
Università di Pisa

Dipartimento di Ingegneria dell’Informazione
Dottorato di Ricerca in Ingegneria dell’Informazione

ING-INF/05

Ph.D. Thesis

Virtual Digital Libraries

Leonardo Candela

Supervisor

Dr. Donatella Castelli

Supervisor

Prof. Giuseppe Alia

2003

Abstract

Digital libraries represent the meeting places for knowledge providers and knowl-
edge consumers supporting and enhancing the process through which knowledge is
created, used, and discovered. The demand for digital libraries is worldwide strong.
These complex systems can offer a richer set of functionality than that initially
expected and are able to transform the way in which joint research is conducted,
thus responding to the requirements of a great number of research communities. In
fact, nowadays research is a collaborative and multidisciplinary effort conducted by
virtual research organisations whose components are spread worldwide. Despite this
large and innovative demand the current digital library development models remain
unchanged and so they are not able to match the emerging requirements. In this
dissertation we propose a novel approach based on virtual digital libraries, i. e. digi-
tal libraries built by dynamically aggregating and appropriately presenting the pool
of shared resources needed to fulfil the requirements of digital library communities.
To support such an approach we introduced (i) a reference model for understanding
significant relationships among the components of digital libraries and for developing
consistent services that support them and (ii) a set of approaches and services able
to provide virtual views over the heterogeneous information space resulting from
reusing shared information sources. In particular, three approaches to information
space virtualization are presented that provide profitable usage of the shared re-
sources: information objects virtualization, collections virtualization, and distributed
semantic search.

iv

Acknowledgments

First and foremost, I wish to thank my supervisor, Dr. Donatella Castelli, who
allowed me to undertake my Ph.D. research at the Institute of Information Science
and Technologies (ISTI) of the Italian National Research Council (CNR). Donatella’s
constant encouragement, inspiration, and support led me to believe in the impor-
tance of this work.

I’m indebted with my supervisor Prof. Giuseppe Alia for the advices and the
support he provided me during this work.

Thanks to the members of the Networked Multimedia Information Systems Lab-
oratory of the ISTI - CNR, I benefited from useful discussions and friendly col-
laborations with each of them during the day-by-day work. Special thanks go to
Pasquale Pagano, Umberto Straccia and Maria Bruna Baldacci for the stimulat-
ing discussions we had on various and heterogeneous research topics ranging from
the information retrieval to description logics and library sciences. Each of them
enriched my working life and knowledge with their personal experiences.

I also profited from the various IST projects I participated in during these years.
These experiences gave me the opportunity to meet many research groups and thus
to grow as a researcher by facing with concrete problems. The financial support from
the IST projects CYCLADES (IST-2000-25456), Open Archives Forum (IST-2001-
320015), DELOS (G038-507618), and DILIGENT (IST-2003-004260) is gratefully
acknowledged. Moreover, I’m specially indebted with Prof. Heiko Schuldt and Prof.
Hans-Jörg Schek which provided me the opportunity and the support during the
period I spent as guest researcher in the Information and Software Engineering
Group at the University for Health Sciences, Medical Informatics and Technology
(UMIT) in the context of the DELOS Network of Excellence for Digital Libraries
Research Exchange Program.

Final thanks go to Ermelinda and Lorenzo, my parents, and to Mariarosaria and
Maria. They represent my family and supported me with love and patience during
these years. This achievement belongs also to them.

vi

to Maria

to my parents

“The future belongs to neither the conduit or content players, but to those who
control filtering, searching, and sense-making tools we will rely on to navigate

through the expanses of cyberspace.”
Saffo, Paul. “It’s the Context, Stupid.”. 1994

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Contributions . 3
1.3 Outline of Dissertation . 5

2 Virtual Digital Libraries and the Digital Library Reference Model 7
2.1 Introduction . 7

2.1.1 The Perspectives . 9
2.1.2 The Digital Library Main Concepts 13

2.2 The DL End-user Perspective . 16
2.2.1 Information Space . 16
2.2.2 User . 23
2.2.3 Functionality . 25
2.2.4 Quality of Service . 33

2.3 The DL Designer Perspective . 35
2.3.1 Information Space . 35
2.3.2 User . 36
2.3.3 Functionality . 37
2.3.4 Quality of Service . 40

2.4 The DL System Administrator Perspective 41
2.4.1 Information Space . 41
2.4.2 User . 43
2.4.3 Architecture . 43
2.4.4 Functionality . 44
2.4.5 Quality of Service . 46

2.5 The DL Application Developer Perspective 46
2.5.1 Information Space . 47
2.5.2 User . 47
2.5.3 Architecture . 47
2.5.4 Functionality . 48
2.5.5 Quality of Service . 50

2.6 The Digital Library System Reference Architecture 50
2.6.1 The Presentation Area . 53

x CONTENTS

2.6.2 The Access Area . 53
2.6.3 The DL Management Area . 53
2.6.4 The User Space Management Area 54
2.6.5 The Information Space Management Area 54
2.6.6 The Mediation Area . 55

2.7 Related Work . 55
2.7.1 The 5S Framework . 56
2.7.2 The DELOS Classification and Evaluation Scheme 59

3 Virtual Information Objects 61
3.1 Dealing with Heterogeneous Information Objects 62
3.2 The Document Model for Digital Library 62
3.3 Virtualization through DoMDL . 65
3.4 The OpenDLib Implementation . 65

3.4.1 DoMDL Representation . 66
3.4.2 Information Object Storage 67
3.4.3 Information Object Access . 68
3.4.4 Information Object Discovering 69
3.4.5 Information Object Visualisation 69
3.4.6 DELOS Exploitation . 70
3.4.7 ARTE Exploitation . 71

3.5 The OpenDLibG Implementation . 72
3.5.1 Repository++ . 72
3.5.2 OpenDLibG and the Environmental DL 74

3.6 Related Work . 74
3.6.1 The DSpace Data Model . 75
3.6.2 The Fedora Object Model . 76
3.6.3 MPEG 21 and the DIDL . 77
3.6.4 METS . 78

4 Information Space Organisation: the Collection Service 79
4.1 Introduction . 80
4.2 The Collection Service Functionality 81

4.2.1 Collection Metadata . 81
4.2.2 Membership Condition Language 82

4.3 The Collection Service Architecture 83
4.4 Language Model and Query-Based Sampling 85
4.5 Source Selection Technique . 87
4.6 Experimental Evaluation . 89

4.6.1 Test Corpus . 89
4.6.2 Query-based Sampling Evaluation 91
4.6.3 Source Selection Evaluation 94

4.7 Implementation: the Cyclades Collection Service 98

CONTENTS xi

4.7.1 Cyclades: a Personalised and Collaborative DL 98
4.7.2 The Cyclades Collection Service: API, GUI and other im-

plementation details . 101
4.8 Related Work . 105

5 Semantic Search Across Heterogeneous Information Sources 107
5.1 Searching Across Information Sources 108

5.1.1 Motivations . 109
5.2 The Architectural Framework . 111
5.3 The Index . 113
5.4 The Query Mediator . 120
5.5 Implementation: the Enhanced OpenDLib

Search Service . 124
5.6 Related Work . 126

6 Virtual Digital Libraries Generator 129
6.1 The Approach . 130
6.2 The Virtual Digital Libraries Generator Design 131
6.3 The Components Selection Model . 132

6.3.1 A Trivial Example . 134
6.4 The DILIGENT Experience . 135
6.5 Related Work . 138

6.5.1 The 5S Products: 5SL, 5SGraph, and 5SGen 138

7 Conclusion and Future Work 141
7.1 Summary . 141
7.2 Future Work . 142

A OpenDLib: A Digital Library Service System 145
A.1 Services Model . 145
A.2 Design Considerations . 147
A.3 Services and Functionality . 148

A.3.1 Enabling Framework . 148
A.3.2 User Space Management . 148
A.3.3 Information Space Management and Mediation 148
A.3.4 DL Management . 149
A.3.5 Presentation . 149
A.3.6 Access . 149

Bibliography 151

xii CONTENTS

List of Figures

1.1 The Virtual Digital Libraries Scenario 3

2.1 DL, DLS, and DLMS – A three-tier framework 9
2.2 DL perspectives hierarchy . 11
2.3 The Digital Library main concepts 13
2.4 The DL End-user concept map – Main concepts 17
2.5 The DL End-user concept map – Content Creator functionality . . . 24
2.6 The DL End-user concept map – Content Consumer functionality . . 25
2.7 The DL End-user concept map – Librarian functionality 25
2.8 The DL Designer concept map – Main concepts 36
2.9 The DL System Administrator concept map – Main concepts 42
2.10 The DL Application Developer concept map – Main concepts 47
2.11 The Digital Library Systems Reference Architecture 52
2.12 5S – Map of formal definitions . 57
2.13 5S – DL ontology . 58
2.14 DELOS generalised schema for a Digital Library 60

3.1 DoMDL – Document Model for Digital Library 63
3.2 The Repository architecture . 66
3.3 DoMDL tab-based visualisation . 70
3.4 DoMDL window-based visualisation 70
3.5 DELOS Digital Library documents 71
3.6 ARTE Digital Library Documents . 71
3.7 A GOMOS Virtual Information Object 75

4.1 The Collection Service Logical Architecture 84
4.2 Query-based Sampling Algorithm . 86
4.3 Archive 1 – CTF Graph . 92
4.4 Archive 1 – SRCC Graph . 92
4.5 Archive 2 – CTF Graph . 92
4.6 Archive 2 – SRCC Graph . 92
4.7 ScienceI – F1-Score Graph . 96
4.8 ScienceI – SRCC Graph . 96
4.9 Quasi-random – F1-Score Graph . 97

xiv LIST OF FIGURES

4.10 Quasi-random – SRCC Graph . 97
4.11 Random – F1-Score Graph . 98
4.12 Random – SRCC Graph . 98
4.13 Cyclades Architecture . 100
4.14 Cyclades CS GUI – The Main View 103
4.15 Cyclades CS GUI – The Personal Collections Set 103
4.16 Cyclades CS GUI – Create Collection Form 104

5.1 The Distributed Search Architectural Framework 112
5.2 A Metadata Schema and a Terminology 113
5.3 A Query Mediator over two Indexes 121

6.1 The VDL Generator Logical Architecture 131
6.2 The DILIGENT Logical Architecture 136

A.1 The OpenDLib Services Model . 146

List of Tables

4.1 The DMOZ Information Sources Experimental Environments 91
4.2 The DMOZ Information Sources and their Samples – The Character-

istics . 93
4.3 DMOZ – Statistics of Samples . 94
4.4 Source Selection – Precision and Recall in OAI Corpus 95
4.5 Source Selection – Average Response Time 96

5.1 A Stored Interpretation . 115
5.2 Interpretations of an Information Source Index 119

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

The understanding and expectations of digital libraries (DLs) [Arm01, FAFL95,
FM98] have evolved considerably since the nineties, when the first digital library sys-
tems were built. The initial DLs were mainly intended as digital entities analogous
to the physical libraries [DL96, ABB+99, SAG+01]. They were providing mecha-
nisms to maintain collections of documents, and to search through these collections
by exploiting the metadata records associated with the documents, presenting the
results in a suitable format to meet the needs of the specific DL audience. Much
effort from experts in the field was required to prepare the digitised content and to
develop the software that implements the DL functionality. Dedicated computers,
sometimes quite powerful, as in the case of DLs for audio/visual resources, had to
be acquired in order to store and process the documents. These dedicated resources
had to be sufficient to support the highest peak of activities, even if these were
executed only rarely, e. g. at start-up of the DL or periodically for preservation pur-
poses. As a consequence, DLs were only created to serve large research communities
or important institutions since these were the only ones that could afford the cost
of such products.

After approximately ten years of study and development it has now become clear
that DL systems can actually offer much richer functionality than initially expected
and that, if they become more widely employed, have the potentiality to transform
the way in which joint research is conducted. Digital information objects are more
versatile than physical documents. They offer the possibility of creating many multi-
type object formats by combining multimedia components in an unlimited variety
of ways. A DL can thus, for example, manage information objects that mix texts,
scientific data and satellite images, or information objects that integrate images,
annotations and videos. The operations on these objects can be extended in any
direction without the limits imposed by the physical manifestation of the document.
These operations, in turn, can generate new information objects that may convey

2 CHAPTER 1. INTRODUCTION

different semantic information. Furthermore, a DL can support the work of its
users by providing functionality that may range from general utilities, like search,
annotation, summarisation or co-operative work support, to very audience-specific
functions, like processing of maps, semantic analysis of images, simulation, etc.

DLs are thus now moving far beyond any connotation of the term “library”, and
are rapidly shifting towards more general systems, now termed Dynamic Universal
Knowledge Environments [dBGI04]1. Through these environments, groups of indi-
viduals, collaborating towards a common goal, can be authorised to access, discuss
and enhance on-line shared information. For example, in such an environment, a
scientist can be enabled to annotate the article of a colleague with a program that
extracts useful information from a large amount of data collected by a specific obser-
vatory. This annotation, executed on-demand when the annotation is accessed, will
complement the content of the paper with continuously updated new information.

In parallel with the above evolution of the role of DL systems, we are now ob-
serving a large expansion of the demand for DLs. Research work today is often a
collaborative and multidisciplinary effort carried out by groups belonging to different
organisations distributed worldwide. Motivated by a common goal and funding op-
portunities, these groups dynamically aggregate into virtual research organisations
that share their resources, e. g. knowledge, experimentation results, instruments, for
the duration of their collaboration, creating new and more powerful virtual research
environments. These virtual research organisations, set-up by individuals that do
not necessarily have a great economic power and technical expertise, increasingly
frequently require DLs as tools for accelerating the achievements of their research
results. These new users demand less expensive and more dynamic DL development
models. They want to be able to set up new DLs that serve their needs for the dura-
tion of their collaborations within an acceptable time frame and with an acceptable
cost.

The current DL development model is not able to satisfy this large demand; a
radical change is needed if we want to be able to address these new emerging re-
quirements. New technologies must be investigated to support the implementation
of novel functionality on the more versatile digital information objects. New organ-
isational, development and maintenance models must be introduced to reduce their
cost and to speed up their development time.

In this thesis we envision a new DL development model based on two main mech-
anisms: (i) controlled sharing of resources among multiple DLs and (ii) virtualisa-
tion of these resources in order to offer views of them that meet the specific needs
of different application frameworks. These mechanisms enable the construction of
Virtual Digital Libraries(VDLs), i. e. DLs built by dynamically aggregating and ap-
propriately presenting the pool of resources needed to fulfil the user requirements.
This scenario is depicted in Figure 1.1. By exploiting these mechanisms the cost of

1This expression was coined during the DELOS [DEL] brainstorming meeting held in Corvara
on July 2004.

