ensures that the set of rewriting rules derived from any vari-
ant of an SPL terminates. This property implies that for any variant of an SPL
and any data to compute, a corresponding dataflow model can be generated.

32



Our analysis is based on [19], where it is proved that the termination of a
set of rewriting rules is equivalent to the existence of a well-founded, weakly
monotonic, and substitution-closed partial order between some terms extracted
from the rewriting rules. Such a partial order is defined as follows.

Definition 8 (A well-founded, weakly monotonic, and substitution-closed partial
order). A partial order over terms < is well-founded iff there exists no infinite
sequence (ai)i∈N with ai+1 < ai. Moreover, < is weakly monotonic iff t <
t′ implies f(t1, . . . , ti, t, ti+1, . . . tn) ≤ f(t1, . . . , ti, t

′, ti+1, . . . tn) for all terms
t1, . . . , tn ∈ T . Finally, < is closed under substitution iff for all (l, r) ∈≤ and
all substitutions σ, it holds that (σ(l), σ(r)) ∈≤.

In the following, if < is well-founded, weakly monotonic, and substitution-
closed, then we denote this by WF(<).

Moreover, due to the structure of our generated rewriting rules, in our case
the terms that must be ordered are the input and output of the different func-
tions. Hence, we can define this analysis by the following constraint:

terminating(L) = ∃ < WF(<).∧
f∈P(L)

∧
T∈output(L,f)

∧
T ′∈input(L,f)

(
(Pre(f.output.T )∧ Pre(f.input.T ′))⇒ T ′< T

)
(3)

This constraint states that for any variant of the SPL L, there must exist a well-
founded, weakly monotonic, and substitution-closed partial order < such that if
T and T ′ are the input and the output of a function, respectively, then T ′ < T
must hold. The property expressed by this constraint is stated in the following
theorem.

Theorem 5. (Terminating specification). Consider an SPL L such that all
variants are generable and with all the variables declared. Moreover, consider
the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ terminating(L) is valid.

2. Each variant of L results in a terminating TRS.

Then Property 1 is equivalent to Property 2.

Proof. See Appendix A.6.

It is important to underline that since term rewriting is Turing complete,
Equation 3 is not decidable. However, there are many sound but incomplete
techniques, such as [19, 20, 21], that translate the problem of finding the partial
order < into SAT or into linear constraints, and these techniques typically have
good results in practice. Therefore, it is possible to use these techniques to
transform our constraint into an existentially quantified SAT or linear constraint
problem that can be managed by existing SAT or SMT solvers.

Example 16 (Terminating specification). We illustrate Theorem 5 using the
running example L presented in Listing 7. Define as follows the function rank

that takes in parameter terms of sort Value and returns an integer:
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rank(Conservative) = 1 rank(Primitive) = 2 rank(BC(Inlet)) = 2
rank(BC(Outpres)) = 2 rank(BC(Wall)) = 2 rank(Pressure) = 3

rank(Grad(T)) = rank(T ) + 1 rank(Fxc) = 5 rank(Fxd) = 5
rank(FxcBC) = 5 rank(FxdBC) = 5 rank(Balance) = 6

rank(Rhs) = 7

Now state that given two terms T1 and T2 of sort Value, we have T1 < T2 iff
both: fv(T1) = fv(T2) rank(σ(T2)) < rank(σ(T2)) with σ mapping any variable
in fv(T1) to Conservative.

We can first see that WF(<) holds:

• < is a partial order: it is indeed clearly irreflexive, asymmetric and tran-
sitive;

• any sequence of decreasing terms (Ti)i corresponds to a sequence of the
same length of decreasing natural numbers (rank(Ti))i, and since the order
on natural numbers is well-founded, so is <;

• since rank(Grad(T)) = rank(T ) + 1, we have Grad(T1) < Grad(T2) for
all T1 < T2; moreover, since Grad is the only term constructor that has
parameters, < is weakly monotonic;

• finally, we can see that < is substitution-closed by induction on the struc-
ture of the terms.

We can also see that for each function declared in our running example, we
have T1 < T2 for any of its inputs T1 and any of its outputs T2:

• for the primitive function: we have Conservative < Primitive

• for the gradient function: we have valueV < Grad(valueV)

• for the pressure function: we have Primitive < Pressure

• for the convectiveFlux function: we have

Primitive < Fxc, Grad(Primitive) < Fxc

• for the diffusiveFlux function: we have

Primitive < Fxd, Grad(Primitive) < Fxd, Grad(Grad(Primitive)) < Fxd

• for the inlet function: we have Conservative < BC(Inlet)

• for the outpres function: we have Conservative < BC(Outpres)

• for the wall function: we have Conservative < BC(Wall)

• for the convectiveFluxBC function: we have

BC(Inlet) < FxcBC, BC(Outpres) < FxcBC, BC(Wall) < FxcBC,
Primitive < FxcBC, Grad(Primitive) < FxcBC
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• for the diffusiveFluxBC function: we have

BC(Inlet) < FxdBC, BC(Outpres) < FxdBC, BC(Wall) < FxdBC,
Primitive < FxdBC, Grad(Primitive) < FxdBC, Grad(Grad(Primitive)) < FxdBC

• for the fluxBalance function: we have

Fxc < Balance, Fxd < Balance, FxcBC < Balance, FxdBC < Balance

• for the explicitIncrement function: we have Balance < Rhs

Hence, terminating(L) is valid, which implies that the constraint in Theorem 5 is
valid as well. Following Theorem 5, we thus have that every dataflow generation
request submitted to our running example would terminate.

