
A Survey on Service Composition Approaches:
From Industrial Standards to Formal Methods?

Maurice H. ter Beek1, Antonio Bucchiarone1,2, and Stefania Gnesi1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI–CNR)
Area della Ricerca CNR di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy

[maurice.terbeek,antonio.bucchiarone,stefania.gnesi]@isti.cnr.it
2 IMT Graduate School, Via San Micheletto 3, 55100 Lucca, Italy

Abstract. Composition of services has received much interest to sup-
port business-to-business and enterprise applications integration. The
business world has developed a number of XML-based standards to for-
malize the specification of web services, their composition and their exe-
cution. On the other hand, the semantic web community focuses on rea-
soning about web resources by explicitly declaring their preconditions
and effects with terms defined precisely in ontologies. Current service
composition approaches range from practical languages aspiring to be-
come industrial standards (e.g. BPEL and OWL-S) to more theoretical
models and languages (e.g. automata, Petri nets, and process algebras).
In this paper we present a survey of existing proposals for service com-
position and compare them among each other with respect to some key
requirements. We hope this helps service composition designers and de-
velopers to focus their efforts and to deliver lasting solutions, while at
the same time addressing the technology’s critical needs.

1 Introduction

Service-Oriented Computing (SOC) is an emerging paradigm for distributed
computing and e-business processing that has its origins in object-oriented and
component computing. Services are computational entities that are autonomous
and heterogeneous (e.g. running on different platforms or owned by different
organizations). Services are described using appropriate service description lan-
guages, published and discovered according to predefined protocols, and com-
bined using an engine that coordinates the interactions among collaborating
services. Web service technology is a widespread and accepted instantiation of
SOC that should facilitate the integration of newly built and legacy applications
both within and across organizational boundaries, avoiding difficulties due to
different platforms, heterogeneous programming languages, etc.. Exploiting this
kind of ubiquitous network fabric should result in an increased productivity and
in a reduction of costs in business-to-business (B2B) processes [37].

? This work was partly supported by the EU project IST-3-016004-IP-09 Sensoria
(Software Engineering for Service-Oriented Overlay Computers).



2 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

Web services are distributed and independent pieces of code solving specific
tasks and communicating with each other through the exchange of messages.
They are built on XML-based open standards, promise the interoperability of a
variety of applications running on heterogeneous platforms, and enable dynamic
connections and the automation of business processes—both within and across
enterprises—for enterprise application integration and B2B integration.

This raises the need for web service composition to provide the mechanism
to fulfill the complexity of the execution of business processes. Several organi-
zations are currently working on new service composition proposals. The most
important existing languages are IBM’s WSFL [44] and Microsoft’s XLANG [52],
which have converged into the Business Process Execution Language for Web
Services (BPEL [16]). BPEL is now a working draft by the Organization for the
Advancement of Structured Information Standards (OASIS [28]). Current web
service technologies however fall short on their restricted capability to support
static service composition. Their limit comes from the total absence of seman-
tic representations of the services available on the Internet. In response to these
limitations, a number of solutions have been proposed by the semantic web com-
munity, among which OWL-S [1].

Some well-known problems related to web services are how to specify them in
a formal and expressive enough language, how to compose them (automatically),
how to discover them through the web, and how to ensure their correctness.
Mathematical techniques tailored for the specification and verification of sys-
tems are known as formal methods. This field of research cuts across many areas
of computer science and comes with an impressive body of literature on numerous
specification languages and verification tools. Formal methods are particularly
well suited to address most of the aforementioned issues (e.g. composition and
correctness). Recently a variety of concrete proposals to formally describe, com-
pose and verify web services have emerged. The majority of these are based on
state-action models (e.g. labelled transition systems, timed automata, and Petri
nets) or process models (e.g. π-calculus and other calculi).

In this paper we present a survey of existing proposals for service compo-
sition and compare them among each other with respect to some key require-
ments. We hope this helps service composition designers and developers to focus
their efforts and to deliver lasting solutions, while at the same time address-
ing the technology’s critical needs. The paper is structured as follows. After
this introduction, we present some approaches to service-oriented composition
(e.g. BPEL and OWL-S) in Section 2. In Section 3 we move the attention to the
formal methods that can be used for secure service composition. We introduce a
selective overview of current methods: timed automata, Petri nets, and process
algebras. We subsequently compare all these approaches with respect to some
service-composition requirements in Section 4. Finally, Section 5 reports some
conclusive considerations and some indications for future work.



A Survey on Service Composition Approaches 3

2 Service-Oriented Composition: Current Approaches

Composition of services has received much interest to support B2B. The busi-
ness world has developed a number of XML-based standards to formalize the
specification of web services, their composition, and their execution. The se-
mantic web community focuses instead on reasoning about web resources by
explicitly declaring their preconditions and effects by means of terms defined
precisely in ontologies. The objective of this section is to introduce the current
service-composition approaches in both these worlds.

2.1 Web Services and Semantic Web Services

Web Services are self-contained, modular units of application logic which provide
business functionality to other applications via an Internet connection. They
support the interaction of business partners and their processes by providing a
stateless model of “atomic” synchronous or asynchronous message exchanges.
Web service interactions are characterized by two specification languages: the
Simple Object Access Protocol (SOAP) [67] and the Web Services Definition
Language (WSDL) [12]. The former is a platform- and language-independent
communication protocol that defines an XML-based format for web services to
exchange information over HTTP by using remote procedure calls. The latter is
an XML-based language which defines the interface that a web service exhibits
in order to be invoked by other services. WSDL thus provides a function-centric
description of web services covering inputs, outputs, and exception handling.