1.2. RESEARCH CONTRIBUTIONS 3

V i r t u a lD i g i t a lL i b r a r i e s. . .
I n f o r m a t i o nR e s o u r c e s

S h a r e d a n dV i r t u a l i z e dR e s o u r c e sI n f o r m a t i o n S p a c e S e r v i c e s
Figure 1.1: The Virtual Digital Libraries Scenario

DLs can be heavily reduced and a good level of user satisfaction can be achieved.
The implementation of these mechanisms requires the design of appropriate DL ar-
chitectures and the provision of a specific functionality. In fact, sharing implicitly
introduces the need for components able to deal with many different heterogeneous
resources while virtualization requires being able both to provide different views over
these resources and to aggregate them differently. The nature and the complexity
of such services depends to a large extent on the type of resources being shared.
This can vary from the more traditional content sources, to services, and even to
processing and storage capabilities.

This thesis proposes systematic solutions to some of the main issues involved in
sharing and virtualisation and shows how these solutions have been embedded and
validated in real DL systems.

1.2 Research Contributions

This dissertation introduces a framework for systemizing the design and the con-
struction of Virtual Digital Libraries and presents a number of services that have
been developed within real DL systems to support this view. The former group of
illustrated services introduces mechanisms for implementing the notion of VDLs by
sharing information sources, the latter supports a more general notion of shared re-
sources and introduces the new concept of on-demand transient VDLs. In particular,
the main innovative research contributions presented in this dissertation are:

4 CHAPTER 1. INTRODUCTION

• A Reference Model for Digital Libraries, i. e. an abstract framework for un-
derstanding significant relationships among the components of DLs and for
developing consistent services that support them.

Despite DLs have been introduced more than a decade ago, there is not yet a
consensus on their main entities and expected functionality. In order to sys-
tematically design mechanisms for implementing VDLs, we made an effort to
define the core of a model that represents the significant entities and relation-
ships of a DL [CCP06a, CCP06b]. This model is currently being extended,
validated and consolidated as part of an international activity funded by the
DELOS Network Of Excellence on DLs [DEL].

• An approach to information objects virtualization that relies on set of mech-
anisms for hiding the heterogeneity of the information objects maintained in
multiple shared information sources and for presenting them according to the
needs of the DL users.

The representation of information objects can be very heterogeneous in differ-
ent sources. An information object can be a single element or a complex aggre-
gation of parts, it can have versions and be disseminated in multiple physical
manifestations. Furthermore, it can be associated with one or more metadata
in different formats. This dissertation presents an approach to the virtualiza-
tion of information objects extracted from/maintained in shared information
sources. This approach is based on the introduction of a particular document
model and on a number of components able to manage it. The dissertation
describes also how this approach has been embedded in both the OpenDLib
DL System [CP02, CP03] and in an extended version of it, OpenDLibG, and
it shows the effects of the virtualization in two real DL application cases.

• An approach to the collections virtualization based on a set of mechanisms for
supporting the dynamic construction of virtual collections that are built by
exploiting the content maintained in multiple, shared information sources.

The content of an information source is usually structured in a fixed set of
collections that reflect the organisational choices of its specific application
area. Users of a DL have different needs that often do not match the needs
the original sources are built for. The innovative approach presented in this
dissertation is based on a number of mechanisms that abstract from the het-
erogeneous and specific collections published by the information sources and
support the on-demand creation of virtual collections. Authorised users can
dynamically build these collections by specifying a set of characterisation crite-
ria over the content of the shared information sources. Virtual collections have
been implemented in both the OpenDLib and Cyclades [CYC] DL systems
as part of this dissertation work. Other on-going projects, like BRICKS [BRI],
are also exploiting the results presented here.

1.3. OUTLINE OF DISSERTATION 5

• An approach to distributed semantic search across a set of heterogeneous in-
formation sources whose objects are described and annotated with different
metadata formats and ontologies.

Search services are based on indexes that exploit the information objects meta-
data. These indexes are usually heterogeneous since the shared information
sources support different metadata formats and ontologies, e. g. different meta-
data fields and different term vocabularies for the same field. The approach to
distributed semantic search introduced in this dissertation supports a trans-
parent and uniform search across multiple heterogeneous information sources.
The novelty of the approach is its ability to exploit the ontologies of the shared
information sources to allow the formulation of more semantically expressive
queries. This approach has been experimented in an enhanced version of the
OpenDLib DL system [CCP04].

• An approach to a dynamic and (semi-)automatic generation of Virtual Digital
Libraries based on a shared pool of resources.

By relying on a description of the resources and on a language for a declarative
specification of DLs, both derived from the Reference Model conceptualisation,
a service capable to collect the requirements of different communities and to
identify the optimal pool of resources needed to fulfil the expressed require-
ments is introduced. The design and development of this service is being
carried out as part of the currently on-going DILIGENT project [DIL] which
aims at building a digital library infrastructure on Grid enabled technologies.
In this project the notion of shared resources is generalised and comprises
not only information resources but also applications, processing and storage
resources.

1.3 Outline of Dissertation

This dissertation is organised in seven chapters and an appendix.
Chapter 1 introduces this dissertation by outlining the problem space, the mo-

tivations and the research contributions.
Chapter 2 presents the Reference Model for Digital Libraries. The chapter con-

tains an overview of the model reporting also the principles adopted, presents the
concepts and the relationships identified with the appropriate definitions. Through-
out the chapter formal definitions are enriched with concrete examples explaining
the definition in an intuitive manner. Finally, examples of exploitation and usage
of the models with different goals are reported in order to prove its feasibility.

Chapter 3 elaborates the concept of document model presented into the Ref-
erence Model by presenting a Document Model for Digital Library (DoMDL). We
report the requirements constraining the design of this model, present the OpenDLib
Repository, i. e. a type of Document Virtualizer the OpenDLib system is equipped

6 CHAPTER 1. INTRODUCTION

with, and report concrete exploitation of this service. A further improvement ob-
tained by combining the service with the Grid facilities is also reported. Finally,
a survey on concrete document and data models used in various Digital Library
Systems concludes the chapter.

Chapter 4 elaborates the concept of collection presented into the Reference
Model. We report the design of the Collection Service, i. e. a service able to support
the mechanism of collection, by presenting the architecture and the developed algo-
rithms and techniques, i. e. query sampling and source selection needed to deal with
non co-operative information sources. Moreover, we present the implementation of
this service in the context of two concrete digital library systems, i. e. OpenDLib and
Cyclades. We conclude the chapter by presenting a survey on the exploitation of
the concept of collection in concrete Digital Libraries and Digital Library Systems.

Chapter 5 elaborates on the concepts of metadata mediator and services mediator
presented into the Reference Model by presenting the Distributed Semantic Search.
The architecture and the underlying developed formal theory are described as well
as the implementation is presented. Finally, a survey on approaches for distributed
search implemented in concrete Digital Libraries and Digital Library Systems is
presented.

Chapter 6 introduces the framework for implementing Virtual Digital Libraries.
In particular, the Virtual Digital Library Generator service is presented by providing
details about the exploitation of the concepts introduced into the Reference Model
for defining a DL definition language, a DL component description language, and
the matchmaking algorithm needed to identify the pool of components needed to
fulfil a DL definition. The exploitation of this framework into the context of the
IST EU project named DILIGENT completes the chapter.

Chapter 7 concludes this dissertation and presents future works proposals.
Appendix A presents an overview of OpenDLib, a digital library service system

developed at ISTI-CNR and equipped with many of the services presented in this
dissertation.

Related work is covered in the context of each chapter.

Chapter 2

Virtual Digital Libraries and the
Digital Library Reference Model

In order to be able to build a DL by appropriately and dynamically aggregating a
pool of shared resources providing both the content and the functionality required,
i. e. to implement the Virtual Digital Library, a common understanding on what a
DL is and what its characteristics are is needed. This chapter introduces a Refer-
ence Model for Digital Libraries [CCP06a, CCP06b], i. e. an abstract framework for
understanding and explaining the significant entities and relationships among those
entities in the DL environment.

The chapter is organised as follows. Section 2.1 introduces the Reference Model
and describes the main principles underlying its organisation in incremental views,
each perceived by one of the four typologies of actors identified. Section 2.2 presents
the concepts and the relationships identified to fulfil the information needs of the DL
End-users. Section 2.3 enriches the set of concepts and relationships by reporting
DL Designer perspective. Section 2.4 introduces the DL System Administrator and
the related model. Section 2.5 presents the concepts and relationships of interest
with respect to the DL Application Developers. Section 2.6 introduces the Digital
Library System Reference Architecture, a blueprint reporting the mapping of the
concepts identified into software components that implement them, with the aim to
promote loosely coupled development of these components and encourage reuse and
integration. Finally, section 2.7 introduces and discusses related works.

2.1 Introduction

Until now digital libraries have evaded any definitional consensus. The main rea-
son resides in DLs itself, i. e. digital libraries are complex systems, the underlying
sciences are highly multidisciplinary and each community has its own perspective.
As a consequence a plethora of DL definitions have been coined but none of them is
comprehensive enough to represent DLs in all their flavours. For instance, Fox et.

8 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Al. [FAFL95] observed that the phrase “digital library” evokes a different impression
in each reader ranging from the simple computerisation of traditional libraries to
space in which people communicate, share, and produce new knowledge and knowl-
edge products. Belkin [Bel99] states that a DL is an institution in charge to provide
at least the functionality of a traditional library in a context of distributed and net-
worked collections of information objects. Lesk [Les99] analyses and discusses the
importance of the terms “digital” and “library” in the expression “digital library”,
where the former term mainly corresponds to the software for searching text while
the latter term corresponds to the scanning of existing material for online access,
and concludes that the research effort in the field are not usually associated with the
users’ needs. Borgman [Bor99] notices that at least two competing visions of the ex-
pression “digital library” exist: researchers view digital libraries as content collected
on behalf of user communities, while practising librarians view digital libraries as
institutions or services. Kuny and Cleveland [KC96] discussed four myths about
digital libraries with the aim to explode them, i. e. (i) the Internet is the digital
library, (ii) the myth of a single digital library or one-window view of digital library
collections, (iii) digital libraries will provide more equitable access, anywhere, any
time, and (iv) digital libraries will be cheaper than print libraries; and concludes
that digital libraries impose reinventing the role of librarians and the library models.

Our intention here is not to propose another DL definition comprehensive enough
to cover any need simply because it is not feasible. Instead, we decided to propose a
digital library reference model, i. e. an abstract framework for (i) understanding the
significant entities and relationships between them within a DL environment and
(ii) developing systems for supporting that environment.

Before to introducing this model, an informal clarification of what is our under-
standing about a DL and a system for supporting it is needed in order to make the
context clear. We define a digital library as follows.

Definition 2.1.1 (Digital Library) A networked entity with the aim to provide
at least the functions of a library in the context of distributed, networked collections
of information objects in digital form representing the DL information space.

In order to identify the system in charge to operate and provide DLs we introduce
the concept of Digital Library System.

Definition 2.1.2 (Digital Library System) A software system providing the dig-
ital library functionality on a set of information objects.

In many contexts the concepts of DL and DLS tends to collapse into the same
entity, mainly because the first entity is an abstract entity that is perceives when
implemented via the second one1.

1Throughout this dissertation, where no confusion arises, we will use the terms DL and DLS as
synonyms and tend to prefer the first for both. In particular, all the concept maps we present are
rooted by the Digital Library concept that represents both the entities.

2.1. INTRODUCTION 9D i g i t a l L i b r a r y D i g i t a l L i b r a r yS y s t e m D i g i t a l L i b r a r yM a n a g e m e n t S y s t e m
D LE n d - U s e r s D L A p p l i c a t i o nD e v e l o p e r s

D L D e s i g n e r sD L S y s t e mA d m i n i s t r a t o r sI nt erf ace
Figure 2.1: DL, DLS, and DLMS – A three-tier framework

A second type of system is needed to manage DLs. In accordance with [IMA+05]
we call it Digital Library Management System (DLMS) and define it as follows.

Definition 2.1.3 (Digital Library Management System) A software system in
charge to creating and managing DLs.

The three-tier framework arising from these definitions is depicted in Figure 2.1.
The characteristic that differentiate the two systems resides into the class of objects
objective of the management activity: in the case of the DLS it is the information
space of the digital library while in the case of the DLMS is the digital library itself2.
It is also important to notice that none of the nowadays existing systems for digital
libraries is a DLMS and that a digital library can be created also without a DLMS.
These systems represent what the digital library research community has established
to be created into the near future in order to overcome the drawbacks arising from
the current digital libraries development process [IMA+05].

In order to describe digital libraries, digital library systems and digital library
management systems and characterise them appropriately, we decided to look at
them from the perspectives of the actors that operate with them. These perspectives
vary according to the role played by the actor. We focus our attention on the
modelling needs of four main actor roles and we introduce an appropriate perspective
for each of them as described in the following section.

2.1.1 The Perspectives

The four roles taken into account in analysing and describing digital libraries are: DL
End-user, DL Designer, DL System Administrator, and DL Application Developer

2For those familiar with Data Base (DB) and Data Base Management Systems (DBMS) it is
worth noting the existing differences to avoid misunderstanding due to similar names. In particular,
in the DB area the goal is to manage a pool of data and the DBMS is in charge to maintain the
data and provide the functionality to manage them. In the DL area the goal is to manage a pool of
information objects and the DLS is in charge to provide the functionality to manage them, while
the DLMS is a system capable to instantiate DLSs and do not have any counterpart in the DB
field.

10 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

and are described as follows.

DL End-users

The actors that exploit the digital library functionality for providing, consuming and
managing the DL content. They perceive the DL as a stateful entity which serves
their functional needs through the interaction with an instance of a Digital Library
System. It is worth noting that the behaviour and the outcomes of the functionality
depend on the state of the digital library at the time of the request, where the
state of the digital library meant here is represented by the set of collections of
information objects available plus the pool of users authorised to access the digital
library. This state is continuously evolving accordingly to the functionality activated
by the various users.