5. Empirical Evaluation

In this section, we evaluate the approach described in this paper on a pro-
totype. Our evaluation focuses on the feasibility of dataflow generation: we
evaluate the time used for the product line flattening and rewriting steps pre-
sented in Figure 1 and check if our approach is quick enough to consider it for
an industrial application.

We first give some insights into our prototype, present our testing protocol
and the corresponding results. We conclude by discussing the threats to the
validity of our experiments.

5.1. Prototype Implementation

Our prototype was designed together with the elsA development team in
order to evaluate if the approach proposed in this article could serve as a basis
for a new CFD tool. We constructed our implementation around three design
choices.

1. We first embedded in python3 the DSL described in Section 3. This choice
was motivated by the fact that python3: (i) was already well-known by the
elsA development team; (ii) is a flexible language that easily embeds DSLs;
and (iii) can orchestrate complex and efficient libraries implemented in
other languages.

2. We then used the pydop python library [22] to handle the variability aspect
of our DSL. Indeed, this library can construct Delta-Oriented Product
Lines over any python object, and was thus particularly suited for our
approach, where our DSL manipulates abstract function specification and
terms.

3. For the term and signature part of our DSL, we implemented an ad-
hoc rewriting tool in C++. The main reason we implemented an ad-hoc
tool instead of using an existing rewriting engine is because of the DAG
structure of the dataflows. Indeed, existing rewriting engines like Maude
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Conservative Conservative Conservative Conservative

inlet outpres primitive primitive

BC(Inlet) BC(Outpres) Primitive Primitive

convectiveFluxBC convectiveFlux

FxcBC Fxc

fluxBalance Balance explicitIncrement Rhs

Figure 10: Tree version of the dataflow presented in Figure 3

create a tree instead of a DAG when applying the rewriting rules. For
instance, Figure 10 would be the dataflow generated by Maude in place
of the dataflow in Figure 3: all shared subtrees are duplicated. While
this difference is not relevant semantically (two objects representing the
same term are logically the same and we can easily identify the identical
subtrees to construct the DAG dataflow), on large dataflows the equivalent
tree version generated by existing rewriting engines would have a size that
is orders of magnitude larger than the expected dataflow, and would take
significantly more time to generate. Our ad-hoc tool implements a naive
algorithm for rewriting rule application, but ensures that each shared term
is created only once.

5.2. Testing Protocol

Since there are no standard benchmarks for dataflow generation, we con-
structed 597 dataflow generation problems to evaluate. We first implemented a
test product line with the elsA development team, which contains a subpart of
the configuration space available in elsA. This SPL extends our running example
and contains 97 features, 173 functions and 1493 deltas.

Then, following our dataflow generation pipeline presented in Figure 1, every
run of our prototype needs two inputs: a product and a value to compute. For
the product, we use the uniform random configuration generator unigen [23,
24] to randomly pick 597 products of the test product line1. For the data to
compute, we simply chose the value Rhs in all our runs.

Finally, each of the 597 runs of our prototype were executed 10 times on
a single 2.5GHz Intel Xeon CPU with 32GB of memory that was hosting a
CentOS 8 operating system.

1The version of unigen that was available for our tests had a bug that made the tool fail
whenever we specified the number of products to generate. So we used the default behaviour
of the tool, which gave us the arbitrary number of 597 generated products. We also tried to
use the smarch tool [25], but never succeeded to compile it.
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5.3. Results

To facilitate the discussion of the experiments, the figures presenting our
results use a fixed ordering of the 597 dataflow generation problems we consid-
ered along the x-axis; this ordering is determined by the size (the sum of the
number of nodes and the number of edges) of the generated dataflow for a given
problem.

Figure 11 illustrates the size of the generated dataflows. The smallest gen-
erated dataflow has 129 nodes and 284 edges, while the largest has 426 nodes
and 1205 edges. Moreover, in all dataflows, the number of edges is between
two and three times the number of nodes. This confirms our concern discussed
in Section 5.1 that many subtrees of the dataflows are shared, and so existing
rewriting engines would not perform efficiently on these dataflow generation
problems. Indeed, we computed the size of the trees these engines would have
generated: they would contain between 26043 and 150983896 nodes with an
average of 10 million nodes.