The semantic web provides a process-level description of services which, in
addition to functional information, models the preconditions and postconditions
of the process so that the evolution of the domain can be logically inferred. It
relies on ontologies to formalize the domain concepts which are shared among
services. The semantic web efforts (see, e.g., [7, 66])—especially the recent trend
towards semantic web services [50]—aim at fully automating all stages of the web
services lifecycle. The semantic web considers the World Wide Web as a globally
linked database where web pages are marked with semantic annotations. These
annotations are assertions about web resources and their properties expressed in
the Resource Description Format (RDF) [10]. Along with RDF one can use RDF
Schema (RDFS) to express classes, properties, ranges, and documentation for
resources and the OWL-S (formerly DAML-S [1]) ontology to represent further
relationships and/or properties like equivalences, lists, and data types. With the
semantic web infrastructure in place, practical and powerful applications can
be written that use annotations and suitable inference engines to automatically
discover, execute, compose, and interoperate web services.

Given the different information that is available to specify web services in the
two worlds described above, we differentiate between static and dynamic service
composition. In this paper we compare some of the approaches in these worlds
with formal methods that can be used to guarantee their secure composition.
This leads us to consider the division portrayed in Figure 1.



4 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

Fig. 1. Services Composition Models

2.2 Static Service Composition

A relevant feature for web services is the mechanism for their reuse when complex
tasks are carried out. It is often the case that new processes need to be defined
out of finer-grained subtasks that are likely available as web services. To this
aim, extensions of the web service technology are considered. Composition rules
describe how different services can be composed into a coherent global service. In
particular, they specify the order in which services are invoked and the conditions
under which a certain service may or may not be invoked.

Two main approaches are currently investigated for static service compo-
sition. The first approach, referred to as web service orchestration, combines
available services by adding a central coordinator (the orchestrator) that is re-
sponsible for invoking and combining the single sub-activities. The second ap-
proach, referred to as web service choreography, does not assume the exploitation
of a central coordinator but rather defines complex tasks via the definition of
the conversation that should be undertaken by each participant. Following this
approach, the overall activity is achieved as the composition of peer-to-peer in-
teractions among the collaborating services. While several proposals exist for or-
chestration languages (e.g. BPML [34] and BPEL [16]), choreography languages
are still in a preliminary stage of definition. An initial proposal—WS-CDL [38]—
was issued by the World Wide Web Consortium (W3C) in December 2004.

BPEL is an XML-based language supporting process-oriented service compo-
sition [16, 21]. Originally developed by BEA, IBM, Microsoft, SAP, and Siebel,
BPEL is currently being standardized by OASIS [28]. BPEL composition inter-



A Survey on Service Composition Approaches 5

acts with a subset of web services to achieve a given task. The composition result
is called a process, participating services are partners, and message exchanges
(or intermediate result transformations) are called activities. A process interacts
with external partner services through a WSDL interface.

BPEL has several element groups, the basic ones being process initiation
(<process>), the definition of the services participating in the composition
(<partnerLink>), synchronous and asynchronous calls (<invoke>, <re-
ceive>), intermediate variables and results manipulation (<variable>, <as-
sign>, <copy>), exception handling (<scope>, <faultHandlers>), se-
quential and parallel execution (<sequence>, <flow>), and logic control
(<switch>).

Researchers from IBM recently released BPELJ, a combination of BPEL and
Java that allows developers to include Java code inside their BPEL code [17].
Developers can use BPEL with two additional specifications:

– Web Services-Coordination [18] coordinates the actions of web services when
a consistent agreement must be reached on the service activities’ outcome;

– Web Services-Transaction [19] defines the transactional behaviour of web
services.

There are several BPEL orchestration server implementations for both J2EE
and .NET platforms, including IBM’s WebSphere [15], Oracle’s BPEL process
manager [20], Microsoft’s BizTalk [52], OpenStorm [56], and Active BPEL [25].

The formal methods community has come up with a number of tools for the
automatic translation of BPEL in automata- or Petri-net-based formalisms. We
will come back to this in the next section.

2.3 Dynamic Service Composition

Web services are designed to provide interoperability between different applica-
tions. The platform- and language-independent interfaces of web services allow
an easy integration of heterogeneous systems. Web languages like Universal De-
scription, Discovery, and Integration (UDDI) [65], WSDL, and SOAP define
standards for service discovery, description, and messaging protocols. These web
service standards however do not deal with dynamic composition of existing
services. Recent industrial initiatives to address this issue, like BPEL, focus on
representing composition where information flow and the binding between ser-
vices are known a priori.

A more challenging problem is to dynamically compose services. In partic-
ular, when a functionality that cannot be realized by the existing services is
required, the existing services can be combined to fulfill the request. The dy-
namic composition of services requires the location of services based on their
capabilities and the recognition of those services that can be matched to create
a composition, as described in [47]. The full automation of this process is still
the subject of ongoing research, but accomplishing this goal with a human con-
troller as the decision mechanism can already be achieved. The main problem



6 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

for full automation of service composition is the gap between the concepts that
people use and the data that computers interpret. This barrier can be overcome
by using semantic web technologies. An example is OWL-S [48].

OWL-S (previously known as DAML-S) is a service ontology that enables auto-
matic service discovery, invocation, composition, interoperation, and execution
monitoring [1]. OWL-S models services using a three-way ontology:

– a service profile describes what the service requires from and gives to users;
– a service model specifies how the service works; and
– a service grounding gives information on how to use the service.