DL Designers

The actors that, by exploiting their knowledge of the application domain seman-
tics, customise and maintain the DL aligned with respect to the information and
functional needs of its end-users. These actors correspond to the chief librarians in
a tradition library, they are in charge to define the rules and the policies holding
into the digital library with respect to the information space composition and or-
ganisation, the functionality to be provided, the typologies of users entitled to have
access to the digital library, the quality of the services offered and any other aspect
related to the arrangement of the digital library. These actors perform their task by
interacting with the Digital Library Management System. By using the operations
provided by this system, they identify, among the set of possible DLs that can be
realised with the given DLMS, the one that better satisfies the application needs
of the end-users. Then, they define a number of (i) functional configuration pa-
rameters, i. e. parameters that characterise the format of a specific DL functionality
as perceived by the end-user, like metadata formats, query language, user profile
formats, (ii) content configuration parameters, i. e. parameters that characterise the
accessible content, like the information sources to be harvested, and (iii) quality
configuration parameters, i. e. aspects characterising qualitative behaviour of the
system functionality, e. g. the response time of a search task. The value of these
parameters can be modified during the digital library lifetime. Any change at this
level results in a change of the digital library state that determines the features
perceived by the end-users.

DL System Administrators

The actors that select the Digital Library System software components to install in
order to implement the required digital library and decide where and how to deploy
them. They interact with the DLMS by invoking specific operations that require

2.1. INTRODUCTION 11

H o s t i n gN o d e
D LU s e r F u n c t i o n a l i t yC o n t e n t Q o S D LE n d X u s e r s

C o m p o n e n t
D L M S

D LA p p l i c a t i o nD e v e l o p e r sS o f t w a r e F r a m e w o r k
D L D e s i g n e r sD L S y s t e mA d m i n i s t r a t o r sA p p l i c a t i o nF r a m e w o r k

Figure 2.2: DL perspectives hierarchy

to provide architecture configuration parameters, like the selected software compo-
nents, the hosting nodes, the components allocation, etc. Their task is to identify the
architectural configuration, among those supported by the chosen DLMS, that bet-
ter implements the digital library configuration established by the DL Designer and
ensure the required quality of service. The value of the architecture configuration
parameters can be changed over the DL lifetime. The change of these parameters
may result in a different DL functionality when a new software component is added
and, more generally, in a different level of quality of service provided by the digital
library.

DL Application Developers

The actors in charge to develop the digital library management system components
or extend the digital library system software components made available by a DLMS
in order to satisfy the additional needs of a DL specific application framework.
This means that both DLMS and DLS are open systems whose set of functionality
can be easily enlarged or improved by adding novel components. Thanks to this
capability and to the envisaged configuration aspects we are designing a software
system typology capable to evolve in accordance to the users requirements and thus
able to fulfil the needs arising in any application scenario with the minimum effort
as possible.

12 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

DL Perspectives Hierarchy

These four roles3, taken in the order, identify four different perspectives each of which
is an extension of the previous one (see Figure 2.2) both in terms of the number of
concepts and relationships identified and in terms of the details associated to each
entity/relationship.

The DL End-users only perceive what a specific digital library provides them,
therefore they need a model of the DL that comprises the concepts and relationships
required to interact with a single DL, e. g. the structure of the information objects,
the organisation of the information space, the functionality provided.

The DL Designer uses a DLMS to configure a DL serving a specific class of end-
users. Therefore, they need a model that represents the configuration functionality
offered by the DLMS and the set of resulting DLs which can be created through
this system, as perceived by the end-users. For instance, their model must be able
to represent characteristics of the digital library information space like the allowed
information objects structures and the allowed metadata formats, the operational
and qualitative characteristics of the offered functionality, the policies regulating the
activities performed by the DL End-users.

The DL System Administrators, which are responsible for selecting and deploying
the digital library system software components that implement the functional (e. g.
a type of search, the publishing procedure) and content choices (e. g. import of a col-
lection from an information source, the metadata schema to be used for cataloguing
information objects) established by the DL Designers, need a more complete model
of both the DLMS and DL. This model must be suitable to represent not only the
functional aspects of the supported DLs but, also, the components that implement
the functionality and the hosting nodes where these components can be deployed.

Finally, the DL Application Developers require the most complete representation
of the digital library system, namely from the system’s architecture point of view
because they are going to produce new components that have to co-operate with
the already existing ones in order to deliver novel functionality. In particular, they
need a model that specifies the underlying software and application frameworks4,
the relationships and dependencies among the software components, and how these
are related to the end-user functionality.

For each of the identified perspective we need to cluster the pool of concepts
and relationships characterising the model according to few and well established
dimensional aspects that are identified and described in the following section.

3It is worth noting that the actors meant here are not necessarily humans. They can be software
agents that operate as dictated by the corresponding role. In this case the model is a necessary
key element since it establishes the context for the definition of the algorithms that implement the
automatic actor. A concrete example of such agents is the VDL Generator that replaces the DL
System Administrator, as presented in Chapter 6.

4These concepts are explained in detail in Section 2.5.

2.1. INTRODUCTION 13

Figure 2.3: The Digital Library main concepts

2.1.2 The Digital Library Main Concepts

Figure 2.3 presents the concept map5 [NG84] of the most important and high level
concepts characterising a digital library, i. e. the Architecture, the User, the Infor-
mation Space, the Functionality, and the Quality of Service. In accordance to the
map, each digital library supports users, provides functionality, operates on an in-
formation space and offers a level of quality. Moreover, it is characterised by an
architecture. These five ingredients allow us to cover the whole spectrum of charac-
teristics and aspects related to digital libraries.

Information Space

The information space represents the most important resource of any digital library,
i. e. it corresponds to the whole set of information the digital library makes available
to its users. It is usual to consider the information space as composed by a pool of
information objects organised into collections especially from a DL End-user per-
spective but under this umbrella we aggregate all the concepts related to and needed
for dealing with the management of any type of information the digital library is
going to offer to its users. In particular, the metadata play an important role. They
can be used in different contexts and for different purposes, e. g. they describe the
content of an information object, they express the structure of a complex object, the
characterise the policies regulating the usage, etc. Finally, it is important to remark
how the understanding of the concepts classified into this area varies in accordance
to the perspectives introduced previously. For instance, an information object per-
ceived by the End-user is usually the unit of information she/he is looking for; an
information object for the DL Designer represents a unit of information to make
available to the DL End-users; an information object for the System Administrator

5A concept map is an informal graphical way to illustrate key concepts and relationships among
them. A concept identifies a class of objects that we expect to be able to identify in the proposed
context. The precise “form” of concept c may be different in diverse implementations, but the
presence of the concept tells us what to look for in a given concrete scenario rather than prescribing
its precise form. This formalism offers a practical method to represent complex information in a
compact and easy-to-understand way.

14 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

is a part of a component that must be maintained up and running into the digi-
tal library system; finally, an information object for the DL Application Developer
is composed by a set of files stored somewhere that must be manipulated by the
components she/he is developing.

User

The user dimension represents the second most important resource of any digital
library, i. e. the actors entitled to interact with it. In fact, the role of the digital
libraries is to connect people with information and support the users in perform-
ing their tasks, namely, producing new information objects or consuming already
available information objects. As in the case of the previous dimension, the um-
brella of User covers all the concepts and relationships related to representation and
management of human entities into the system, e. g. it contains the digital entity
representing the human actor, the rights the entity has into the system, the charac-
teristics the human decides to be represented with for collaboration aspects. Also
in this case, the perception of the same concept varies in accordance of the user role
perspectives. For instance, in the case of DL End-users a user is a human person
the system provides with information; the user perceived by a DL Designer can still
be a human person or a class of human persons she/he is going to provide rights;
in the case of the System Administrator a user is a digital item stored into a digi-
tal library system component she/he is in charge to equip the digital library with;
finally, the user perceived by a DL Application Developer is a data structure report-
ing for instance an identifier and an email address representing a user she/he must
take into account in designing and developing the component providing a certain
functionality.

Functionality

A digital library is composed by an information space and a set of users aggregated
with the aim to give the users a pool of processes to operate on these elements,
i. e. the functionality. The functionality expected from digital libraries are not fixed
neither in type nor in form, e. g. there exists a set of core functionality each digital li-
brary must provide like submission, search, browse, but as previously explained each
user community may ask for a certain type of a core functionality or for a novel type
of functionality for using and profiting of digital library resources. Moreover, func-
tionality are perceived differently from the four identified user roles. For instance,
the search functionality is perceived as the mechanism to retrieve the information
objects she/he is interested in from the point of view of the DL End-user; in the
case of the DL Designer, a search functionality represents the access path to the
content available into the digital library and must be customised to fulfil the user
requirements; the same functionality is instead perceived as one or more software
modules to be deployed and made available from the DL System Administrator that

2.1. INTRODUCTION 15

must take care of the performance offered by such components and eventually study
replication and distribution strategies for improving them; finally, the search func-
tionality is a complex process the DL Application Developer must take care of when
implementing the digital library system software component in charge to provide it
or participating in providing it.

Quality of Service

The Quality of Service concept groups a pool of qualitative parameters charac-
terising the digital library behaviour, in particular it represents measurable and
non-functional characteristics of a functionality within a given operational domain.
It is usual to have different characteristics for diverse functionality and a measure-
ment of each of them, whether it is objective or subjective. The objective measure
is performed automatically and can be repeated while the subjective measure in-
volves humans and their personal feeling. Among the other aspects considered in
evaluating digital libraries, quality of services measurement plays an important role
in characterising these complex systems. Unlike the previous concepts, quality of
service concepts by themselves have no different perceptions when moving from one
user role to another, the differences of perceptions can reside on the object the user
role is going to measure, on the measure the user role is interested in and on the
process behind the observed value. For instance, the response time of a given func-
tionality is measured in average time per request from the point of view of all the
user roles with the following differences. The End-users are passive subjects and
usually cannot do much more than ask the DL Designers for an improvement. The
DL Designer establishes the threshold, i. e. the maximum average time tolerated
into the digital library she/he is responsible for. The DL System Administrator
is in charge to deploy and configure the components of the digital library system
providing the functionality by ensuring the required quality of service level. Finally,
the DL Application Developer is in charge to carefully evaluate the consequences of
its design and implementation choices in terms of the quality of service offered by
the component she/he is going to develop.

Architecture

A common understanding of digital libraries is that they are among the most com-
plex and advanced forms of information system [FM98]. Moreover, as thousands
of digital libraries exist around the world and new ones are emerging, one of the
biggest issue of the research community is to make these heterogeneous digital li-
braries interoperable. The architectural understanding of the digital library systems
behind the digital libraries becomes thus a foundational dimension in reaching this
goal. Unlike the other main four digital library concepts, the architecture becomes
meaningful and of pertinence of the DL System Administrators and DL Application
Developers only. The DL End-users do not take care of this characteristic because

16 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

they usually perceive the digital library by interacting with a graphical user interface
provided in a web browser. The DL Designers are usually expert librarians and do
not have the technical skills to deal with the architecture of the system that is in the
hand of the DL System Administrators. From our point of view and for the sake of
this reference model, the most comprehensive definition of the architecture concept
is “A representation of a system in which there is a mapping of functionality onto
hardware and software components, a mapping of the software architecture onto
the hardware architecture, and human interaction with these components”6. One of
the contributes of this model is the reference architecture for digital library systems
reported in Section 2.6.

2.2 The DL End-user Perspective

End-users are the actors interacting with the digital library in order to exploit the
resources and the facilities offered by this entity. They perceive the DL as the stateful
entity capable to fulfil their information and functional needs and do not take care
about the underlying digital library and digital library management systems. In
describing this perspective we have identified three classes of actors, i. e. Content
Consumer, Content Provider, and Librarian, and four classes of functionality, i. e.
Content Management, Access, Personalisation, and DL Management as reported in
Sections 2.2.2 and 2.2.3 respectively. Figures 2.4, 2.6, 2.5, and 2.7 reports concepts
and relationships modelling DLs from these users perspectives clustered according to
the five main DL concepts. Actually, as these users do not perceive the Architecture
facet, the dimensions taken into account are the remaining four. These modelling
elements are described in detail in the next subsections and illustrated by giving
examples.

2.2.1 Information Space

This section introduces the main concepts that characterise the information space
of a specific DL as perceived by the DL End-users. Note that this representation
of the information space, and even its instances, may be different from the concrete
representation manipulated by the software components that implement the DL.
The representation meant here is the one that is disseminated by the functionality
of the DL that support content creation, access and management.

The main concept of the digital library information space is the information
object.

Definition 2.2.1 (Information Object) The main unit of information which is
managed by the DL. An information object has an Information Object Identifier for

6Glossary of the Carnegie Mellon University’s Software Engineering Institute. http://www.

sei.cmu.edu/opensystems/glossary.html

2.2. THE DL END-USER PERSPECTIVE 17

Figure 2.4: The DL End-user concept map – Main concepts

identification purposes and Metadata for various management purposes. Moreover,
each Information Object can: (i) be structured, i. e. it can be composed by other
information objects, (ii) have multiple versions, views, and manifestations, and (iii)
be annotated.

The definition above contains the motivations convinced us to avoid the classical
term “document” to represent the unit of data managed by the digital library.
Nowadays, we are moving far from the digital objects as counterparts of the physical
documents stored into a traditional library; even if great effort is spent in digitalise
existing material, most information “born digital” today results in novel type of
“documents” more flexible and informative than the classical ones. Examples of such
information objects are: sound recording of voices equipping a set of slides, sheet
music whose content can be eared rather than observed in accessing it, politic and
economic data equipped with interactive simulations. Also the classic documents
take advantages in being digital, for instance a Ph.D. thesis can be represented
via an information object composed by one information object for each chapter as
well as an information object containing a simulation of one of the experiments
conducted and an information object containing the experimental data set adopted.
The message here is: information objects are complex objects and digital libraries
should be prepared to manage them even if their complexity is not known a-priory
and can evolve during the digital library lifetime. However, in order to manage them
the digital library must be able at least to identify them, thus in our model each
information object has an information object identifier.

Definition 2.2.2 (Information Object Identifier) The minimal information en-
abling to distinguish one Information Object from all the others within an identifi-
cation scope.

18 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Various forms of information objects identifiers can be envisaged each having the
aim to univocally recognise an entity a certain context. These can vary from simple
sequential numbers to URIs and Digital Object Identifiers7 (DOIs). Clearly, each of
them has a different discriminating power when considered in the context of digital
libraries whose content can be gathered from worldwide located information sources.
Therefore carefully attention must be posed in detecting duplicate copies of the
same object. In the context of virtual digital libraries universally unique identifiers
becomes of vital importance. In particular, a good candidate is represented by DOI,
i. e. a name (not a location) for an entity on digital networks. It provides a system
for persistent and actionable identification and interoperable exchange of managed
information on digital networks.

As stated by Def. 2.2.1 an information object has multiple versions.

Definition 2.2.3 (Version) An expression of an information object along the time
dimension.