Figure 12 presents the average computation time for the product line flat-
tening and rewriting steps of our prototype. The product line flattening step
takes between 51ms (executing 342 deltas) and 168ms (executing 902 deltas);
and the rewriting step (performing the dataflow generation itself) takes between
2ms and 8ms. The difference of execution time between these two steps can be
explained by the fact that the SPL part of our prototype is implemented in
python while the rewriting part is implemented in C++.

Moreover while the time taken by the product line flattening step is bounded
for a given SPL by the time needed to execute all its deltas, the rewriting step
can take an arbitrary amount of time, since the Value to Compute is arbitrary.
Figure 13 shows that in our test, the execution time for this step evolves linearly
w.r.t. the number of nodes in the dataflow. Hence, we believe that our approach
can scale to larger dataflows.
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5.4. Threats to Validity

We now conclude this section by discussing the external and internal threats
to the validity of our experiments.

5.4.1. External Validity

The results of the evaluation strongly depend on the dataflow generation
problems considered in our test protocol. Due to the lack of standard bench-
marks, we only performed our tests on one SPL, on which we considered 597
randomly selected dataflow generation problems. We plan to investigate other
dataflow generation problems: in particular, in addition to problems coming
from CFD applications, we would like to study other application domains to
get more insights. For instance, it would be interesting to investigate how the
shape of the dataflows varies w.r.t. the application domain.
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5.4.2. Internal Validity

Our prototype is constructed on top of two separate libraries: pydop and our
ad-hoc rewriting engine. Using other existing tools, like FeatureIDE [26] (for
the SPL part of our approach) and any of the existing rewriting engines [27] may
affect the execution time of our approach. We plan to repeat the experiments
using other tools for comparison.

6. Related Work

Dataflows have a structure that is similar to statecharts and transition sys-
tems, on top of which variability has already been defined, e.g., by using DOP
on statecharts, resulting in delta-statecharts [28]; and the annotative approach
on transition systems, resulting in Featured Transition Systems (FTSs) [29, 30].
While delta-statecharts and FTSs could in principle be used for modelling the
dataflow model of our running example, the variation on the value of one option
could have consequences all over the dataflow since a variable function could
appear in many place in a dataflow. For instance, the grad function is variable,
with different inputs and outputs, and can be used in many different tasks. Con-
sequently, the use of delta-statecharts or FTSs would imply that the variability
of grad must be duplicated in every task in which it is used, which is clearly not
satisfactory.

Different approaches to implement SPL on specifications and code have been
proposed in the literature. In our DSL we used the delta-oriented approach. We
refer to a couple of surveys [31, 32] for a discussion of the different approaches.

Our approach for dataflow generation was largely inspired by work on type
inhabitation [33, 34, 35], in particular [35] uses rewriting to generate terms of
a given type. Indeed, if we consider that the Value to Compute in Figure 1
is a type, then constructing a dataflow computing this value corresponds to
finding a term (i.e., a composition of functions) that has this type. Finally,
in [36], the authors use type inhabitation to help programmers to use complex
libraries: their tool suggests expressions of the expected type constructed from
the libraries’ functions.

7. Conclusion

We presented an approach to automatically generate dataflow models in
an SPL setting, based on DOP and term rewriting. We provided an analysis
that allows to check that for any variant of the SPL and any data to compute, a
corresponding dataflow model can be generated. Moreover, we also implemented
a prototype for our approach and evaluated its execution time.

In future work, we would like to address several limitations of our current
approach. First, our running example considered a mesh with at most three
boundaries of different types: in practice, there can be an arbitrary number
of boundaries with arbitrary types. Note that this flexibility makes it so that
dataflows do not have an upper bound on their size, since there is at least one
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task per boundary. Consequently annotative approaches on graphs like FTS,
while not being satisfactory in this work, can no longer be used.

Moreover, we would like to investigate extending our DSL with the possibility
to include delta operations on the S-sorted signature. That way, we could
express more easily the fact that the signature is constructed together with the
rest of the variant (e.g., function declaration corresponds to adding a new term
constructor of sort FunctionID) instead of having a signature that is the same
for all variants of an SPL. Finally, we intend to conclude the evaluation of our
approach by implementing and testing the analyses described in this paper.
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A. Proofs

A.1. Preliminary Notations

Given an SPL L, we write:

• spec(L) for the constraint fm(L) ∧ act(L)

• predAPP•(L) for the constraint spec(L) ⇒ predAPP(L)

• decl•(L) for the constraint spec(L) ⇒ decl(L)

• nFree•(L) for the constraint spec(L) ⇒ nFree(L)

• nAmbiguous•(L) for the constraint spec(L) ⇒ nAmbiguous(L)

• terminating•(L) for the constraint spec(L) ⇒ terminating(L)

A.2. Correspondence Product Model

Lemma 1. Given a specification SPL L with F its set of features, and a product
p of L, then there exists exactly one model I of spec(L) such that p = {o | o ∈
F∧I(o)}. More precisely, I is such that: i) the domain of I is the set of features
F plus the set of delta names in L; ii) all the variables corresponding to features
selected for that product are set to true; iii) all the variables corresponding to
modules activated for the construction of this product’s variant are set to true;
and iv) all the other variables in dom(I) are set to false.