The process model is a service model subclass that describes a service in terms of
inputs, outputs, preconditions, postconditions, and—if necessary—its own sub-
processes. In the process model, one can describe composite processes together
with their dependencies and their interactions. OWL-S distinguishes three types
of processes: atomic, which have no subprocesses; simple, which are not directly
invocable and are used as an abstraction element for either atomic or composite
processes; and composite, which consist of subprocesses. Constituent processes
are specified using flow-control constructs. sequence, split, split+join, un-
ordered, choice, if-then-else, iterate, and repeat-until.

There have been several proposals of methods to transfer OWL-S descriptions
to Prolog [49] and to Petri-net-based models [55] in order to further analyze
them. In the Prolog approach, the developer manually translates an OWL-S
description, which allows one to find an adequate plan to compose web services
for a target description. That is, for a given pool of available web services,
it is possible to use logical inference rules to automate service allocation for
the required task. In the Petri-net-based approach, an OWL-S description is
automatically translated. Developers then use the result to automate tasks like
simulation, validation, verification, composition, and performance analysis.

3 A Selective Overview of Existing Formal Methods to
Secure Service Composition

In this section we describe a few well-known languages and models that have been
used by the formal methods community to guarantee secure service compositions
in the two approaches discussed in the previous section (cf. Figure 1). To begin
with, we explain what is meant by secure service composition.

3.1 Secure Service Composition

Services are software applications to be used through a network via the exchange
of messages. They are meant to be frequently reused and they are typically
designed to interact with other services in order to form larger applications. From
a software engineering point of view, the construction of new services by static or



A Survey on Service Composition Approaches 7

dynamic composition of existing services raises exciting perspectives, which can
significantly impact the way future industrial applications will be developed.
It also raises a number of challenges, however, one of them being the one of
guaranteeing the correct interaction of independent, communicating software
pieces. Due to the message-passing nature of web service interaction, many subtle
errors might occur when several of them are put together (messages that are
never received, deadlocks, incompatible behaviours, etc.). These problems are
well known and recurrent in distributed applications. However, they become
even more critical in the open-end world of services that is ruled by the long-
term vision of “services used by services”, rather than by humans, and in which
interactions should—ideally—be as transparent and as automatic as possible.

It is for the above reasons that formal methods should be used. The major
advantage of using languages and models with a clear and formal semantics, is
that this enables the use of automatic tools to verify whether a system matches
its requirements and works properly. Specifically, formal methods and tools can
be used to decide i) whether two services are in some precise sense equivalent
and ii) wether a service satisfies certain desirable properties (e.g. the property
that the system will never reach a certain unexpected state). Finding out that
the composition of existing services does not match an abstract specification of
what is desired, or that it violates a property which absolutely needs to hold, can
help to correct a design or to diagnose bugs in an existing service. Very recently,
several formal methods—most of them with a semantics based on transition sys-
tems (timed automata, Petri nets, process algebras, etc.)—have been suggested
to guarantee secure service compositions. In the remainder of this section we will
present a selective overview of some of these approaches.

3.2 Automata

Automata or labelled transition systems are a well-known model underlying for-
mal specifications of systems. An automaton consists of a set of states, a set of
actions, a set of labelled transitions between states, and a set of initial states.
Labels represent actions and a transition’s label indicates the action causing the
transition from one state to another. The intuitive way in which an automaton
can model a system’s behaviour has lead to a variety of automata-based specifica-
tion models such as Input/Output (I/O) automata and their many variants [46,
45, 39], timed automata [4, 3] and team automata [24, 5], to name but a few.

I/O automata were originally introduced to model distributed computations
in asynchronous networks and as a means of constructing correctness proofs of
distributed algorithms. Basically, an I/O automaton is an automaton whose set
of actions is partitioned into input, output, and internal actions. A distinction
is made between internal and external (input and output) actions used to com-
municate with the environment, which may consist of other I/O automata. I/O
automata can be composed using a synchronous product construction yielding
a new I/O automaton. Many variants of I/O automata were considered and the
model is now widely used for describing reactive, distributed systems.



8 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

Team automata are an extension of I/O automata, originally introduced to
model components of groupware systems and their interconnections. They were
further developed as a formal model to provide a solid and general theoretical
framework for the study of synchronization mechanisms in automata models. By
dropping a number of the restrictions of I/O automata, team automata allow
the flexible modelling of various kinds of collaboration in groupware systems:
Team automata impose hardly any restrictions on the role of the actions in the
various components and their composition is not based on an a priori fixed way
of synchronizing their actions. This allows the definition of a wide variety of
protocols for the interaction between a system and its environment.

Timed automata, finally, were introduced to model the behaviour of real-
time systems in a formal way. They extend automata with timing constraints
by using a finite number of real-valued clocks, which can be reset and whose
values increase uniformly with time. At any moment in time, the value of a
clock equals the time elapsed since the last time it was reset. These clocks can
be used to guard the transition from one state (location) to another: A transition
is enabled if and only if the timing constraint associated with it is satisfied by
the current values of the clocks. One of the main attractions of timed automata
is the well-developed automatic tool support: Model checkers like UPPAAL [43]
and KRONOS [71], allow one to effectively verify timed automata models.

Automata-based models are more and more being used to formally describe,
compose, and verify (compositions of) web services. Below follow some exem-
plary approaches, without claiming completeness.