The concept of versioning is well known and applies successfully in traditional
libraries. As for any other concept we inherit from the library area, the goal is
to maintain the semantic as much as possible unchanged even if the models can
be revised. For instance, the draft version, the version submitted, and the version
published in the proceedings are different versions of the same information object
representing a paper submitted to a conference. Another example is the information
object reporting the graph presenting the growth of the material available into a
digital library, the per year or per month graphs represent different versions of the
same information object. Our model introduces the concept of version but does
not constrain it allowing each community to use it in the most profitable form.
Moreover, It is worth noting that versions of an information object are themselves
other information objects populating the digital library information space.

Besides different versions, the same information object can have different views.

Definition 2.2.4 (View) A way through which the information object is perceived.

The concept of view is useful to represent the diverse expressions an information
object may assume, where the term “expression” is taken from [IFL]. This aspect
becomes particularly important in the digital era where diverse expressions of the
same object can be easily created. It is worth to remark that physical aspects do
not contribute to the generation of different views that thus are mechanisms to
differentiate the other information object perceptions. For instance, considering an
information object representing the outcomes of a workshop, three different views of
this object can be envisaged: (i) the “full view” containing a preface prepared by the
conference chair and the whole set of papers accepted and organised thematically,
(ii) the “handbook view” containing the conference program and the slides of each

7http://www.doi.org/

2.2. THE DL END-USER PERSPECTIVE 19

lecturer accompanied with the abstract of the paper the talk is about and organised
per section, and (iii) the “informative view” reporting the goal of the workshop
and the list of the accepted papers’ title and the relative abstract. The mechanism
offered by views allow to tailor the information object expression to different user
needs. As in the case of versioning, it is worth noting that views are information
objects populating the DL information space and the model does not constrain them
in any form but limits to introduce them as important concept in future DLs.

In accordance with Def. 2.2.1, an information object has multiple versions, mul-
tiple views, and multiple manifestations.

Definition 2.2.5 (Manifestation) The physical embodiment of an Information
Object.

The concepts introduced until now deal with the logical organisation of infor-
mation objects, while the manifestation deals with the physical presentation of its
informative content. This concept probably is the most important one as regards
how the users are provided with the information they are looking for. It is worth
noting that we are dealing with digital objects and thus the manifestation is it-
self a digital object. Examples of manifestations are the PDF file of a paper, the
MPEG file containing the video recording of a lecture, a text file containing the raw
data observed by a sensor, an xml file reporting the results of a certain elaboration.
These pieces of information can be physically stored into the digital library some-
where as well as dynamically generated, from the DL End-users perspective it is
only important that they can be being, to have access to them.

Until now we have introduced the main ingredients an information object is made
with. However, a digital library usually provides DL End-users with information
objects compliant with a document format.

Definition 2.2.6 (Document Format) The abstract model through which an in-
formation object is perceived by the user.

To make information objects more useful for the DL End-users it is usual to
establish and organise them in accordance with a set of document formats. For
instance, a digital library containing Ph. D. thesis can be designed to adopt the
document format “thesis” that constrain information objects to be organised in a
part representing the cover page, a part representing the preface, and a part for each
chapter. It is matter of the DL Designers to define the document model the digital
library adopts as explained in Section 2.3.

An important concept related to information objects is metadata, each informa-
tion object has its own metadata.

Definition 2.2.7 (Metadata) Additional data about an information object.

20 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

The “classic” definition of metadata is “data about data”. These additional data
can be used in different contexts and with different purposes; our model captures the
needs to have them associated to an information object as a means for enhancing the
functionality and in general the management of the object. Examples of metadata of
an information object are its bibliographic record, the policies regulating the access
to its content, a description of the structure the object is organised in, a description
of the preservation process adopted. It is worth noting that the model does not
constrain the application of metadata in fixed contexts but introduces a placeholder
the DL End-user are interested in when use a digital library.

To enable DL End-users to fruitfully use the information stored into metadata
it is mandatory to share a common understanding of them with their producer.
Usually, this common understanding is reached by relying on the metadata format
as a mechanism for abstractly describe the “shape” metadata will have into the
digital library.

Definition 2.2.8 (Metadata Format) The way in which metadata is arranged or
set out.

Each digital library is entitled to define and adopt its own metadata format but
in order to improve interoperability and reuse of already existing stuffs, it is usual to
adopt well known metadata format. A common format for bibliographic records is
represented by the Dublin Core [DC], probably due to its simplicity on the contrary
of the MARC format [MAR05] that is much more articulated. Another example of
metadata format is represented by the Metadata Encoding and Transmission Stan-
dard (METS) [The02], i. e. a standard providing and encoding format for descriptive,
administrative, and structural metadata designed both to support the management
of the information objects and the delivery and exchange of them across systems.
However, it is also usual to combine multiple metadata formats into novel metadata
format named application profile in order to fit them with the digital library needs.

Having clarified the role metadata plays into the digital library and the needs
to describe them according to a common format, in the following definitions we
report the main categories of metadata adopted in digital libraries, i. e. descriptive,
administrative, structural, and preservation metadata.

Definition 2.2.9 (Descriptive Metadata) Metadata for discovery and interpre-
tation of an information object.

As stated, metadata are used to support the functionality acting on the in-
formation objects. In particular, the umbrella of descriptive metadata covers the
additional information supporting information object finding and interpretation.
Examples of descriptive metadata are a bibliographic record, a list of keywords
characterising the information object content, a summary describing the object.

2.2. THE DL END-USER PERSPECTIVE 21

Definition 2.2.10 (Administrative Metadata) Metadata for managing the dig-
ital object and providing more information about its creation and any constraint
governing its use.

This category of metadata might include: metadata describing technical char-
acteristics of an information object, metadata describing the object from which the
information object was produced, metadata describing the history of the operations
performed on the information object since its creation/capture, metadata describing
copyright, use restrictions and license agreements constraining the use of the object.

Definition 2.2.11 (Structural Metadata) Metadata describing the logical or phys-
ical relationships between the information object parts.

Structural metadata represent the glue enabling to deal with complex informa-
tion objects composed by aggregating in novel ways pre-existing information objects.
Even if these metadata are not directly seen by the content consumers and content
creators which perceive the structure of the objects by directly accessing them or
using the fixed document format, they are matter of the library operators that may
need to have access to the internal structure of the objects to perform their content
management tasks. Moreover, this kind of metadata is usually of interest of the
technical actors, namely the DL Application Developer.

Definition 2.2.12 (Preservation Metadata) Metadata for supporting preserva-
tion tasks.

Many work have been conducted to investigate the most appropriate form and con-
tent this type of metadata should have. For instance the PREMIS, an OCLC and
RLG international working group, prepared a Data Dictionary with the aim to
define a set of “core” preservation metadata elements [PRE05]. PREMIS defines
“preservation metadata” as the information a repository uses to support the digital
preservation process. Specifically, this group focussed on metadata supporting the
functions of maintaining viability, renderability, understandability, authenticity, and
identity in a preservation context. Preservation metadata thus spans a number of
the categories typically used to differentiate types of metadata: administrative (in-
cluding rights and permissions), technical, and structural. Particular attention was
paid to the documentation of digital provenance (the history of an object) and to
the documentation of relationships, especially relationships among different objects
within the preservation repository.

Having clarified the concepts of information objects and their related metadata
we come back to Figure 2.4 in order to recall that the DL End-users perceive the
digital library as composed by information objects and organised in collections.

Definition 2.2.13 (Collection) An information object representing a set of infor-
mation objects grouped according to a characterisation criterion.

22 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Collections represent the “classic” mechanism to organise a huge amount of in-
formation objects and to provide focused views. Thanks to these focused views the
DL End-users are entitled to have access to thematic parts of the whole information
space and avoid to deal with the volume of data the digital library makes available.
These focused views can be created by the library operators in order to support
content consumers and content creators to keep the library information space or-
ganised and improve it access and usage; further, they can be created by authorised
content consumers in order to implement their own personal views of the digital li-
brary information space. The definition and identification of the objects constituting
each collection is based on a set of characterisation criteria. These criteria can range
from the enumeration of the information objects belonging to the collection to mem-
bership conditions that specify which properties information objects must share to
become collection members. Finally, it is worth noting that collections themselves
are considered information objects of the digital library information space. The
main consequences of this aspect of definition are: (i) a collection is the object of
the same functionality as the information objects, e. g. the search, the browse, the
annotate, the preserve, and (ii) it is possible to organise collections hierarchically
via the “has part” relationship.

In Chapter 4 we present the exploitation of the collections as the mechanism
to organise the information space of a virtual digital library and provide concrete
examples of exploitation of this mechanism in concrete scenarios like the Cyclades
project and the OpenDLib based digital libraries.

The last concept related to the digital library information space is annotation.

Definition 2.2.14 (Annotation) An information object representing extra infor-
mation associated with another information object.

Annotations represent an important type of information objects used especially
in digital libraries supporting co-operative work. This information can be used in
various contexts, e. g. to express a personal opinion about an information object, to
enrich an information object with references to related works or contradictory infor-
mation objects, to add personal notes about a retrieved information object for future
usage. It is also important to notice that we decided to give annotations the im-
portance of information objects for two reasons, (i) due to their nature annotations
themselves are information objects, (ii) to be effective instrument of co-operation
they must have the same expressive power as information objects. As a conse-
quence, annotations managed in digital libraries can assume different formats and
be expressed in different media. Moreover, they have assigned metadata reporting
additional information enabling the content consumer as well as the content creator
to assign the appropriate weight to this type of information.

2.2. THE DL END-USER PERSPECTIVE 23

2.2.2 User

The user dimension is used to introduce and present the concepts needed to represent
and support the human actors in charge of interacting with the digital library. The
minimal set of concepts and relationships needed for this purpose is reported in
Figure 2.4.

First of all we are interested in being able to univocally identify these users and
thus we need a User Identifier.

Definition 2.2.15 (User Identifier) The minimal information enabling to distin-
guish one user from all the others within an identification scope.

As in the case of Information Object Identifiers, this identifier must be unique
within the digital library and in the case of interoperation among different DLs a
mechanism to exchange these identifiers and resolve possible conflicts is needed.

Having univocally identified users, we need also user profiles in order to maintain
information representing them.

Definition 2.2.16 (User Profile) The descriptive information the digital library
maintains about a single user.

The user profile is the container of any characterising information of digital library
users except information related to the policies. This is covered separately, via the
usage of the user role. Examples of information usually gathered about users are:
(i) the contact information like name, mail and e-mail addresses, (ii) expression of
interests regarding the digital library information space; this can be advertised by
the user himself or dynamically computed by the digital library system in accordance
to the usage and the behaviour of the user in the DL context, (iii) various statistics
like the number of information object accessed, their type, the number of logs in,
(iv) personalisation and customisation of the digital library environment like look
and feel of the user interface, preferred services of the digital library to interact
with. No standard for users profiles exists. Moreover, which information the user
profile contains depends on the functionality the digital library is going to provide
and vice versa, i. e. the type and the behaviour of functionality that relies on the
user profile data are a direct consequence of the information these data contain. For
instance the digital library could provide a per-user personalised recommendation
functionality if and only if the user profile contains data about the topics of interest.

As in any other system dealing with many users, it is usual to introduce the
concept of group in order to manage a pool of users as a single entity.

Definition 2.2.17 (Group) A number of users that are considered or classed to-
gether.

24 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Groups play, with respect to users, the same role as collection do with respect to
information objects. As a consequence, a group is considered as a meta-user and
thus can be the object of the same functionality, e. g. advertise an information object,
grant or remove access rights.

The latter aspect, i. e. that related to access rights, is actually regulated by
relying on the concept of role.

Definition 2.2.18 (Role) A job function within the context of an organisation,
i. e. the DL, with some associated semantics regarding the authority and responsibil-
ity conferred on the user assigned role.

The above definition comes from [FKC03] and works in accordance with the policy
mechanism described in Section 2.2.3.

As anticipated, our model introduces three roles representing three types of ac-
tors interacting with the digital library, i. e. the content creator, the content con-
sumer, and the librarian.

Definition 2.2.19 (Content Creator) The role associated with the users in charge
of providing new information objects to be stored into the digital library or updating
already existing information objects.

Figure 2.5: The DL End-user concept map – Content Creator functionality

Figure 2.5 depicts the Content Creator concept map and in particular reports the
functionality the users having this role are entitled to perform, i. e. submit a novel
information object, update an existing information object, and annotate an infor-
mation object. For a description of them please refer to Section 2.2.3.

Definition 2.2.20 (Content Consumer) The role associated to the users access-
ing the digital library in order to consume its information objects.

Figure 2.6 depicts the Content Consumer concept map and in particular reports the
functionality the users having this role are entitled to perform, namely access DL
information objects. For a description of them please refer to Section 2.2.3.

2.2. THE DL END-USER PERSPECTIVE 25

Figure 2.6: The DL End-user concept map – Content Consumer functionality

Figure 2.7: The DL End-user concept map – Librarian functionality

Definition 2.2.21 (Librarian) The role associated to the users of the digital li-
brary in charge of managing it by performing the day by day librarian tasks.

Figure 2.7 depicts the Librarian concept map and in particular reports the function-
ality the users having this role are entitled to perform, namely the management of
information objects constituting the digital library and users having access to them.
For a description of them please refer to Section 2.2.3.

2.2.3 Functionality

Below we list the mandatory functionality that the DL End-users of digital libraries
expect from such systems. Note that DLs may also provide additional functionality

26 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

to cover the peculiar needs of specific application frameworks.

Before going in detail and describe this list, we recall that the usage of the
digital library functionality is usually regulated by policies as reported in our model
(Figure 2.4, page 17).

Definition 2.2.22 (Policy) A triple (role,functionality,object) where the object is
an information object or a user regulating the usage of the functionality in the digital
library context.

Policies are the mechanism used to regulate and restrict the DL system access and
usage to authorised users. Various approaches exist in implementing access control
mechanisms, e. g. Mandatory Access Control (MAC), Discretionary Access Control
(DAC), Role-Based Access Control (RBAC). In modelling the access control we
used the RBAC approach [FKC03]. This is the main reason for introducing the role
concept. Coming back to the model reported in Figure 2.4, a policy is associated
to functionality and is used to restrict the usage of the single functionality to an
established role. Moreover, as functionality may acts on both users and information
objects and thus the policy must be able to identify the objects that are affected
by the functionality in order to provide an effective and fine grained access control
mechanism.

In order to identify, describe and organise this set of functionality each digital
library is in charge of providing, we proceed analysing the functional needs of the
three roles introduced in Section 2.2.2, i. e. Content Creator, Content Consumer, and
Librarian. These functionalities are reported in Figures 2.5, 2.6, and 2.7 respectively.
From this analysis and thus from the DL End-user point of view it arises that a digital
library must provide four types of high level functionalities: Content Management,
Access, DL Management, and Personalisation.