Reciprocally, if spec(L) has a model I, then the set {o | o ∈ F ∧ I(o)} is a
product of L.

Proof. This follows direct from the way the formula spec(L) is constructed.

A.3. Proof of Theorem 1 (Applicability Consistency)

Theorem 1. (Applicability consistency). Consider an SPL L and the following
two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ predAPP(L) is valid.

2. All variants of L can be generated.

Then Property 1 is equivalent to Property 2.

Proof. Let first consider that L has no product: by Lemma 1, spec(L) has no
model, and so the constraint predAPP•(L) is valid. Moreover, since L has no
product, it also has no variant, and so all of them can be generated. Hence,
both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product: we prove
the equivalence by proving each implication independently.
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Case 1 ⇒ 2. Suppose chosen a specific product p of L: by Lemma 1, there
exists exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Because
predAPP•(L) is valid and dom(I) = fv(predAPP•(L)), I is also a model of
predAPP(L). Let us now consider the sequence d1, . . . , dn of delta that are
applied to generate the variant corresponding to p (d1 being the core of L): we
prove that for all i ∈ [1..n] no errors occurs in the deltas d1, . . . , di by induction
on i. With i = 1, as d1 is the core of L, it only adds variables and function
specifications to an empty specification. It thus trivially succeeds. Let now
consider i = j + 1 with d1, . . . , dj containing no errors. We have eight cases.

1. If di contains no operations, then di succeed for any input specification,
and so d1, . . . , di contains no errors.

2. If di adds a function F with name(F ) = f : by construction di ∈ add(L, f).
Since I is a model of predADD(L, f) and I(di) is true, we have that
I ⊢

∧
d′ d′ ⇒

∨
d′′ d′′ with d′ ≺ d′′ ≺ di, d

′ ∈ add(L, f) and d′′ ∈ rem(L, f).
Hence, if there exists 1 ≤ k ≤ j with dk ∈ add(L, f), there must exist
k < l ≤ j with dl ∈ rem(L, f). Consequently, the specification in input of
di does not contain f , and so the operation succeeds.

3. If di removes a function F with name(F ) = f : by construction di ∈
rem(L, f). Since I is a model of predREM(L, f) and I(di) is true, we
have that I ⊢

∨
d′′(d′′ ∧

∧
d′ ¬d′) with d′′ ≺ d′ ≺ di, d

′ ∈ rem(L, f) and
d′′ ∈ add(L, f). Hence, there must exist 1 ≤ k ≤ j with dk ∈ add(L, f),
such that no dl ∈ rem(L, f) with k < l ≤ j. Consequently, the specification
in input of di does contain f , and so the operation succeeds.

4. If di modifies a function F with name(F ) = f : by construction di ∈
mod(L, f). Since I is a model of predMOD(L, f) and I(di) is true, we
have that I ⊢

∨
d′′(d′′ ∧

∧
d′ ¬d′) with d′′ ≺ d′ ≺ di, d

′ ∈ rem(L, f) and
d′′ ∈ add(L, f). Hence, there must exist 1 ≤ k ≤ j with dk ∈ add(L, f),
such that no dl ∈ rem(L, f) with k < l ≤ j. Consequently, the specification
in input of di does contain f , and so the operation succeeds.

5. If di adds an input T in the function f : by construction

di ∈ add(L, f.input.T ) ∩ mod(L, f)

Since di ∈ mod(L, f) with Case 4 we can deduce that f is in the input
specification of di, and with a reasoning similar to Case 2, we can show
that T is not an input of f in that specification. Hence the operation
succeeds.

6. If di removes an input T from the function f : by construction

di ∈ rem(L, f.input.T ) ∩ mod(L, f)

Since di ∈ mod(L, f) with Case 4 we can deduce that f is in the input
specification of di, and with a reasoning similar to Case 3, we can show
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that T is an input of f in that specification. Hence the operation succeeds.

7. If di adds an output T in the function f : by construction

di ∈ add(L, f.output.T ) ∩ mod(L, f)

Since di ∈ mod(L, f) with Case 4 we can deduce that f is in the input
specification of di, and with a reasoning similar to Case 2, we can show
that T is not an output of f in that specification. Hence the operation
succeeds.

8. If di removes an output T from the function f : by construction

di ∈ rem(L, f.output.T ) ∩ mod(L, f)

Since di ∈ mod(L, f) with Case 4 we can deduce that f is in the input
specification of di, and with a reasoning similar to Case 3, we can show that
T is an output of f in that specification. Hence the operation succeeds.