In [29] the authors introduce a framework to analyze and verify properties
of web service compositions of BPEL processes that communicate via asynchro-
nous XML messages. Their framework first translates the BPEL processes to
a particular type of automata whose every transition is equipped with a guard
in the form of an XPath [35] expression, after which these guarded automata
are translated into Promela, the input language of the model checker SPIN [33].
Finally, SPIN can be used to verify whether web service compositions satisfy
certain LTL properties. The authors are currently investigating to extend their
framework to other web service specification languages such as OWL-S.

In [22] a case study is presented that shows how descriptions of web services
written in BPEL-WSCDL can be automatically translated to timed automata
and subsequently be verified by UPPAAL. The authors are currently imple-
menting this translation in a tool that should use UPPAAL as its engine. The
development of this tool is of crucial importance for the authors’ methodology
to be embraced by industry.

In [40] the authors provide an encoding of BPEL processes into web service
timed state transition systems, a formalism that is closely related to timed au-
tomata, and discuss a framework in which timed assumptions expressed in the
duration calculus [11] can be model checked.

In [23] a framework to automatically verify systems that are modelled in Orc
is proposed. To this aim, the authors define a formal timed-automata semantics
for Orc [14] expressions, which confirms to Orc’s operational semantics. Con-



A Survey on Service Composition Approaches 9

sequently, UPPAAL can be used to model check Orc models. The approach is
demonstrated through a small case study.

Team automata allow one to separately specify the components of a system,
to describe their interactions, and to reuse the system as a component of a higher-
level team automaton, thus supporting component-based system design in a
natural way. Their main feature is a flexible technique for specifying coordination
patterns among distributed systems, extending classical I/O automata. This
makes team automata a promising model for the formal description of secure
service compositions. This is the subject of ongoing research.

3.3 Petri Nets

Petri nets were introduced in [59] as a framework to model concurrent systems.
Their main attraction is the natural way in which many basic aspects of con-
current systems are identified both mathematically and conceptually. This has
contributed greatly to the development of a rich theory of concurrent systems
based on Petri nets [60]. Their ease of conceptual modelling (largely due to an
easy-to-understand graphical notation) has moreover made Petri nets the model
of choice in many applications [61].

Actually “Petri net” is a generic name for a class of net-based models, consist-
ing of an underlying structure (a net) together with rules describing its dynamics.
Within a net one distinguishes places (representing local aspects of global states)
and transitions (representing actions). Transitions (drawn as rectangles) are con-
nected to places (circles) and places to transitions, by arcs (arrows). Hence a net
is a bipartite directed graph. In some models, certain elements may be labelled.
The dynamics of a net is given in the form of rules defining when (in which states)
a transition can occur (“fire”) and its effect on the current state if it occurs. It
is fundamental to Petri nets that both the conditions allowing a transition to
occur and its effect on the global state are local, in the sense that they only
involve places in the immediate neighbourhood of (adjacent to) the transition.

Petri nets are very popular in BPM and related fields due to the variety of
process control flows that they can capture [41, 69]. In particular, the dead-path-
elimination technique that is used in BPEL to bypass activities whose precon-
ditions are not met, can be readily modelled in Petri nets. In [57] it is shown
how to map all BPEL control-flow constructs into labelled Petri nets (thus in-
cluding control flows for exception handling and compensation).3 This output
can subsequently be used to verify BPEL processes by means of the open-source
tools BPEL2PNML and WofBPEL (including reachability analysis). We now
give some examples of such approaches, again without claiming completeness.

In [55] the authors define the semantics of a relevant subset of DAML-S (now
OWL-S) in terms of a first-order logic, namely the situation calculus [62]. Based
on this semantics they describe web service compositions in a Petri-net-based

3 This formalisation revealed several unambiguities in BPEL that have been reported
to the BPEL standardization committee.



10 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

formalism, complete with an operational semantics. They discuss the implemen-
tation of a tool to describe and automatically verify composition of web services.

In [30] the authors introduce a Petri-net-based algebra to compose web ser-
vices, based on control flows.

In [70] a Petri-net-based design and verification framework for web service
composition is proposed, which can be used to visualize, create, and verify ex-
isting BPEL processes. The authors still need to develop a graphical interface,
with a Petri-net view and a BPEL view, which can be used to assist the creation
of web service compositions.

In [72] a Petri-net-based architectural description language in which web-
service-oriented systems can be modelled is introduced, and a small case study
is presented. In order to deal with real-life applications and to eliminate manual
translation errors, the authors are currently developing an automatic translation
engine from WSDL to their language.

In [31] a complete and formal Petri-net semantics for BPEL is presented,
thus including exception handling and compensations. Furthermore, the au-
thors present their BPEL2PN parser which can automatically transform BPEL
processes into Petri nets. As a result, a variety of Petri-net verification tools are
applicable to automatically analyze BPEL processes.

In [63] Orc is translated into colored Petri nets, which is a generalization of
Petri nets that allows one to deal with recursion and data handling.

The frameworks and tools described above have the advantage that they
allow one to simulate and verify the behaviour of one’s model at design time,
thus enabling the detection and correction of errors as early as possible. As such,
these approaches help increase the reliability of web service applications.

3.4 Process Algebras

Process algebras are a popular means to describe and reason about process be-
haviours. Their underlying semantic foundation is based on labelled transition
systems, i.e. automata. Many variants have been defined and the field comes
with a rich body of literature. The most well-known process algebras are Milner’s
Calculus of Communicating Systems (CCS [53]), Hoare’s Calculus of Sequential
Processes (CSP [32]), the Algebra of Communicating Processes (ACP [6]) by
Bergstra and Klop, and the Language of Temporal Ordered Systems (LOTOS [8])
that was standardised by ISO. Like Petri nets, process algebras are precise and
well-studied formalisms that allow the automatic verification of certain prop-
erties of their behaviours. Likewise, they provide a rich theory on bisimulation
analysis, i.e. one can establish whether two processes have equivalent behaviours.
Such analyses are useful to establish whether a service can substitute another
service in a composition [9] or to verify the redundancy of a service.