The content creator role must be entitled to perform content management func-
tionality.

Definition 2.2.23 (Content Management) The functionality acting on the dig-
ital library information space to produce new information objects or updating already
existing information objects.

Actually, this functionality represents a family of functionalities because the tasks
to be performed in managing a set of objects are numerous. In the following, we
identify and describe the main types of content management functionalities, i. e.
submit, update, and annotate an information object.

Definition 2.2.24 (Submit Information Object) The functionality allowing the
user to define and provide a new information object to be stored and made available
into the digital library.

2.2. THE DL END-USER PERSPECTIVE 27

It is worth noting that this functionality contains the authoring phase supporting
the content creator to define the information object to be submitted. During the
authoring phase the content creator must be enabled to create information objects
accordingly to one of the document formats (Def. 2.2.6) supported by the digital
library as well as to identify and reuse already existing information objects in or-
der to build complex objects. It is also important to notice that according to the
digital library policies established by the DL Designer (Section 2.3), the submit
functionality usually adds the newly created information object to the incoming
information space, i. e. a temporary area that contains all the objects waiting for
published (Def. 2.2.38) by the librarians, or it may add the object directly to the
DL information space.

Definition 2.2.25 (Update Information Object) The functionality acting on
the digital library information space which allows users to modify an already ex-
isting information objects.

This functionality is similar to the submission functionality because it implies au-
thoring capabilities in order to rearrange the information object and usually pro-
duces a novel information object that may be a new version (Def. 2.2.3), a new view
(Def. 2.2.4), or a new manifestation (Def. 2.2.5) of an already existing information
object.

It is important to notice that we have modelled collections as information objects
(Def. 2.2.13) and thus the functionality described applies also to this type of objects.
It is clear that the authoring mechanisms should be different, however they produce
information objects compliant with a particular document format. Another type of
information object is represented by annotations (Def. 2.2.14).

Definition 2.2.26 (Annotate Information Object) The functionality acting on
an information object of the digital library information space to produce an additional
piece of information, i. e. the annotation, to be assigned to the information object
itself.

The content consumer as well as the content creator roles must be entitled to perform
access functionality in order to discover and use the information objects populating
the digital library they are interested in.

Definition 2.2.27 (Access) The functionality acting on the digital library infor-
mation space and providing users with mechanisms for discovering and using the
information objects they are interested in.

Actually, this functionality represents a family of functionalities because the tasks
for accessing and using the information objects are numerous and dependant from
the type of objects the digital library deals with. In the following, we identify
and describe the main types of access functionalities, namely the visualisation, the
translation, and the various forms of search and browse.

28 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.2.28 (Visualise) The functionality enabling the users to perceive an
information object in a graphical way on an appropriate device.

As previously stressed, information objects may be complex objects and they may
combine information manifested in different media. Thus, this functionality must
be tailored to the end-user characteristics, like the device used or their personal
setting (usually this information belongs to the profile – Def. 2.2.16), as well as to
the characteristics of the object to be rendered. Actually, these characteristics hold
and apply to the whole user interface of the digital library, because it has to provide
the users with a comfortable environment, giving intuitive and easy access to the
object they needs as well as to the functionality they are interested in.

Besides offering a graphical interface, digital libraries are in charge of facilitating
the access to the information objects in any possible way, as they can suffer from a
limitation of usage of the knowledge they provide. For example, this may happen
because of the language the objects are expressed in. In particular, this holds
for virtual digital libraries, as they are built by aggregating information objects
collected from different information sources. A translation functionality alleviate
this drawback and improve the knowledge sharing.

Definition 2.2.29 (Translate) The functionality enabling end-users to perceive
an information object in a language different from the native one. In this context
languages can range from country languages, e. g. Italian, English, to community
and cultural languages, e. g. Muslim culture.

Before visualising or asking for an information object translation it is needed to
identify it. The “classic” functionality for discover digital library information objects
are the search and the browse.

Definition 2.2.30 (Search) The functionality enabling the users to discover the
information objects, if any, capable to fulfil the information need expressed by a
user, usually named “query”.

This definition of search functionality is general and does not constrain the forms
this functionality may assume in a concrete digital library. These forms vary usu-
ally in the way through which the query is expressed. For instance, we can have
digital libraries providing a simple keyword based search functionality (the Google 8

style) or providing what is usually called “advanced search” where more sophisticate
conditions can be expressed, e. g. “all the information objects on a given research
topic having a certain author and published in a period of time”. As the objects
the digital library deals with are of different types also the query content can be
something different from a text. For instance it should be possible to search for

8http://www.google.com

2.2. THE DL END-USER PERSPECTIVE 29

information objects similar to a provided sample image representing the user infor-
mation need as well as to search for those deemed similar to an excerpt of an audio.
The form of the query does not constrain the type of object retrieved, e. g. a textual
query can be used to retrieve information objects whose manifestation are videos or
audio files. Finally, it is also worth noting that this functionality usually relies on
the metadata associated to the information objects, in particular on the descriptive
metadata (Def. 2.2.9).

The access mechanism envisaged in Def. 2.2.30, where the user expresses her/his
information need and the digital library presents the information objects deemed
as relevant, can be improved with more sophisticated features as in the case of the
relevance feedback search.

Definition 2.2.31 (Relevance Feedback Search) The search functionality which
supports the iterative improvement of the search result set by allowing the user to
express a relevance judgement on the retrieved objects at each iteration step.

This mechanism has been proved to effectively improve the discovery mechanism
and the user satisfaction because reduces the draw back related to the expressive
power of the query language supported by the digital library.

As previously stated, the information objects populating the digital library in-
formation space can be expressed in different languages. In order to improve the
discovery phase and make it effective, a cross-language search functionality is needed.

Definition 2.2.32 (Cross-language search) The search functionality supporting
the users in expressing queries in a certain language and retrieving information
objects expressed in whatever other language.

Many efforts exist in making this functionality an effective discovery mechanism [CLE].
Another “classic” discovery mechanism is represented by browsing functionality.

Definition 2.2.33 (Browse) The functionality providing access to the digital in-
formation objects by listing them accordingly to a certain characteristic.

The browse represents a functionality allowing the user to explore the digital library
information space exhaustively. It may be considered a pre-search mechanism, aim-
ing at finding information useful for searching. As in the case of the search, a digital
library can be equipped with various types of browse functionality. For instance, it
is possible to have a digital library information space depicted by using bubbles or
areas of different size each representing a certain topic and then navigating among
those bubbles in order to investigate on the content of each. Another common form
of browsing is represented by the per-author browse, where the information space is
explored for searching the correct form of the name of an author.

Moreover, in order to enhance the perception consumers have of the digital li-
brary and of its information space, the personalisation functionality becomes fun-
damental.

30 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.2.34 (Personalise) The functionality allowing users to customise
both the digital library information space and the way through which functionali-
ties behave and are perceived.

The personalise is a family of functionalities, as many aspects of a digital library
can be customised to adapt to the content consumer needs. These aspects may
range from the customisation of the look and feel digital library exhibits to the
personalised organisation of the digital library information space so that it highlights
the personal interest of its users. In particular two examples of personalisation of
the digital library information space are related to the collection management and
to the subscription functionality.

Definition 2.2.35 (Collection Management) The functionality allowing users
to create, update, and remove collections.

The importance of collections as a mechanism to organise the digital library informa-
tion space has been presented in Section 2.2.1 and in particular in Def. 2.2.13. The
collection management functionality represents the family of functionalities needed
to deal with collections. Thanks to this family of functionalities each content con-
sumer is enabled to build her/his own virtual organisation of the digital library
information space. This organisation may appear similar to the file system folder
paradigm, with the difference, however, that it is a virtual one and evolves dynami-
cally following the dynamism of the digital library. For instance, if a new document
matching the definition criteria of a content consumer collection is added to the
digital library this automatically becomes part of that collection.

Definition 2.2.36 (Subscription) The functionality allowing users to express their
interest in a certain topic.

This functionality represents a personalisation functionality related to the dissemi-
nation of the digital library information objects (Def. 2.2.40). In particular the user
expresses her/his interest in certain topics and each time new information objects
about such topics become available into the digital library the digital library system
alerts the user. Thanks to this characteristics digital libraries become proactive sys-
tems instead of being just passive systems in charge of replying to content consumer
queries.

Until now we have introduced and described the functionality characterising the
content creators and the content consumers. What actually differentiates a digital
library from the Web is that in a digital library there exists a “control” on and the
management of such resources by the librarians (Def. 2.2.21).

Definition 2.2.37 (DL Management) The functionality acting on both the digi-
tal library information space and the digital library users for maintaining the digital
library up and running and in line with the characteristics established by the DL
Designer.

2.2. THE DL END-USER PERSPECTIVE 31

Actually this functionality represents a class of functionalities because the manage-
ment of a digital library is a complex task. The main functionalities have been
depicted in Figure 2.7 on page 25. From this picture it arises that a librarian is
in charge of performing functionality dealing with the management of information
objects (annotate and update), with their publishing and advertising (publish, with-
draw, and disseminate), with their maintenance (preserve), with the establishment
of the rules regulating their usage (policy management), and with the management
of users.

The “annotate information object” and “update information object” have al-
ready been described. In the context of the Librarian they represent mechanisms
to co-operate with the content creators in enriching the digital library information
space. For instance, annotations can be used to communicate to the content creator
the improvement that must be performed on a submitted information object in order
to make it publicly available into the digital library information space. The update
information object instead can be used when minor changes of the information ob-
jects are needed, e. g. the descriptive metadata are incomplete or contains typos,
or for other DL management reasons, e. g. the submitted format is not suitable
for whole preservation and therefore is to be transformed in another, fully fledged
format.

Definition 2.2.38 (Publish Information Object) The DL management func-
tionality allowing the users making the information object “publicly” available into
the DL. With publicly here we intend that the object becomes available within a DL
in accordance with the policies assigned to it.

Definition 2.2.39 (Withdraw) The DL management functionality allowing users
to draw back an information object from the DL information space.

The publishing and withdrawing of information objects from the digital library
information space have been assigned to the librarians in order to highlight that the
information objects made available by a digital library have been submitted to an
evaluation process and thus fit with the rule regulating the quality of the informa-
tion space. Thus a digital library guarantees certain characteristics on the content it
offers. This process presents similarities with the traditional library scenario. How-
ever, the digital library may introduce novel paths in traditional library tasks, e. g.
a digital library may defer this control to the content creator that is thus enabled to
autonomously add its information object to the digital library information space.

The management of a digital library involves also the dissemination of its infor-
mation objects.

Definition 2.2.40 (Disseminate Information Object) The DL management func-
tionality allowing digital library users to the advertise information objects available
into the DL information space.

32 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

This management functionality can have multiple manifestations, e. g. it can be
performed by a human actor (the librarian) or it can be automatically done by the
system (Recommender Systems [ACS, FFS+01, HCOC02]), can give notice of a new
acquisition of information objects or of material deemed pertinent to a user profile
(Def. 2.2.16), can be executed by advising all the DL Users or a subset of them,
chosen by relying on the user profile preferences, can be performed by sending an
email, an SMS or by any other messaging mechanisms.

Information objects represent the most important resource of any digital library
and thus one of the functionality for digital library management is the preservation
of such resources.

Definition 2.2.41 (Preserve) The DL management functionality allowing librar-
ians to extend the usable life of information objects and protect them from failure
and technological obsolescence.

For the sake of the reference model we do not add details about the technologies
and the modalities to provide this functionality that can be found elsewhere [Gla06,
PRE05, DEL]. It is worth noting that this functionality relies on preservation meta-
data (Def. 2.2.12) digital objects are equipped with.

Besides ensuring that information objects be available for the long term period,
it is important to regulate their usage and prevent unauthorised accesses. In our
model, this latter point is ensured by policies (Def. 2.2.22). As a consequence the
digital library must provide the functionality for managing policies.

Definition 2.2.42 (Policy Management) The DL management functionality al-
lowing librarians to define and manage policies in order to regulate the usage of the
digital library.

It is worth noting that this functionality depends on the rules and constraints es-
tablished by the DL Designer via the Establish Policy functionality (Def. 2.3.9).

This long list of functionalities concludes with those dedicated to the manage-
ment of users, one of the important components of any digital library.

Definition 2.2.43 (User Management) The DL management functionality al-
lowing librarians to administer the pool of users having access to the digital library.

This functionality represents a family of functionalities allowing the librarian to
deal with the DL users management. In particular, the librarian must be enabled
to create new users, remove already existing ones, and regulating the rights they
hold into the system, i. e. the tasks they are entitled to perform and the information
objects they are entitled to use. For the sake of the reference model we do not
provide further details of this functionality but introduce two of the functionalities
classified under this umbrella, the registration and the role management in order to
explain and clarify two processes.

2.2. THE DL END-USER PERSPECTIVE 33

Definition 2.2.44 (Registration) The user management functionality allowing
the librarian to effectively adding a new user to those the digital library manage and
recognise.

This process is responsible for populating the digital library user community. Even
if it can easily be automatised, it is preferable to be regulate it somehow. The less
constraints are imposed on the registration of novel users, the less the system is
capable to ensure the identity of a user. Moreover, the constraints imposed at
registration time are a direct consequence of the audience the digital library is
designed for. All these aspects are decided at the DL design time by the DL Designer
(Section 2.3).

In order to provide users with rights enabling them to have access to the digital
library information objects or use digital library functionality the librarians have to
deal with the management of roles.

Definition 2.2.45 (Role Management) The user management functionality for
creating and administrating the associations between users and roles.

As previously explained, our model relies on the Role-Based Access Control [FKC03]
where the management of roles is of fundamental importance.

This section has introduced the main functionalities DL End-users expects from
a digital library system. This list is not exhaustive, i. e. new functionalities can be
envisaged in observing or designing a digital library system. However, the function-
alities possibly missing are classifiable under one of the four main functionalities,
i. e. access, content management, DL management, and personalise.

In the following section we introduce the last dimension completing the DL End-
user model, i. e. the aspects related to the quality of service of the digital library.

2.2.4 Quality of Service

The quality of service dimension captures the qualitative characteristics of a digital
library. In this section we present those of interest with respect to the DL End-
users perspective. These quality characteristics are expressed by a specific metrics
as suggested in [MS04]. Then before introducing the characteristics we introduce
the concepts needed to describe and capture them.

As depicted in Figure 2.4 on page 17, the quality of service is composed by a set
of quality parameters each having a measurement that can be objective or subjective.

Definition 2.2.46 (Quality Parameter) An aspect of the quality of the service
that we are going to express via a measurement.

Examples of such parameters are reported in the following.