Consequently, all possible operations in di succeed, and so d1, . . . , di contains
no errors.

Case 1 ⇐ 2. We prove this result by contraposition: we assume predAPP•(L)
is not valid and prove that there is one variant that cannot be generated.

Let us consider I with dom(I) = fv(predAPP•(L)) such that I is not a model
of predAPP•(L). Consequently, I is a model of spec(L) and by Lemma 1,
p = {o | o ∈ F ∧ I(o)} is a product of L. Let now consider the sequence
d1, . . . , dn of delta that are applied to generate the variant corresponding to p
(d1 being the core of L). For all ρ ∈ P(L) we define the following sets:

S(add, ρ) = {di | ∃1 ≤ j < i.di, dj ∈ add(L, ρ) ∧ ∀j < k < i.dk ̸∈ rem(L, ρ)}
S(modify, ρ) = {di | di ∈ rem(L, ρ)

∧ ∀1 ≤ j < i.∃j < k < i.dj ∈ add(L, ρ) ∧ dk ∈
⋃

ρ′∈prefix(ρ) rem(L, ρ
′)}

S(remove, ρ) = {di | di ∈ mod(L, ρ)
∧ ∀1 ≤ j < i.∃j < k < i.dj ∈ add(L, ρ) ∧ dk ∈

⋃
ρ′∈prefix(ρ) rem(L, ρ

′)}

From the definition of these sets: if there exist ρ ∈ P(L) such that I does
not model predADD(L, ρ), then S(add, ρ) is not empty; if there exist ρ ∈ P(L)
such that I does not model predREM(L, ρ), then S(remove, ρ) is not empty;
and if there exist ρ ∈ P(L) such that I does not model predMOD(L, ρ), then
S(modify, ρ) is not empty; Since I does not model predAPP•(L), it does not
model predAPP(L), which implies that the following set is not empty:

S =
⋃

ρ∈P(L)

⋃
op∈{add,modify,remove}

S(op, ρ)

Let us consider i minimal with di ∈ S: we have that d1, . . . , di−1 succeeds. Let
us moreover consider the first operation in di, identified by a pair (op, ρ) with
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op ∈ {add, modify, remove} and ρ ∈ P(L) such that di ∈ S(op, ρ). We have
three cases:

1. op = add. By definition of S(add, ρ), we have that di ∈ add(L, ρ) and
there exists dj such that j < i and dj ∈ add(L, ρ) and for all j < k < i,
dk ̸∈ rem(L, ρ). This means that the function specification on which di is
applied does contain ρ. Hence, by the Rules 1, 4, 6, and 7 of Figure 9, di
fails.

2. op = remove. By definition of S(remove, ρ), we have that di ∈ rem(L, ρ)
and for all dj such that j < i and dj ∈ add(L, ρ), there exist dk with j <
k < i and dk ∈

⋃
ρ′∈prefix(ρ). This means that the function specification

on which di is applied does not contain ρ. Hence, by the Rules 2, 5, 8,
and 9 of Figure 9, di fails.

3. op = modify. By definition of S(modify, ρ), we have that di ∈ mod(L, ρ)
and for all dj such that j < i and dj ∈ add(L, ρ), there exist dk with j <
k < i and dk ∈

⋃
ρ′∈prefix(ρ). This means that the function specification

on which di is applied does not contain ρ. Hence, by the third rule of
Figure 9, di fails.

A.4. Presence Constraints

Lemma 2. Given a specification SPL L with F its set of features and a product
p of L such that the corresponding variant can be generated, consider the model
I of spec(L) corresponding to p with Lemma 1. Then for all ρ ∈ P(L), the two
following statements are equivalent:

1. I is a model of Pre(L, ρ).

2. The variant corresponding to p contains ρ.

Proof. We prove the equivalence by proving each implication independently.

Case 1 ⇒ 2. Since I is a model of Pre(L, ρ), there exists d ∈ add(L, ρ) with I(d)
and for each delta name d′ such that d ≺ d′and d′ ∈ rem(L, ρ), we have ¬I(d′).
By construction of the sets add(L, ρ) and rem(L, ρ), this means that during the
variant generation, ρ is added by d and is never removed afterward. Hence ρ is
present in the variant.