The π-calculus [54] is a process algebra that has inspired modern composition
languages such as XLANG and, subsequently, BPEL. As with Petri nets, the
rationale behind using the π-calculus to describe processes lies in the advantages
that a formal model with a rich theory provides for the automatic verification
of properties of the behaviour of models expressed in such a model. From a



A Survey on Service Composition Approaches 11

compositional perspective, the π-calculus offers constructs to compose activities
in terms of sequential, parallel, and conditional execution, combinations of which
can lead to compositions of arbitrary complexity. Once again without claiming
completeness, we now give some examples of process-algebraic approaches to
specify and verify secure compositions of web services.

In [64] the authors advocate the use of process algebras to describe, com-
pose, and verify web services, with a particular focus on their interactions. To
this aim, they present a case study in which they use CCS to specify and com-
pose web services as processes, and the Concurrency Workbench [13] to validate
properties such as correct web service composition. To apply this approach to
real-life applications one needs to use more advanced calculi than CCS (e.g. the
π-calculus) in order to consider also issues like the exchange of data during web
service interactions and dynamic compositions. In fact, in [27] a two-way map-
ping is defined between BPEL and the more expressive process algebra LOTOS.
An advantage of this translation is that it includes compensations and exception
handling. As such, it permits the verification of temporal properties with the
CADP [26] model-checking toolbox.

As is the case for Petri-net-based frameworks and tools, also process-algebraic
tools are well suited to improve the reliability of web service development by
simulating and verifying the behaviour of one’s model at design time.

4 A Comparison of Service Composition Languages and
Models: From Industrial Standards to Formal Methods

In this section we present a comparison of the various approaches described
above with respect to the service-composition requirements we describe next.

4.1 Service Composition Requirements

We have compared the languages and models that we considered in Section 3
with respect to the following service-composition requirements.

Connectivity and Nonfunctional Properties Every composition approach
must guarantee connectivity. With reliable connectivity, one can determine which
services are composed and reason about their interactions. Since services are
based on message passing, however, developers must also address nonfunctional
Quality of Services (QoS) properties, such as timeliness, security, and depend-
ability. It is important in a B2B scenario to define agreement between involved
parties. Business agreement defines the contract between two or more parties on
QoS. It is necessary to represent required QoS in composed web services.

Composition Correctness Our interest is in large systems of concurrently
executing services. A crucial aspect of the correctness of such systems is their
temporal behaviour. Behavioural properties can be classified as follows [42].



12 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

1) Safety properties: “nothing bad ever happens” (e.g. when an elevator is
moving up, it does not attempt to move down without stopping first); and
2) Liveness properties: “progress takes place” (e.g. if a button inside an ele-
vator is pressed, then the elevator eventually arrives at the corresponding floor).
Such behavioural properties are given by a specification which precisely docu-
ments a system’s desired behaviour. Formal methods provide rigorous mathemat-
ical means of guaranteeing large software systems to conform to a specification.

Automatic Composition Many compositional approaches aim to automate
the composition, promising faster application development and safer reuse, and
facilitating user interaction with complex service sets. By automated composi-
tion, the end user or application developer specifies a business goal (e.g. expressed
in a description language or in a mathematical notation) and an “intelligent”
composition engine selects adequate services and offers the composition to the
user in a transparent way. The main problems are how to identify candidate
services, how to compose them, and how to verify how closely they match a
request. Web service composition languages should enable the representation of
semantics of composed services, in order to facilitate the automated composition.

Composition Scalability Composing two services is not the same as compos-
ing tens or hundreds of them. In a real-world scenario, end users would typically
want to interact with many services, while enterprise applications will invoke
chains of possibly several hundreds of services. Therefore, one of the critical is-
sues is how the proposed approaches scale with the number of services involved.

Exception Handling and Compensations Composition of web services uses
external web services that are controlled by the web service owner. It must take
into account exception handling during the process of invocation in case external
web services do not respond. Moreover, business processes are usually long-
running processes that may take hours or weeks to complete, and therefore the
ability to manage compensations of service invocations is critical for composition
as well. Compensations are activities programmed ad hoc to recover (or undo)
the effects of completed activities when a long-running transaction fails.

Tool Support Whether a particular approach come with software support.

4.2 Results

Service composition approaches range from those aspiring to become industrial
standards (e.g. BPEL and OWL-S) to formal methods. An ideal approach would
cover all the requirements we defined above. Below we discuss our comparison
of the approaches presented in the previous sections with respect to the above
requirements. The outcome is summarized in Figure 2.



A Survey on Service Composition Approaches 13

Fig. 2. Comparing service composition requirements

Connectivity and Nonfunctional Properties All approaches offer service
connectivity. Although the services themselves are modelled in different ways,
at the lowest level, the connection comes down to mapping and orchestrating
input and output messages between the partner services’ service ports. Most
approaches neglect the specification of nonfunctional QoS properties such as
security, dependability, and performance. Only OWL-S allows users to define
some nonfunctional properties, but this capability has yet to be fully specified.