34 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.2.47 (Measurement) The action of and the value obtained by mea-
suring a quality parameter in accordance with a selected process and a unit of mea-
surement.

Measurement are further classified in objective and subjective measurement.

Definition 2.2.48 (Objective Measurement) A measurement of a quality pa-
rameter obtained via a well defined process that does not depend on individual per-
ception.

Definition 2.2.49 (Subjective Measurement) A measurement of a quality pa-
rameter based on or influenced by personal feelings, tastes, or opinions.

The DL End-users are interested in having a perception of the following quality
parameters: security, economic, usability, availability, reliability, performance, and
response time. For each of them we provide a definition.

Definition 2.2.50 (Security) The quality parameter which measures the level and
kind of security of a given functionality.

Definition 2.2.51 (Economic) The quality parameter which measures the eco-
nomic conditions of the usage of a given functionality.

Definition 2.2.52 (Usability) The quality parameter which measures the easiness
of use of a given digital library functionality.

Definition 2.2.53 (Availability) The quality parameter which measures the prob-
ability that a functionality responds to a user request.

Definition 2.2.54 (Reliability) The quality parameter which measures the likeli-
hood of successfully using a functionality, typically, it parallels availability.

Definition 2.2.55 (Performance) The quality parameter which measures the per-
formance of the functionality from the users perspective.

This parameter can be expressed by means of a series of other parameters, one of
them is the response time.

Definition 2.2.56 (Response Time) The quality parameter capturing the delay
from the functionality request to the reception of the response.

2.3. THE DL DESIGNER PERSPECTIVE 35

2.3 The DL Designer Perspective

In accordance with the three-tier framework, the DL Designer is in charge of defining
and maintaining the digital library in line with the requirements of the DL End-users.
In order to perform this task she/he interacts with the digital library management
system that provides a set of digital library management functionality mainly related
to the configuration of the digital library. It is worth noting the differences existing
among these management functionalities and those performed by the librarians, as
described in the previous section (Def. 2.2.37 on page 30). The DL management
functionalities used by the librarians are provided by the digital library system and
their goal is to daily operate a digital library while those used by the DL Designer
are provided by the digital library management system and their goal is to define
and manage the digital library as a whole, and in particular establish the processes
and the rules the librarian must follow in operating the DL.

The second point to recall is that in accordance with the perspective hierarchy,
the DL Designer inherits the concepts and relationships of the DL End-users and
thus in this section we introduce only the new concepts and relationships needed to
fulfil additional modelling needs. These concepts and relationships are depicted in
Figure 2.8 and described below according to the five main DL concepts. Actually,
as these users do not perceive the Architecture facet, the dimensions taken into
account are the remaining four. It is also important to notice the concept of DLMS
already described (Def. 2.1.3) and the relationship existing between this system and
the digital library.

2.3.1 Information Space

The perception DL End-users and DL Designer have are exactly the same when
expressed in terms of the information objects composing it and the collections it
is organised in. In adjunction to this view the DL Designer needs to consider the
configuration aspects she/he can acts on in order to arrange the digital library in-
formation space.

Definition 2.3.1 (Configuration Aspect) A feature characterising the informa-
tion space or the functionality that can be the object of a customisation.

The customisation meant here is performed via the configure information space and
configure DL functionality described in Section 2.3.3. The aspects of the information
space that can be customised by the DL Designers are:

• the organisation and structure of the information space, i. e. the set of collec-
tions and their hierarchy;

• the set of third-party information sources from where the content is harvested;

• the DL supported information object formats (Def. 2.2.6);

36 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Figure 2.8: The DL Designer concept map – Main concepts

• the DL supported metadata formats (Def. 2.2.8).

In order to define the document format the following concept of information object
model is required.

Definition 2.3.2 (Information Object Model) The model characterising the class
of all the possible information objects supported by the digital library system.

This model presents the way trough which the concepts about information objects
introduced in previous section, i. e. version, view, metadata, and manifestation, are
modelled concretely into the digital library system. Thus the DL Designer, by ap-
propriately instantiating this model is enabled to establish the document formats
that are adopted by the digital library and perceived by its DL End-users. Exam-
ples of information object models are DoMDL [CCPS05a], the DSpace data model
[TBS03a] and the Fedora Object Model [LPSW05]. A detailed description and a
comparison of them is reported in Chapter 3.

2.3.2 User

As in the case of the information space, DL Designers and DL End-users are enabled
to model the users with the same set of concepts and relationships among them.
The only difference is the perception of these concepts, i. e. in the case of the DL
End-users the concepts are the way through which concrete users can be perceived

2.3. THE DL DESIGNER PERSPECTIVE 37

and managed while in the case of the DL Designers these concepts are used to
characterise the classes of users having access to the digital library. For instance,
the DL End-users perceive the instance of the user profile as a representative of
a human user while the DL Designer decides how the user profile instances are
composed, the information they must provide, the process adopted to fill it with
appropriate information, etc.

The aspects of the user dimension that can be customised by a DL Designer are:

• the user profile type (Def. 2.2.16) supported.

• the supported set of groups (Def. 2.2.17);

• the set of roles (Def. 2.2.18).

2.3.3 Functionality

DL Designers inherit the same perception of the digital library functionality, they
need only to introduce the concepts related to the customisation, i. e. the configu-
ration aspect, and the logging.

The definition of what a configuration aspect is has already been provided. It
is worth noting that (i) each functionality has its own configuration aspects, (ii)
some configuration aspects are known others depend on the functionality itself, (iii)
configuration of a functionality may constrain the configuration of other DL func-
tionalities, and (iv) each digital library system supports a set of configuration aspects
regarding the functionality it provides. These reasons convinced us to highlight, in
our model, the common configuration aspects, i. e. information object model, docu-
ment format, metadata format, and policy, as well as to introduce the concept of DL
functionality specific configuration aspect. Job of the DL Designer is to configure ap-
propriately the digital library functionality, both in terms of the set of the provided
functionalities and the behaviour of each of them, in order to fulfil the requirements
arising from the audience the digital library is designed for. For instance, if the DL
Designer is preparing a digital library for supporting information objects compliant
with the document format F , she/he has to decide the type of functionality allowed
on such an object and configure each functionality to deal with objects compliant
with F .

Actually, the decisions taken by the DL Designer are concretely realised by the
DL System Administrator via the deployment and configuration of the software com-
ponents constituting the digital library system as described in Section 2.4. Moreover,
this activity is nowadays conducted without any automatic support.

The model in Figure 2.8 contains other concepts that will be described in this
area. In describing the principles characterising our model we stated that the func-
tionality umbrella is used to model and characterise the processes the digital library
provides in order to operate the digital library users and information objects. How-
ever, as the DL management functionality offered by the DLMS represents a type

38 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

of functionality we decided to describe and introduce it under the same umbrella of
the digital library functionality because no confusion arises.

Definition 2.3.3 (DL Management) The functionality acting on the digital li-
brary information space, the digital library users, and the digital library functionality
for selecting and configuring the entities composing the digital library.

This functionality represents the family of functionalities the DL Designer expect the
DLMS provides in order to support the digital library definition and configuration
tasks. In our model we envisaged five types of DL management functionality, i. e.
configure information space, configure DL functionality, configure users, establish
policies, and log management.

Definition 2.3.4 (Configure Information Space) The DL management func-
tionality provided by the digital library management system allowing the DL De-
signer to customise the digital library information space both in quantitative and
qualitative terms.

This functionality represents the family of functionalities supporting the various
configuration aspects related to the digital library information space. As antici-
pated, they can be classified into two categories, those dealing with the quantitative
aspects - like the number of information objects constituting it, e. g. select infor-
mation sources - and those dealing with qualitative aspects like the typology of the
information object perceived by the DL End-users, e. g. configure document format.

Definition 2.3.5 (Select Information Source) The DL management function-
ality provided by the digital library management system allowing the DL Designer to
select the information sources from which the digital library information objects are
to be gathered.

The implementation of this functionality can be various, depending on the typol-
ogy of ingestion mechanism the digital library management system supports. For
instance, if the digital library management system contains a module able to har-
vest metadata records via the OAI-PMH [OAI], the select information source allows
specifying the url of the information source, possibly the set the information objects
have to be taken from, and the start and end date. On the contrary, this function-
ality has to support a more advanced behaviour if the digital library management
system provides a module supporting advanced mechanisms, for example a mecha-
nism enabling a set of transformation rules to be applied in producing digital library
information objects from those actually provided by the information source.

Definition 2.3.6 (Configure Document Model) The DL management function-
ality provided by the digital library management system allowing the DL Designer to
design the typologies of information objects the digital library has to deal with.

2.3. THE DL DESIGNER PERSPECTIVE 39

As previously explained, this functionality supports the DL Designer in defining the
document formats (Def. 2.2.6) in terms of the general information object model
(Def. 2.3.2).

Definition 2.3.7 (Configure DL Functionality) The DL management function-
ality provided by the digital library management system allowing the DL Designer to
customise the digital library functionality both in quantitative and qualitative terms.

This functionality represents the family of functionalities dealing with the customi-
sation of the functionality the digital library provides. The possible implementations
of this functionality depend on the characteristics of the digital library management
system and in particular on the characteristics of the modules implementing the digi-
tal library system it provides. However, this functionality must allow identifying the
set of functionalities the digital library has to provide among those allowed and to
customise their behaviour in terms of the allowed configuration aspects. It is worth
noting that the broader the range of customisations supported by a digital library
management system is, the greater its capability to adapt to different scenarios is
and hence its success in implementing digital libraries.

Definition 2.3.8 (Configure Users) The DL management functionality provided
by the digital library management system allowing the DL Designer to customise the
digital library users both in quantitative and qualitative terms.

This functionality represents the family of functionalities supporting the personali-
sation of the user related aspects. In particular, it is expected that by interacting
with this functionality the DL Designer is enabled to define at least the composition
of the user profile, the roles, and the groups the digital library supports.

Definition 2.3.9 (Establish Policies) The DL management functionality provided
by the digital library management system allowing the DL Designer to set up the
family of rules regulating the usage of the digital library resources.

This functionality is the highest level functionality with respect to the management
of policies, i. e. all the other functionalities dealing with policies are constrained by
the outcome and the choices of it. For instance, the policy management functionality
performed by the librarians (Def. 2.2.42) takes care of assigning the policies in
accordance with the constraints imposed by the establish policies functionality.

Another aspect introduced by the DL Designer perspective is the presence of
logs in order to record the events occurring for each functionality. Thanks to them,
the DL Designer is enabled to investigate on the usage of the various digital library
functionalities and decide the appropriate customisation in order to improve the
service offered or tailor it to the actual community the digital library is serving. The
digital library management system must be equipped with a functionality allowing
to manage such logs.

40 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.3.10 (Log Management) The DL management functionality pro-
vided by the digital library management system allowing the DL Designer to manage
the digital library functionality logs.

2.3.4 Quality of Service

The DL Librarian is interested in additional and finer grained quality parameters
with respect to those introduced for the DL End-users. In particular, as reported in
Figure 2.8, new quality parameters are added, i. e. robustness, capacity, and scalabil-
ity, and specialisation of already presented parameters are introduced, i. e. integrity,
authentication, message protection, and data protection with respect to security,
throughput and latency with respect to performance, load balancing with respect to
availability, and recoverability, messaging, and consistency with respect to reliability.

Definition 2.3.11 (Robustness) The quality parameter measuring the resilience
of the functionality to ill-formed input and incorrect invocation sequences.

Definition 2.3.12 (Capacity) The quality parameter measuring the limit on the
number of actions a functionality can perform.

This characteristic influences also the availability and reliability qualities, i. e. when
a functionality operates beyond its capacity these other qualities parameters are
negatively affected.

Definition 2.3.13 (Scalability) The quality parameter measuring the capability
to increase the functionality capacity as needed.

Definition 2.3.14 (Integrity) The quality parameter measuring the ability of the
functionality to prevent unauthorised access and preserve its data integrity.

Definition 2.3.15 (Authentication) The quality parameter capturing whether the
functionality requires user authentication or it accepts anonymous users.

Definition 2.3.16 (Data Protection) The quality parameter measuring the ca-
pability of a functionality to prevent unauthorised access to the data the functionality
is in charge for.

Definition 2.3.17 (Message Protection) The quality parameter measuring the
capability of a functionality to protect the interaction with the users in terms of the
messages exchanged.

Definition 2.3.18 (Latency) The quality parameter measuring the delay interval
spent between the time when the user invokes the functionality and the time when
the functionality effect begins.

2.4. THE DL SYSTEM ADMINISTRATOR PERSPECTIVE 41

Definition 2.3.19 (Throughput) The quality parameter measuring the rate at
which a functionality sends and receives data, i. e. the number of requests it is capable
to serve in a certain interval of time.

The difference between throughput and latency is the following. The unit of la-
tency is time. It measures the interval between the time a request leaves the client
and the time the response arrives back at the client from the serving functionality.
Throughput is the amount of data that is transferred over a period of time.

Definition 2.3.20 (Load Balancing) The quality parameter measuring the ca-
pacity of a functionality to spread work between many resources.

Definition 2.3.21 (Recoverability) The quality parameter measuring the capac-
ity of a functionality to recover from failures.

Definition 2.3.22 (Messaging) The quality parameter measuring the reliability
of a functionality in terms of the likelihood of using the functionality by interacting
via message exchange.

Definition 2.3.23 (Consistency) The quality parameter measuring the reliabil-
ity of a functionality in terms of the likelihood of using the functionality avoiding
contradictory results.

2.4 The DL System Administrator Perspective

The DL System Administrator is the actor in charge to interact with the digital
library management system in order to (i) select the digital library system software
components to be installed in order to implement the digital library and (ii) decide
where and how to deploy them in order to fulfil the requirements expressed by the
DL Designer in terms of the information space, the user, the functionality, and the
quality of service. Thus the implementation of the digital library is a matter of this
actor.

Figure 2.9 reports the concepts and the relationships modelling DLs from these
users’ perspective clustered accordingly to the five main DL concepts. It is impor-
tant to notice the main difference between this map and the previous ones; this map
introduces the architecture concepts and focus on them and their relationships inher-
iting all the previous concepts with respect to user, information space, functionality
and quality of service.

2.4.1 Information Space

All the aspects related to the digital library information space have already been
introduced in the previous sections. As a consequence this model does not need to

42 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Figure 2.9: The DL System Administrator concept map – Main concepts

introduce any new concept. Here we want just to recall how the information space
comes into play from the DL System Administrator point of view.