Case 1 ⇐ 2. We prove this result by contraposition: we suppose that I is
not a model of Pre(L, ρ) and prove that the variant cannot contain ρ. Since
I is not a model of Pre(L, ρ), we have that for all d ∈ add(L, ρ) with I(d),
there exists d′ ∈ rem(L, ρ) with d ≺ d′ and I(d′). By construction of the sets
add(L, ρ) and rem(L, ρ), this means that during the variant generation, every
time a delta d adds ρ, the path ρ is removed afterward. Hence ρ is not present
in the variant.
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Lemma 3. Given a specification SPL L with F its set of features and a product
p of L such that the corresponding variant can be generated, consider moreover
the model I of spec(L) corresponding to p with Lemma 1. Then for all f ∈ P(L)
and v ∈ fv(L, f), the two following statements are equivalent:

1. I is a model of PrI(L, f, v).

2. The variant corresponding to p contains the function f and one of the
inputs of f contains the variable v.

Proof. By construction of PrI(L, ρ), I validates it iff there exists T ∈ input(L, f)
with v ∈ fv(T ) and I ⊢ Pre(f.input.T ). By Lemma 2, this is equivalent to
f.input.T being present in the generated variant. By construction of paths,
this is equivalent to f being included in the generated variant, and v begin a
variable of an input of f .

Lemma 4. Given a specification SPL L with F its set of features and a product
p of L such that the corresponding variant can be generated, consider moreover
the model I of spec(L) corresponding to p with Lemma 1. Then for all f ∈ P(L)
and v ∈ fv(L, f), the two following statements are equivalent:

1. I is a model of PrO(L, f, v)

2. the variant corresponding to p contains the function f and one of the
outputs of f contains the variable v

Proof. This proof is similar to that of Lemma 3, replacing input by ouptut.

Lemma 5. Given a specification SPL L with F its set of features and a product
p of L such that the corresponding variant can be generated, consider moreover
the model I of spec(L) corresponding to p with Lemma 1. Then for all f ∈ P(L)
and v ∈ fv(L, f), the two following statements are equivalent:

1. I is a model of AbsO(L, f, v).

2. The variant corresponding to p contains the function f and one of the
outputs of f does not contain the variable v.

Proof. This proof is similar to that of Lemma 3, replacing input containing v
by ouptut not containing v.

A.5. Specification Validation: Proofs of Theorems 2 (Variable Presence), 3 (In-
put Variable Relevance), and 4 (Output Variable Dependency)

Theorem 2. (Variable presence). Consider an SPL L such that all variants
are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ decl(L) is valid.

2. All variants of L are such that all their variables are declared.

Then Property 1 is equivalent to Property 2.
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Proof. Let us first consider that L has no product: by Lemma 1, spec(L) has
no model, and so the constraint decl•(L) is valid. Moreover, since L has no
product, it also has no variant, and so all of them have their variables declared.
Hence, both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product: we prove
the equivalence by proving each implication independently.

Case 1 ⇒ 2. Suppose chosen a specific product p of L: by Lemma 1, there
exists exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Because
decl•(L) is valid and dom(I) = fv(decl•(L)), I is also a model of decl(L). Let us
now consider a variable v used in the variant corresponding to p: by definition,
there exist in the variant a term T in input or output of a function f that
contains v. Without lost of generality, let consider that T is an input of f :
by Lemma 2, we have that I ⊢ Pre(L, f.input.T ). Hence, since I is a model of
decl(L), we must haveI ⊢ Pre(L, v′) for all v′ ∈ fv(T ), including v. Consequently,
by Lemma 2, we have that v is declared in the variant.

Case 1 ⇐ 2. We prove this result by contraposition: we suppose that decl•(L)
is not valid and prove that there is one variant that does not declare a used
variable.

Let us consider I with dom(I) = fv(decl•(L)) such that I is not a model of
decl•(L). Consequently, I is a model of spec(L), not a model of decl(L), and by
Lemma 1, p = {o | o ∈ F ∧ I(o)} is a product of L. Since I is not a model of
decl(L) there exists f ∈ P(L) and either:

• an input T of f and v ∈ fv(T ) with I ⊢ Pre(f.input.T ) and I ⊬ v; or

• an output T of f and v ∈ fv(T ) with I ⊢ Pre(f.output.T ) and I ⊬ v.

In both cases, by Lemma 1, the variant corresponding to p contains a term T
with a variable v that is not declared.

Theorem 3. (Input variable relevance). Consider an SPL L such that all
variants are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nFree(L) is valid.

2. All variants of L validate Equation 1 from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L) has
no model, and so the constraint nFree•(L) is valid. Moreover, since L has no
product, it also has no variant, and so all of them validate Equation 1. Hence,
both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product: we prove
the equivalence by proving each implication independently.
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Case 1 ⇒ 2. Suppose chosen a specific product p of L: by Lemma 1, there
exists exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Because
nFree•(L) is valid and dom(I) = fv(nFree•(L)), I is also a model of nFree(L).
Let now consider f declared in the variant corresponding to p, and an input term
t of f containing a variable v. By Lemma 3, I is a model of PrI(L, f, v), which
implies that it is also a model of PrO(L, f, v) ∧ ¬AbsO(L, f, v). By Lemma 4
and 5, this means that there exists an output of f that contains v, and there
are no output of f that does not contain that variable.