Composition Correctness Verifying correctness depends on the service and
composition specifications. BPEL and OWL-S provide no way to verify cor-
rectness. BPEL is a language dealing more with implementation than specifi-
cation, and thus it is difficult to provide a formalism to verify the correctness
of BPEL flows. All other approaches support verification in one way or an-
other. Even OWL-S, when combined with Prolog or Petri nets, allows reasoning
about correctness. However, the extent to which correctness is verified varies. In
the process-algebraic approaches, the π-calculus offers powerful algebraic veri-
fication mechanisms to determine liveness, security, and QoS. However, apply-
ing such verifications depends on what is typed when you model services as
processes. Petri nets use elaborate algebra for verification. In this way one can
verify whether a composition has deadlocks by determining whether the corre-
sponding Petri net is live and bounded. Many formal methods are available to
prove that a composed service’s specification conforms to the model. The issue
is to decide what needs to be specified for model checking to produce useful
results. Another problem is computing resources (such as CPU time and storage



14 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

space). Given the vast state space one must examine, one can easily run out of
resources and still not know whether the composition conforms to the model.

Automatic Composition The OWL-S ServiceProfile and ServiceModel pro-
vide sufficient information to enable automated discovery, composition, and ex-
ecution based on well-defined descriptions of a service’s inputs, outputs, pre-
conditions, effects, and process model. BPEL does not provide a well-defined
semantics. Partners are restricted by structured XML content in WSDL port
type definitions. All formal methods discussed allow automatic composition.

Composition Scalability In BPEL, multiple service composition is tedious
because XML files quickly grow. Since BPEL composition is recursive one can
modularize the composition. Unfortunately, however, BPEL has no standard
graphical notation. Some orchestration servers offer a graphical representation
and there are proposals to use UML-like notations for descriptions. However,
most graphic notations cannot be mapped one-to-one to BPEL’s complex lan-
guage constructs. OWL-S suffers from similar problems. All formal methods
discussed instead allow hierarchical service compositions and are thus scalable.

Exception Handling and Compensations BPEL defines a mechanism for
catching and handling faults similar to common programming languages like
Java. One may also define a compensation handler to enable compensation ac-
tivities in the event that actions cannot be explicitly undone. OWL-S does not
define recovery protocols. Neither BPEL nor OWL-S directly supports query
mechanisms to expose the state of executing processes. BPEL lists this item as
future work. Most Petri-net-based and process-algebraic models considered can
handle compensations and exception handling, but this remains to be seen for
the automata-based models.

Tool Support Vendors supporting or planning to support the BPEL specifica-
tion include Collaxa, which offers a complete orchestration platform for BPEL;
IBM, which provides a BPWS4J runtime/editor for BPEL from their alpha-
Works Web site; and BindSystems, which provides a BPEL modelling/editing
tool. The main problem with the industrial approaches, i.e. the lack of software
tools for the verification of the correctness of service compositions, is at the same
time the main advantage of the formal methods we considered in this paper.

5 Conclusions and Future Work

While there have been initiatives to compare composition languages [2, 58, 51]
and the analysis of composition languages based on workflow patterns [68], these
comparisons are conducted almost at the micro level, focusing on specific lan-
guage structures and control patterns. In this paper, on the other hand, we pro-
vide an overview of service composition languages and models. Five approaches—
namely BPEL, OWL-S, automata, Petri nets, and process algebras—were chosen



A Survey on Service Composition Approaches 15

and compared against a total of six requirements that a service composition ap-
proach should support in order to facilitate the composition of web services.

OWL-S, like other service composition languages, provides a means of creat-
ing the description of web services that can be interpreted programmatically. The
distinguishing characteristic of OWL-S is that, while current web service spec-
ification standards focus on service syntax, the goal of OWL-S is to facilitate
the description of the semantics of services, their interfaces, and their behaviour.
The problem of the composition of services is addressed by two orthogonal ef-
forts. On the one hand, most major industrial players propose low-level process
modelling and execution languages, like BPEL. These languages allow program-
mers to implement complex web services as distributed processes and to compose
them in a general way. However, the definition of new processes that interact
with existing ones needs to be done manually, which is a hard, time-consuming,
and error-prone task. On the other hand, research within the semantic web com-
munity proposes an unambiguous top-down description of service capabilities,
e.g. in OWL-S, thus enabling the possibility to reason about web services, and to
automate web service tasks like discovery and composition. The main problem
with all these industrial approaches is the verification of correctness. As we show
in this paper, this is where formal methods can be of use.

Due to the solid theoretical basis of all formal methods considered in this pa-
per, the tools that come with them allow one to simulate and verify the behaviour
of one’s model at design time, thus enabling the detection and correction of er-
rors as early as possible and in any case before implementation. Consequently,
these approaches help increase the reliability of web service applications.

This paper contains only an initial comparison. Many more details (e.g. quan-
titative information relating to the tool support and to the messaging models
supported) are needed in order to understand which languages or models better
suit web service composition. Another key point that we would like to deepen in
future work is to determine the QoS characteristics that each of the languages
and models is able to describe in order to define a QoS web service composition.
All this with the objective to understand better which are the necessary elements
of a framework for the automatic QoS composition of web services.

References

1. A. Ankolekar et al. DAML-S: Web Service Description for the Semantic Web. In
Proceedings of the 1st International Semantic Web Conference (ISWC’02), Sar-
dinia, Italy, volume 2342 of Lecture Notes in Computer Science, pages 348–363.
Springer-Verlag, Berlin, 2002.

2. W.M.P. van der Aalst. Don’t go with the flow: Web Services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

3. R. Alur. Timed Automata. In N. Halbwachs and D. Peled, editors, Proceedings
of the 11th International Conference on Computer Aided Verification (CAV’99),
Trento, Italy, volume 1633 of Lecture Notes in Computer Science, pages 8–22.
Springer-Verlag, Berlin, 1999.

4. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, 1994.



16 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

5. M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team
Automata for Groupware Systems. Computer Supported Cooperative Work—The
Journal of Collaborative Computing, 12(1):21–69, 2003.

6. J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes with Abstrac-
tions. Theoretical Computer Science, 33:77–121, 1985.

7. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

8. T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks, 14:25–59, 1987.

9. L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two Web Services
Compatible? In M.-C. Shan, U. Dayal, and M. Hsu, editors, Proceedings of the
5th International Workshop on Technologies for E-Services (TES’04), Toronto,
Canada, volume 3324 of Lecture Notes in Computer Science, pages 15–28. Springer-
Verlag, Berlin, 2004.

10. D. Brickley and R.V. Guha. Resource Description Framework RDF Vocabulary De-
scription Language (Version 1.0): RDF Schema, 2004. http://www.w3.org/TR/rdf-
schema/.

11. Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations. Information
Processing Letters, 40(5):269–276, 1991.

12. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language WSDL (Version 1.1), 2001. http://www.w3.org/TR/wsdl.

13. R. Cleaveland, T. Li, and S. Sims. The Concurrency Workbench of the New
Century (Version 1.2), 2000. http://www.cs.sunysb.edu/˜cwb/.

14. W.R. Cook and J. Misra. Orc—An Orchestration Language (Version 0.5), 2005.
http://www.cs.utexas.edu/users/wcook/projects/orc/.

15. IBM Corporation. Websphere software. http://www.ibm.com/software/info1/
websphere.

16. IBM Corporation. Business Process Execution Language for Web Services BPEL-
4WS (Version 1.1), 2002. http://www.ibm.com/developerworks/library/ws-bpel.

17. IBM Corporation. BPEL for Java technology BPELJ, 2004. http://www.ibm.
com/developerworks/library/ws-bpelj/.

18. IBM Corporation. Web Services Coordination, 2004. http://www.ibm.com/
developerworks/library/ws-coor/.

19. IBM Corporation. Web Services Transactions specifications, 2004. http://www.
ibm.com/developerworks/library/ws-coor/.

20. Oracle Corporation. Oracle bpel process manager. http://www.oracle.com/
technology/products/ias/bpel/.

21. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in
Web services. Communications of the ACM, 46(10):29–34, 2003.

22. G. Dı́az, J.J. Pardo, M.-E. Cambronero, V. Valero, and F. Cuartero. Automatic
Translation of WS-CDL Choreographies to Timed Automata. In M. Bravetti,
L. Kloul, and G. Zavattaro, editors, Formal Techniques for Computer Systems
and Business Processes: Proceedings of the International Workshop on Web Ser-
vices and Formal Methods (WS-FM’05), Versailles, France, volume 3670 of Lecture
Notes in Computer Science, pages 230–242. Springer-Verlag, Berlin, 2005.

23. J.S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification of Computation Orches-
tration via Timed Automata, February 2006. Unpublished manuscript. http://nt-
appn.comp.nus.edu.sg/fm/orc/.

24. C.A. Ellis. Team Automata for Groupware Systems. In S.C. Hayne and W. Prinz,
editors, Proceedings of the International ACM SIGGROUP Conference on Support-



A Survey on Service Composition Approaches 17

ing Group Work: The Integration Challenge (GROUP’97), Phoenix, AZ, U.S.A.,
pages 415–424. ACM Press, New York, NY, 1997.

25. The Open Source BPEL Engine. Active BPEL (Version 2.0). http://www.
activebpel.org.

26. J. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.
CADP: A Protocol Validation and Verification Toolbox. In R. Alur and T.A.
Henzinger, editors, Proceedings of the 8th International Conference on Computer-
Aided Verification (CAV’96), New Brunswick, NJ, volume 1102 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1996.

27. A. Ferrara. Web Services: a Process Algebra Approach. In M. Aiello, M. Aoyama,
F. Curbera, and M.P. Papazoglou, editors, Proceedings of the 2nd International
Conference on Service-Oriented Computing (ICSOC’04), New York, NY, pages
242–251. ACM Press, New York, NY, 2004.

28. Organization for the Advancement of Structured Information Standards OASIS.
http://www.oasis-open.org.

29. X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In S.I.
Feldman, M. Uretsky, M. Najork, and C.E. Wills, editors, Proceedings of the 13th
International Conference on the World Wide Web (WWW’04), New York, NY,
pages 621–630. ACM Press, New york, NY, 2004.

30. R. Hamadi and B. Benatallah. A Petri Net-based Model for Web Service Compo-
sition. In K.-D. Schewe and X. Zhou, editors, Proceedings of the 14th Australasian
Database Conference (ADC’03), Adelaide, South Australia, volume 17 of CRPIT,
pages 191–200. Australian Computer Society, 2003.

31. S. Hinz, K. Schmidt, and Ch. Stahl. Transforming BPEL to Petri Nets. In W.M.P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of
the 3rd International Conference on Business Process Management (BPM’05),
Nancy, France, volume 3649 of Lecture Notes in Computer Science, pages 220–
235. Springer-Verlag, Berlin, 2005.

32. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, London, 1985.
33. G.J. Holzmann. The SPIN Model Checker—Primer and Reference Manual. Addi-

son Wesley, Reading, MA, 2003.
34. Business Process Modeling Initiative. Business Process Modeling Language BPML,

2002. http://www.bpmi.org.
35. J. Clark et al. XML Path Language XPath (Version 1.0), 1999. http://www.w3.

org/TR/xpath.
36. H. Jain, L. Liu, and L.-J. Zhang, editors. Proceedings of the IEEE International

Conference on Web Services (ICWS’04), San Diego, CA. IEEE Computer Society
Press, Los Alamitos, CA, 2004.