Since the first view of our model (Fig. 2.3 on page 13) we reported the concepts
of information space and functionality modelling that a functionality acts on the
DL information space. Moreover it should be clear that the DL information space
is actually perceived by the DL End-users via the functionality the DL offers. From
the DL System Administrator perspective we introduce the concept of component
as the element holding and thus implementing a digital library functionality. Thus,
the digital library information space is actually realised by the set of components
appropriately configured and deployed to provide the digital library functionality
over the DL information objects.

It is a matter of the DL System Administrator to map the requirements expressed
by the DL Designer about the information space into component configurations
or deployment strategies. For instance, the system administrator configures the
document conformer component (Section 2.6) in order to produce the information
objects the digital library must provide from the concrete information objects stored
in third party information sources, as well as it is a matter of the administrator to
configure the OAI-PMH Harvester (Section 2.6) in order to gather the information
objects from already existing OAI compliant information sources.

2.4. THE DL SYSTEM ADMINISTRATOR PERSPECTIVE 43

2.4.2 User

With respect to the user dimension, the same considerations made for the informa-
tion space are valid. This means that (i) in order to model the users from the DL
System Administrator perspective the concepts previously presented are sufficient,
and (ii) the user are perceived via the functionality acting on them and thus they
are realised by the set of components in charge of providing such a functionality.

It is a matter of the DL System Administrator to map the requirements expressed
by the DL Designer about the users into component configurations or deployment
strategies. For instance, the system administrator configures the module in charge of
managing the user profile with the DL Designer requirements and, as a consequence,
configures all the other components constituting the digital library to deal with these
pieces of information.

2.4.3 Architecture

As introduced in Section 2.1.2, the architecture is a representation of the system
dealing with mapping functionality onto hardware and software components. Our
model is based on such understanding and thus the characterising concepts are
component and hosting node.

Definition 2.4.1 (Component) A software module providing a well defined set of
digital library functionality such that (i) it is autonomously configurable and (ii) it
is deployable on one or more hosting nodes.

It is also worth noting that each component has a component description charac-
terising it and promoting the correct usage. This description may assume diverse
forms ranging from human oriented description, e. g. a textual description in nat-
ural language, to a machine understandable one, e. g. the WSDL as in the case of
web services. This description must be tailored on the needs of the DL System
Administrator, e. g. in Chapter 6 we present a service in charge of partially replac-
ing the system administrator and thus we need a component description usable by
the implemented automatic reasoning algorithm. The second characteristic to high-
light is the use relationship among components, as in a component based system
components rely on others components to provide their functionality.

Definition 2.4.2 (Hosting Node) An hardware device providing computational
and storage capabilities such that it (i) is networked, (ii) is available, and (iii) is
capable to host components.

Components and hosting nodes are the building blocks of the digital library sys-
tem. However, in order to allow them to operate as an application, the application
framework is needed.

44 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.4.3 (Application Framework) A set of library and subsystems sup-
porting the operation of the digital library system components.

The application framework influences the way through which components are re-
alised as well as imposes constraints on the DL System Administrator that is in
charge of also deploying and configuring the component constituting this frame-
work. For instance, in the case the components have been realised by relying on
an application framework providing a SOAP library, it is up to the DL System
Administrator to provide them with such a library.

However, in order to model the library and the subsystems constituting the
application framework as any other digital library component and thus leverage on
the management functionality provided by the DLMS, we introduced the concept of
system support component.

Definition 2.4.4 (System Support Component) A software component provid-
ing digital library component support functionality.

Having clarified that the DL System Administrator is in charge of managing the
pool of components and the pool of hosting nodes constituting the instance of digital
library system, it is necessary to introduce the concept of status.

Definition 2.4.5 (Status) An information characterising the current standing of
a component deployed on an hosting node.

This information is fundamental in order to allow the DL System Administrator
to monitor the status of the system supporting the digital library and to act for
ensuring the characteristics and behaviour required by the DL Designer.

2.4.4 Functionality

In order to describe the digital library functionality the DL System Administrator
relies on the same concepts and relationships already introduced for the DL End-
user and DL Designer perspectives. Moreover, from this point of view it is enough
to know which software component has to provide a certain functionality and any
other detail useful for appropriately tuning the component in order to obtain the
expected behaviour and match the quality of service required.

Thus in the remaining part of this section we describe the DLMS expected func-
tionality supporting the DL System Administrator tasks.

Definition 2.4.6 (DLS Management) The functionality acting on the digital li-
brary system components for selecting, configuring and monitoring those composing
the digital library.

2.4. THE DL SYSTEM ADMINISTRATOR PERSPECTIVE 45

This functionality represents the family of functionalities a digital library manage-
ment system must provide in order to allow the DL System Administrator to create
and manage the digital library system instances in charge to provide the digital
libraries required by the DL Designers. In particular, we have identified three main
functionalities, respectively corresponding to the configuration, deployment, and
monitoring phases of a digital library development process.

Definition 2.4.7 (Configure) The functionality provided by the digital library man-
agement system allowing the DL System Administrator to customise a digital library
system component.

The model does not constrain the implementation of this functionality in a fixed
form. For instance, it is possible to do the configuration of a component by manually
editing configuration files as well as to envisage a graphical configuration environ-
ment driving the DL System Administrator during this complex task and capable
to verify and maintain the consistency of the configured aspects. As in the case
of functionality, the model takes care for introducing the concept of configuration
aspect but does not present the list of allowed aspects for the following reason: each
component may expose its own configuration aspects, some of them may be com-
mon to all the components (e. g. the component name, the communication protocol)
while others are component specific (e. g. the metadata format to support, the doc-
ument format to support); our model is comprehensive enough to represent all of
them under the common umbrella.

The configuration of a single component is one of the aspects of customisation
of a digital library system, the second aspect is represented by the deployment.

Definition 2.4.8 (Deploy) The functionality provided by the digital library man-
agement system allowing the DL System Administrator to install a digital library
system component on a hosting node and make it operative.

As for configuration, the model does not constrain the implementation of this func-
tionality. It is possible to build digital library management systems where this
functionality is executed by the DL System Administrator by hand as well as to en-
visage sophisticated mechanisms supporting the dynamic deployment (an attempt
to perform this dynamic deployment is under realisation in the context of the DILI-
GENT project as described in Chapter 6).

The deployment phase consists of assigning components to hosting nodes with the
aim to ensure the quality of service parameter values required by the DL Designer.
In order to evaluate the effectiveness of the allocation choices as well as to ensure
the digital library operation, a monitoring functionality is needed.

Definition 2.4.9 (Monitor DL Component Status) The functionality provided
by the digital library management system allowing the DL System Administrator to
perceive the current standing of a deployed digital library system component.

46 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Such functionality relies on the status information reporting the standing of a digital
library component deployed on a hosting node. The implementation of it thus
depends on the information made available and can be sophisticated as we like. For
instance, a mechanism can be envisaged allowing the DL System Administrator to
manually look for such information as well as graphical interface reporting the graphs
of certain characteristics of the components or an automatic advertising mechanism
alerting the DL System Administrator when certain characteristics of the deployed
components exceed an established threshold.

2.4.5 Quality of Service

The DL System Administrator takes care of managing the components and the
hosting nodes. As a consequence she/he inherits all the quality of service parameters
previously introduced for the other user perspectives and needs to introduce new
relationships that make it possible to assign such parameters to the entities she/he is
responsible for. Thus in Figure 2.9 we assigned the quality of service characteristics
to a component, an hosting node, and to the pair (component,hosting node) in
order to capture aspects related to each of them. In particular, the quality of
services assigned to a component supports the DL System Administrator during the
component selection and configuration phase, those assigned to the hosting node
support the deployment phase, and finally, those assigned to the pair supports the
monitoring and maintenance phase.

2.5 The DL Application Developer Perspective

The DL Application Developers are the actors in charge to develop the components
a digital library management system provides for building digital library systems re-
alising digital libraries. They come in play both during the realisation of the DLMS
and during the usage of the DLMS in building DLSs. In particular, during the
first phase they are in charge to develop the “standard” components, i. e. compo-
nents fulfilling the requirements of “classic” digital libraries, while during the second
phase are in charge to develop personalised components, i. e. components fulfilling
additional needs arising in specific application framework.

Due to this characteristic, the perspective of these users is focused on the techni-
calities needed to operate a digital library system realised in terms of components.
Figure 2.10 presents the concept map to fulfil their perspective. It is manifest
that these actors inherit a great amount of concepts from the previously presented
perspectives and need just to add (i) a set of expected enabling functionality the
components they are going to develop can rely on and (ii) the concept of software
framework needed to provide them a blueprint of the digital library system they are
going to introduce a new component or replace an existing one.

2.5. THE DL APPLICATION DEVELOPER PERSPECTIVE 47

Figure 2.10: The DL Application Developer concept map – Main concepts

2.5.1 Information Space

For the sake of this model we do not need to introduce any further concept with
respect to the information space. In fact, these actors are usually interested in
realisation details of the concepts already introduced and these details, e. g. file,
data structure, XML schema, are too fine grained with respect to the reference
model; thus we decide to make them implicitly contained within the concept of the
information space entity they are related to, e. g. these actors perceive the various
metadata formats (Def. 2.2.8 on page 20) through the XML schemes defining them,
an information object (Def. 2.2.1 on page 16) through the set of files constituting
it, a collection (Def. 2.2.13 on page 21) through the metadata file defining it.

2.5.2 User

With respect to the user dimension the same considerations made for information
space holds, i. e. the DL Application Developer needs to model exactly the same
concepts and relationships previously introduced in terms of realisation details. For
instance, from their perspective the user profile (Def. 2.2.16 on page 23) is both the
entity representing a human actor as well as it is the data structure they can rely
on for realising a functionality of the software component under development.

2.5.3 Architecture

The architecture dimension is of fundamental importance for the understanding
of the digital library system and to allow DL Application Developers to produce
software components capable to co-operate with the others system components in
realising the expected functionality.

These users perceive the digital library architecture as in the case of the Sys-
tem Administrators, i. e. a mapping of the system functionality onto components

48 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

(Def. 2.4.1 on page 43) and hosting nodes (Def. 2.4.2 on page 43). Moreover, they
must be aware of the presence of an application framework (Def. 2.4.3 on page 44)
providing its supporting functionality via a set of components.

Actually, they must know the software framework underlying the family of dig-
ital library systems supported by the digital library management system they are
interacting with and for which they are implementing a novel component.

Definition 2.5.1 (Software Framework) A blueprint of the software system the
digital library system is built accordingly.

The software framework is a reusable design for a software system expressed in
terms of abstract classes and explaining the way through which their instances co-
operate [JF88, Deu89, Gac03].

This abstract and general picture of the system is realised by the application
framework components, by the component constituting the digital library system in
charge to provide the digital library functionality, and by the enabling components.

Definition 2.5.2 (Enabling Component) A software component providing the
enabling functionality a digital library system component rely on in interacting with
others digital library system components.

It is worth highlighting the differences existing between these enabling components
and the system support components (Def. 2.4.4 on page 44). The former are com-
ponents that are not associated with any specific resource but rather are global in
nature, manage and support the interactions across collections of components. They
are not built on top of, nor they are intended to replace or hide, the system support
components; they are intended to exploit the capabilities of the application frame-
work in order to extend it and cover the needs of the specific application context.
In particular, they are in charge to provide the enabling functionality described in
Section 2.5.4.

The last concept we decided to introduce is related to the organisation of com-
ponents and named functional area.

Definition 2.5.3 (Functional Area) A packaging of components in charge to pro-
vide a well defined set of functionality.

This concepts become a foundational concept in presenting the digital library system
reference architecture reported in Section 2.6.

2.5.4 Functionality

With respect to this DL main concept, the DL Application Developers inherit the
same concepts already introduced even if with a diverse and more rich understand-
ing. For instance, in the case of the search functionality defined in Section 2.2.3 (i)

2.5. THE DL APPLICATION DEVELOPER PERSPECTIVE 49

DL End-users, DL Designers, DL System Administrators and DL Application De-
velopers share the same functional understanding, (ii) DL System Administrators
and DL Application Developers share the same architectural understanding, and
(iii) only DL Application Developers must be aware of the complex process needed
to provide such functionality.

Moreover, the presence of the enabling components introduce a family of novel
functionality named enabling functionality the DL Application Developers can rely
on in implementing their components, i. e. process management, monitoring, discov-
ery, brokering, notification, encryption, authentication, authorisation, and subscrip-
tion. It is important to remark that the actors profiting from the presence of such
facilities are the digital library components when interacting with other components
and that this communication is based on messages exchange, as usual.

Definition 2.5.4 (Process Management) The functionality allowing to define
and provide a novel functionality as composition of already existing functionality.

This functionality is a family of functionality providing the process mechanism, i. e. a
powerful and flexible way for building and delivering novel functionality by “simply”
combining along novel paths already existing functionality also known as “program-
ming in the large” or “mega programming” [WWC92]. This functionality provides
support for their definition, management, verification, and execution. Thanks to it
part of the logic needed to provide the component functionality the DL Application
Developer is realising can be implemented by defining a process whose execution is
up to the component providing process management facilities.

Definition 2.5.5 (Monitoring) The functionality allowing to periodically and au-
tomatically check for certain events or conditions.

This functionality provide the component with facilities for being automatically
notified when the event the component expresses interest in happens.

Definition 2.5.6 (Discovery) The functionality allowing to identify another com-
ponent compliant with the specification of the request performed.

This functionality is particularly useful in the case of dynamic systems whose com-
ponents change or evolves without advices, and each time a component that needs
to interact with another component must first identify the most appropriate among
those available.

Definition 2.5.7 (Brokering) The functionality supporting the component-to-com-
ponent communication by hiding communication details.

This functionality is useful in case of distributed and dynamic system allowing to
easily the communication between components because take care of transforming the
messages of the sender components in terms of messages the receiver can interpret
by ensuring their delivery as well.

50 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Definition 2.5.8 (Subscription) The functionality allowing to express an interest
with respect to an event in order to be automatically notified when the event happens.

This functionality is paired with the notification.

Definition 2.5.9 (Notification) The functionality alerting the subscriber entity
when the event it is interested in happens.

The remaining functionality are related to the security aspect in messages exchange.

Definition 2.5.10 (Authentication) The functionality allowing to verify the va-
lidity of the provided sender identity.

Definition 2.5.11 (Authorisation) The functionality allowing to establish whether
the sender is entitled to send the message.

Actually, the message is the mechanism to use a functionality provided by the com-
ponent and thus being entitled to send the message corresponds to being entitled to
use the functionality.

Definition 2.5.12 (Encryption) The functionality ensuring privacy in messages
exchange, i. e. codifying appropriately the message in order to prevent its under-
standing by unauthorised entities.