Case 1 ⇐ 2. We prove this result by contraposition: we suppose that nFree•(L)
is not valid and prove that there is one variant that does not validate Equation 1.

Let us consider I with dom(I) = fv(nFree•(L)) such that I is not a model
of nFree•(L). Consequently, I is a model of spec(L), not a model of nFree(L),
and by Lemma 1, p = {o | o ∈ F ∧ I(o)} is a product of L. Since I is not a
model of nFree(L) there exists f ∈ P(L) and v ∈ fv(L, f) such that I is a model
of PrI(L, f, v) and at least one of the following statement holds:

• I does not model PrO(L, f, v) which implies by Lemma 4 that no output
of f contains v; or

• I models AbsO(L, f, v) which implies by Lemma 5 that there exists an
output of f that does not contain v.

Theorem 4. (Output variable dependency). Consider an SPL L such that all
variants are generable. Moreover, consider the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ nAmbiguous(L) is valid.

2. All variants of L validate Equation 2 from Section 3.4.2.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L) has
no model, and so the constraint nAmbiguous•(L) is valid. Moreover, since L
has no product, it also has no variant, and so all of them validate Equation 2.
Hence, both Property 1 and Property 2 are valid statements.

Let us now consider that the product line has at least one product: we prove
the equivalence by proving each implication independently.

Case 1 ⇒ 2. Suppose chosen a specific product p of L: by Lemma 1, there
exists exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Because
nAmbiguous•(L) is valid and dom(I) = fv(nAmbiguous•(L)), I is also a model
of nAmbiguous(L). Let now consider f declared in the variant corresponding to
p, and an input term t of f containing a variable v. By Lemma 3, I is a model of
PrI(L, f, v), which implies that it is also a model of PrO(L, f, v). By Lemma 4,
that there exists an output of f that contains v. With a similar approach, we
easily prove that all variables in the outputs of f are also in its inputs.
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Case 1 ⇐ 2. We prove this result by contraposition: we assume nAmbiguous•(L)
is not valid and prove that there is one variant that does not validate Equation 2.

Let us consider I with dom(I) = fv(nAmbiguous•(L)) such that I is not a
model of nAmbiguous•(L). Consequently, I is a model of spec(L), not a model
of nAmbiguous(L), and by Lemma 1, p = {o | o ∈ F ∧ I(o)} is a product of L.
Since I is not a model of nAmbiguous(L) there exists f ∈ P(L) and v ∈ fv(L, f)
such that I models either:

• PrI(L, f, v) ∧ ¬PrO(L, f, v): by Lemma 3 and 4, this means that v is in
an input of f but not in any of its outputs; or

• PrO(L, f, v) ∧ ¬PrI(L, f, v): by Lemma 3 and 4, this means that v is in
an output of f but not in any of its inputs.

A.6. Proof of Theorem 5 (Terminating Specification)

The proof presented in this section is based on one of the main theorems
of [19]. Hence, before presenting our proof, we first present an extended version
of Definition 8 that introduces a new characterization of order relations. We then
recall the concept of dependency pairs, which is the core contribution of [19].
Finally, we recall the theorem on which our proof is based.

A.6.1. Order relations

Definition 9 (Preorder, partial order, and well-founded partial order). Given
a set A, and a binary relation R ⊆ A×A. R is a preorder (a.k.a. quasi-order)
iff it is reflexive and transitive. R is a partial order iff it is antisymmetric and
transitive. Morever, R is a well-founded order iff it is a partial order and for
all infinite sequence (ai)i∈N there exists i ∈ N with (ai, ai+1) ̸∈ R.

Finally, given a preorder ≤, we write ≤↓ the partial order {(x, y) | (x, y) ∈≤
∧(y, x) ̸∈≤}.

Definition 10 (Substitution-closed preorder over a set of terms). Given a set
of terms T = T (F, V ), a preorder relation ≤ over T is weakly monotonic iff
s ≤ t implies f(s1, . . . , si, s, si+1, . . . sn) ≤ f(s1, . . . , si, t, si+1, . . . sn) for all
s1, . . . , sn ∈ T . Moreover, ≤ is closed under substitution iff for all (l, r) ∈≤
and all substitution σ, (σ(l), σ(r)) ∈≤.

A.6.2. Dependency pairs

Definition 11 (T -TRS and terminanting T -TRS). Given a set of terms T =
T (F, V ), a T -term rewriting system (T -TRS) is a set R ⊆ T × T such that for
all (l : sl, r : sr) ∈ R, l ̸∈ V , fv(r) ⊆ fv(l) and {(sl, sr), (sr, sl)} ∩ < ̸= ∅.

A T -TRS R is terminating there is no infinite sequence of terms {ti)}i∈N
such that for all i ∈ N, there exists a subterm t′i of ti, a substitution σ and a
rewriting rule (l, r) ∈ R such that t′i = σ(l) and ti+1 = σ(r).