37. N. Kavantzas. Aggregating web services: Choreography and ws-cdl. Technical
report, Orcale Corporation, 2004.

38. N. Kavantzas, D. Burdett, and G. Ritzinger. Web Services Choreography Descrip-
tion Language WSCDL (Version 1.0), 2004. http://www.w3.org/TR/2004/WD-
ws-cdl-10-20040427/.

39. D.K. Kaynar, N.A. Lynch, R. Segala, and F.W. Vaandrager. The Theory of Timed
I/O Automata. Synthesis Lectures on Computer Science. Morgan & Claypool,
Ft. Collins, CO, 2006.

40. R. Kazmiakin, P.K. Pandya, and M. Pistore. Modelling and Analysis of Time-
related Properties in Web Service Compositions. In Proceedings of the 1st Inter-
national Workshop on Engineering Service Compositions (WESC’05), Amsterdam,
The Netherlands, 2005. To appear.



18 Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi

41. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of Control Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

42. L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE Transac-
tions on Software Engineering, 3(2):125–143, 1977.

43. K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

44. F. Leymann. Web Services Flow Language WSFL (Version 1.0). Technical report,
IBM Corporation, 2001.

45. N.A. Lynch. Input/Output Automata: Basic, Timed, Hybrid, Probabilistic, Dy-
namic, ... In R.M. Amadio and D. Lugiez, editors, Proceedings of the 14th Interna-
tional Conference on Concurrency Theory (CONCUR’03), Marseille, France, vol-
ume 2761 of Lecture Notes in Computer Science, pages 187–188. Springer-Verlag,
Berlin, 2003.

46. N.A. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989. Also published as Technical Memo MIT/LCS/TM-
373, MIT, 1988.

47. Z.M. Mao, E.A. Brewer, and R.H. Katz. Fault-tolerant, Scalable, Wide-Area In-
ternet Service Composition. Technical Report UCB/CSD-01-1129, University of
California, Berkeley, 2001.

48. D.L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview,
2004. http://www.w3.org/TR/owl-features/.

49. S. McIlraith and T.C. Son. Adapting Golog for Composition of Semantic Web
Services. In D. Fensel, F. Giunchiglia, D.L. McGuinness, and M.-A. Williams,
editors, Proceedings of the 8th International Conference on Principles of Knowledge
Representation and Reasoning (KR’02), Toulouse, France, pages 482–496. Morgan
Kaufmann, San Mateo, CA, 2002.

50. S.A. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

51. J. Mendling and M. Müller. A Comparison of BPML and BPEL4WS. In R. Tolks-
dorf and R. Eckstein, editors, Proceedings of the 1st Conference Berliner XML-
Tage, Berlin, pages 305–316, 2003.

52. Microsoft Corporation. Microsoft biztalk server. http://www.microsoft.com/
biztalk.

53. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
54. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and

II. Information and Computation, 100(1):1–77, 1992.
55. S. Narayanan and S.A. McIlraith. Simulation, Verification and Automated Com-

position of Web Services. In Proceedings of the 11th International World Wide
Web Conference (WWW’02), Honolulu, Hawaii, pages 77–88. ACM Press, New
York, NY, 2002.

56. OpenStorm. Web Service Orchestration Software. http://www.openstorm.com.
57. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and

H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
Technical Report BPM-05-15, BPM Center, 2005.

58. C. Peltz. Web services orchestration, a review of emerging technologies, tools, and
standards. Technical report, Hewlett-Packard Company, 2003.

59. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälisches
Institut für Instrumentelle Mathematik an der Universität Bonn, 1962. In German.

60. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models.
Number 1491 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.



A Survey on Service Composition Approaches 19

61. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets II: Applications,
volume 1492 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

62. R. Reiter. Knowledge in Action—Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Massachusetts, MA, 2001.

63. S. Rosario, A. Benveniste, S. Haar, and C. Jard. Net system semantics of Web Ser-
vices Orchestrations modeled in orc. Technical Report 1780, Istitut de Recherche
en Informatique et Systèmes Aléatoires, January 2006.

64. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web Ser-
vices using Process Algebra. In [36], pages 43–50, 2004.

65. Universal Description, Discovery and Integration UDDI. http://www.uddi.org/
specification.html.

66. World Wide Web Consortium W3C. Semantic Web, 2001. http://www.w3.org/
2001/sw/.

67. World Wide Web Consortium W3C. Latest SOAP versions, 2003. http://www.
w3.org/TR/soap/.

68. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Pattern-
Based Analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland
University of Technology, Brisbane, 2002.

69. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In I.-Y. Song,
S.W. Liddle, T.W. Ling, and P. Scheuermann, editors, Proceedings of the 22nd
International Conference on Conceptual Modeling (ER’03), Chicago, IL, volume
2813 of Lecture Notes in Computer Science, pages 200–215. Springer-Verlag, Berlin,
2003.

70. X. Yi and K. Kochut. A CP-nets-based Design and Verification Framework for
Web Services Composition. In [36], pages 756–760, 2004.

71. S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. International
Journal on Software Tools for Technology Transfer, 1(1–2):123–133, 1997.

72. J. Zhang, J.-Y. Chung, C.K. Chang, and S. Kim. WS-Net: A Petri-net Based
Specification Model for Web Services. In [36], pages 420–427, 2004.