Definition 12 (Dependence pair of a T -TRS). Given a set of terms T =
T (F, V ) and a term t = f(t1, . . . , tn) ∈ T \ V , the root symbol of t, written
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root(t) is f . Given a T -TRS R and writing F = {Fa}a∈A, the set of defined
symbols in R is the indexed family F [R] = {F [R]a}a∈A with

F [R]a = {f | f ∈ Fa ∧ ∃(l, r) ∈ R, f = root(l)}

For all a ∈ A, we assume a set of fresh symbols F [R]#a = {f# | f ∈ F [R]a},
and for all terms t = f(t1, . . . , tn) with f ∈ F [R], we write t# for the term
f#(t1, . . . , tn).

A dependency pair of R is a pair (l#, r#) such that (l, r′) ∈ R and r is a
subterm of r′. We write DP(R) the set of dependency pairs of R.

Theorem 6 ([19, Theorem 7]). Given a set of terms T = T (F, V ) and a T -
TRS R, R is terminating iff there exists a weakly monotonic preordering ⪯· such
that both ⪯· and ⪯·↓ are closed under substitution, ⪯·↓ is well-founded, and both

• r ⪯· l for all rules (l, r) ∈ R; and

• r ⪯·↓ l for all dependency pairs (l, r) ∈ DP(R)

A.6.3. Proof of Theorem 5 (terminating specification)

Lemma 6. Given a specification SPL L with F its set of features, and a product
p of L such that the corresponding variant can be generated with all its variables
declared. Then the term rewriting system generated from that variant is

R = { (data(o), data(o, task(f, data(i1), . . . , data(in))) | f ∈ P(L)

∧ I ⊢ Pre(L, f.output.o) ∧ {i1, . . . , in} = {r | I ⊢ Pre(L, f.input.r)} }

with I defined by Lemma 1. Moreover, we have

DP(R) = { (data#(o), data#(i)) |
∃f ∈ P(L), I ⊢ Pre(L, f.output.o) ∧ I ⊢ Pre(L, f.input.i) }

Proof. The first statement is a corollary of Lemma 2. The second one is a direct
application of the definition of the dependency pairs.

Theorem 5. (Terminating specification). Consider an SPL L such that all
variants are generable and with all the variables declared. Moreover, consider
the following two properties on L:

1. The constraint (fm(L) ∧ act(L)) ⇒ terminating(L) is valid.

2. Each variant of L results in a terminating TRS.

Then Property 1 is equivalent to Property 2.

Proof. Let us first consider that L has no product: by Lemma 1, spec(L) has
no model, and so the constraint terminating•(L) is valid. Moreover, since L has
no product, it also has no variant, and so all of them result in a terminating
TRS. Hence, both Property 1 and Property 2 are valid statements.
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Let us now consider that the product line has at least one product: we prove
the equivalence by proving each implication independently.

Case 1 ⇒ 2. Suppose chosen a specific product p of L: by Lemma 1, there
exists exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Because
terminating•(L) is valid and dom(I) = fv(terminating•(L)), I is also a model
of terminating(L). Hence, there exist a partial order < on terms that is well-
founded, weakly monotonic, closed under substitution and such that for all f ∈
P(L), all t ∈ output(L, f) with I ⊢ Pre(L, f.output.t), and all t′ ∈ input(L, f)
with I ⊢ Pre(L, f.input.t′), we have t′ < t. Since the S-sorted signature F is
dataflow-safe, < contains no terms with data or task symbols. Let us define ≡
being the transitive, reflexive closure of R that is closed under substitution. We
moreover define the partial order ≺· as follows:

≺· = < ∪{ (data(l), data(r)) | (l, r) ∈< }∪{ (data#(l), data#(r)) | (l, r) ∈< }

Let ⪯·=≺· ∪ ≡. By construction of R, it is a preorder and t ⪯↓ =≺·.
With Lemma 6, is thus clear that ⪯· validates Theorem 6.

Case 1 ⇐ 2. Suppose chosen a specific product p of L: by Lemma 1, there exists
exactly one model I of spec(L) such that p = {o | o ∈ F ∧ I(o)}. Since the
TRS R resulting of the variant corresponding to p terminates, we can consider
the preorder ⪯· given by Theorem 6. Let us recall that ⪯·↓ is a partial order on
DP(R) that is well founded, weakly monotonic, and closed under substitution.
Hence the following relation < is also founded, weakly monotonic, and closed
under substitution:

<=⪯·↓ ∪{ (l, r) | (data#(l), data#(r)) ∈⪯·↓ }

By Lemma 6, we thus have that < is such that for all f ∈ P(L), all t ∈
output(L, f) with I ⊢ Pre(L, f.output.t), and all t′ ∈ input(L, f) with I ⊢
Pre(L, f.input.t′), we have t′ < t.
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