2.5.5 Quality of Service

With respect to the quality of service concept, the DL Application Developer does
not need to add any further concept than those already provided. In particular,
this actor perceive the quality of service parameters as a set of constraints and
characteristics she/he must carefully take care when designing and implementing
the component.

2.6 The Digital Library System Reference Archi-

tecture

In accordance with MacKenzie et. A. [MLM+06], a reference architecture is an
architectural design pattern that indicates how an abstract set of mechanisms and
relationships implements a predetermined set of requirements. We appreciate their
explaining example on reference architecture for housing and therefore we report it
in below in order to ease the understanding and to remark the importance of the
role this entity plays in the digital library context as well.

2.6. THE DIGITAL LIBRARY SYSTEM REFERENCE ARCHITECTURE 51

The role of a reference architecture for housing would be to identify ab-
stract solutions to the problems of providing housing. A general pattern
for housing, one that addresses the needs of its occupants in the sense of,
say, noting that there are bedrooms, kitchens, hallways, and so on is a
good basis for an abstract reference architecture. The concept of eating
area is a reference model concept, a kitchen is a realisation of eating area
in the context of the reference architecture.

There may be more than one reference architecture that addresses how
to design housing; for example, there may be a reference architecture
to address the requirements for developing housing solutions in large
apartment complexes, another to address suburban single family houses,
and another for space stations. In the context of high density housing,
there may not be a separate kitchen but rather a shared cooking space
or even a communal kitchen used by many families.

An actual – or concrete – architecture would introduce additional ele-
ments. It would incorporate particular architectural styles, particular
arrangements of windows, construction materials to be used and so on.
A blueprint of a particular house represents an instantiation of an archi-
tecture as it applies to a proposed or actually constructed dwelling.

The reference model for housing is, therefore, at least three levels of
abstraction away from a physical entity that can be lived in.9

In the light of this example it becomes clear that (i) the reference model introduced
in previous sections provides a common conceptual framework that can be used
consistently across and between different implementations and is of particular use
in modelling specific solutions, (ii) the architecture of any digital library system is
based on a component-oriented approach, and (iii) the software framework (Def.
2.5.1 on page 48) represents a particular instance of a digital library system.

In Figure 2.11 we present a digital library system reference architecture organised
in functional areas (Def. 2.5.3 on page 48) that makes it possible to realise both
“classic” digital libraries as well as the virtual digital libraries that are the subject
of this dissertation. Thus, in designing this architecture our goal is twofold. On
the one hand we aim at promoting the development of digital library systems not
as single entities with a fixed business logic rather as entities composed by loosely
coupled components each providing a set of functionality that (i) can be developed
separately and independently, (ii) can be arranged in a variety of ways, (iii) can
be reused in different domains, (iv) can easily be replaced by novel versions, and
(v) provides help in dealing with heterogeneity issues since the adjunction of a
component dealing with the heterogeneity allows the reuse of an already existing
one. On the other hand we want to promote the implementation of an infrastructure

9The reference architecture for housing example is reproduced from [MLM+06]

52 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

A ppli cati onF ramework
E nabli ngF ramework

M e t a d a t as c h e m a s O n t o l o g i e s T h e s a u r iA r c h i v eM edi ati on D o c u m e n tC o n f o r m e r C o l l e c t i o nV i r t u a l i z e r C o n t e n tT r a n s f o r m e rC o n t e n tT r a n s l a t o rM e t a d a t a S c h e m aM a p p e rO n t o l o g yA l i g n e rO A I ¢ P M HH a r v e s t e r

P r e s e n t a t i o n U s e rI n t e r f a c e O A I ¢ P M HP u b l i s h e r A P II n t e r f a c e
DL M anagement R e c o m m e n d e r P r e s e r v a t i o nM a n a g e rP o l i c yA d m i n i s t r a t o rP u b l i c a t i o nP r o c e s s M a n a g e r

U serS pace M anagement U s e rR e g i s t r y G r o u pR e g i s t r yP r o f i l eR e p o s i t o r y P o l i c yM a n a g e rA ccess S e a r c h I n d e xD a t a F u s i o n
I nf ormati on S pace M anagement A n n o t a t i o nM a n a g e r C o l l e c t i o nM a n a g e rR e p o s i t o r y S t o r a g e I n f o r m a t i o nS e r v i c eP r o c e s sE n g i n e

A u t h o r i z a t i o nA u t h e n t i c a t i o nA u d i t i n gB r o k e r

Figure 2.11: The Digital Library Systems Reference Architecture

for supporting the discovery and management of reusable components in order to
build virtual digital libraries.

Before going in detail some clarifications are needed.

The first is related to the usage of a layered architecture. Actually, modern
software architectures go ahead a mono dimensional layered vision even if the main
achievements are maintained and exploited. In such architecture as well in in our
reference architecture the use relationships may exist a priori among any subset
of the components; the components can be combined in different ways to support
different functionality; and the same components may be used in different ways, in
accordance with the restrictions placed on their use and goal.

The second clarification is related to the components depicted into each func-
tional area. For the sake of this dissertation we concentrate on those constituting the
mediation area since they are of fundamental importance in implementing virtual
digital libraries. For an exhaustive and full description please refers to [CCP06b]10.

The last clarification is related to the components constituting the enabling
framework, i. e. the rightmost components that are outside the other functional

10The lack of the description of some components does not invalidate the presentation of the
reference architecture nor the completeness of the dissertation since the functionality they are in
charge to provide have been described in the previous sections.

2.6. THE DIGITAL LIBRARY SYSTEM REFERENCE ARCHITECTURE 53

areas. These components are the enabling components (Def. 2.5.2 on page 48) in
charge of providing the functionality presented in Section 2.5.4.

In the following we introduce each of the identified functional area by briefly
reporting the functionality they are in charge of providing.

2.6.1 The Presentation Area

The presentation area collects all the components that expose the digital library
functionality to end-users and third-party applications as well. Thus this area rep-
resents the entry point for using digital libraries.

In considering the components constituting this area it must be taken into ac-
count that a comprehensive user interface able to cover all user needs despite their
profile and their access device, the functionality, the information object types, for-
mats, and media a digital library provides is not realisable yet. Thus this component
must provide a strong customisation capability in order to be easily adapted to the
diverse contexts.

Even if the user interface constitutes the main element of this area, the presen-
tation is not limited to human oriented aspects, rather it includes as many public
interfaces as required to improve the accessibility and the usability of the content
managed by the digital library via the functionality offered.

2.6.2 The Access Area

The access area contains the components in charge of providing the access func-
tionality (Def. 2.2.27 on page 27). In particular, in Figure 2.11 we have identified
three components in charge of providing the search (Def. 2.2.30 on page 28) and the
browse (Def. 2.2.33 on page 29) functionality.

The implementation of such components vary according to the characteristics of
the digital library information space where to search in as well as to the DL End-user
access requirements. An implementation capable to deal with distributed and het-
erogeneous information objects capable to support an enhance semantic matching
between users queries and the retrieved information objects is presented in Chap-
ter 5.

2.6.3 The DL Management Area

The DL management area groups the components in charge of providing and sup-
porting the DL management functionality (Def. 2.2.37 on page 30).

In particular, the Preservation Manager is a component that, by exploiting the
preservation facilities provided by the Repository components, allows users to per-
form or automatically perform preservation actions according to the digital library
rules. The Policy Administration supports librarians in dealing with policy creation,
assignment, and withdrawal. The Publication Process Manager component supports

54 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

the librarian in implementing the publishing process, i. e. the task ending with the
publication of a new information object into the digital library information space.
The Recommender component implements the disseminate functionality through
which any type of information object is advertised to the users according to their
profile. Recommendations can be directly managed by the librarian through this
component as well as be automatically generated by the component itself.

2.6.4 The User Space Management Area

The user space management area contains the digital library system components in
charge of supporting and providing the user management functionality (Def. 2.2.43
on page 32).

In particular, the User Registry component provides the mechanisms for dealing
with user profiles compliant with a profile format. The Group Registry component
provides the mechanisms for dealing with groups, e. g. their creation and the adjunc-
tion/withrawal of a user. The Profile Repository component supports the storage,
maintenance, and retrieval of profiles manifestations compliant with one of the sup-
ported profile formats. The Policy Manager component provides the mechanisms
dealing with roles and co-operates with the Policy Administration in implementing
the digital library policy mechanism.

2.6.5 The Information Space Management Area

The information space management takes care of providing the functionality for
dealing with the digital library information objects (Def. 2.2.1 on page 16), the
most important resource of any digital library. In particular, these components co-
operate in supporting the content management functionality (Def 2.2.23 on page 26)
such as submission, updating, and annotation of information objects.

In particular, the Storage component provides the mechanisms and functions
for the storage, maintenance and retrieval of manifestations. The Repository com-
ponent provides the mechanisms to manage information objects compliant with a
document format (Def. 2.2.6 on page 19). The Annotation Manager component sup-
ports the creation and management of annotations (Def. 2.2.14 on page 22). The
Collection Manager component provides the mechanisms for supporting collections.
In particular, an example of implementation of the latter component is given in
Chapter 4.

The Open Archival Information System (OAIS) Reference Model [Con02] presents
a comprehensive logical model describing all of the functions required in a digital
repository. It outlines how digital objects can be prepared, submitted to an archive,
stored for long periods, maintained, and retrieved as needed. In implementing the
functionality of this area, and in particular the repository component, these recom-
mendations must be carefully taken into account.

2.7. RELATED WORK 55

2.6.6 The Mediation Area

The goal of this dissertation is to provide a mechanism for building virtual digi-
tal libraries. One of the enabling factors is the capability to reuse already existing
information objects. As a consequence, digital library systems need a set of compo-
nents that makes it possible to abstract from the organisation and structuring of the
concrete underlying information space, thus making external objects accessible as
collections of virtual information objects tailored to the DL needs. The components
constituting the mediation area are responsible for providing this functionality.

In particular the Document Conformer component, exploiting encoded knowl-
edge of the structure of the documents whose manifestations are maintained by
external sources, creates a representation matching the document model expected
by the other DL components. An example of implementation of such component is
provided in Chapter 3.

Other envisaged components needed to mainly support the document conformer
are: (i) the Content Transformer that is capable to generate alternative manifes-
tations of a given one, (ii) the Content Translator that is capable to generate a
manifestation in a language different from the original one. Examples of such com-
ponents are represented by the plug-ins provided by Greenstone [WBB01] system,
the Fedora disseminators, and the OpenDLib Adapters described in Chapter 3.

Dealing with heterogeneous information sources implies also managing multiple
metadata formats. This requirement is met through the Metadata Schema Mapper
component that generates alternative metadata representations according to given
metadata schemas, and through exploiting the features of the Ontology Aligner
component that identifies and suggests semantic correspondences between the rep-
resentational elements of heterogeneous ontologies. Both components rely on a set
of mapping rules that can be injected as configuration parameters or be dynamically
derived by the mediators that can express the same metadata into different schemas,
or equivalent terms into different languages. An exploitation of such facilities in im-
plementing a semantic based search service is described in Chapter 5.

Finally, the Collection Virtualiser component is the entity enabling other services
to build virtual views, tailored on their needs, over the external information space.
It also guarantees the correct management of the mapping between the internal
information objects and the constituent items physically stored in external archives.
An implementation of such component is introduced in Chapter 4.

2.7 Related Work

Despite the importance of formal theories and models as mechanisms to specify and
understand complex systems in a clear and unambiguous fashion, Digital Libraries
researchers and developers have preferred to have a pragmatic approach until now.
Unfortunately, this approach introduces a series of drawbacks. Namely, DLs are de-

56 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

veloped from scratch, have scarce possibility of reuse, few possibility to interoperate,
and difficulties to evolve in order to meet new requirements.

In our best knowledge, apart from the model presented in this dissertation, in
literature there exists just one work that propose a formal model for DLs, i. e. the
5S framework that is described in the section 2.7.1. We describe it for highlighting
the similarities with and the differences from our Reference Model, as well as for
identifying the strength and the weakness of that framework with respect to it.

Another attempt to model digital libraries was made in the context of the DELOS
working group on DL evaluation 11. This is discussed in section 2.7.2.

2.7.1 The 5S Framework

The 5S framework [GFWK04, Gon04] is based on five fundamental abstraction,
i. e. Streams, Structures, Spaces, Scenarios, and Societies, to define digital libraries
rigourously and usefully.

These five concepts are informally defined as follows:

• Streams are sequences of elements of an arbitrary type (e. g. bits, characters,
images) and thus they can model both static and dynamic content. Static
streams correspond to an information content represented as basic elements,
e. g. a simple text is a sequence of characters while a complex object like a
book may be a stream of simple text and images. Dynamic streams are used
to model any information flow and thus are important for representing any
communication that take place in the digital library. Finally, streams are
typed and the type is used to define their semantics and application area.

• Structures are the way through which parts of a whole are organised. In par-
ticular, they can be used to represent hypertexts and structured information
objects, taxonomies, system connections, and user relationships.

• Spaces are sets of objects together with operations on those objects obeying
to certain constraints. Despite the generality of this definition, this kind of
construct is powerful and, as suggested, when a part of a DL cannot be well
described using another of the 5S concepts, space may well be applicable.
Document spaces are the key concepts in digital libraries. However, spaces are
used in various contexts – e. g. indexing and visualising – and different types
of spaces are used, e. g. measurable spaces, measure spaces, probability spaces,
vector spaces, and topological spaces.

• Scenarios are sequences of events that may have parameters where events
represent state transitions. The state is determined by the content in a specific
location but the value and the location aren’t further investigated because
these aspects are system dependent. Thus scenario tells what happens to the

11http://www.delos.info/WP7.html

2.7. RELATED WORK 57

Figure 2.12: 5S – Map of formal definitions

streams in spaces and through the structures. When considered together, the
scenarios describe the services, the activities, and the tasks representing the
digital library functionality. Thus DL workflows and dataflows are examples
of scenarios.

• Societies are sets of entities and relationships between them. The entities
are both humans and software and hardware components, which either use
or support digital library services. Thus society represent the highest-level
concept of a digital library, which exists to serve the information needs of its
societies and to describe the context of its use.

These concepts are of general purpose and very low level constructors. Based on
them, Gonçalves et. Al. introduced the whole framework taking care to formally
define the DL concepts reported in Figure 2.1212. In accordance to this framework,
they define a Digital Library in the following way.

Definition 2.7.1 A digital library is a 4-tuple (R,Cat,Serv,Soc) where:

• R = (R,get,store,del) is a repository where R ⊂ 2C is a family of collections
and get, store, and del are functions acting on them;

• Cat = {DMC1, DMC2, . . . , DMCk
,} is a set of metadata catalogs for all col-

lections {C1, C2, . . . , Ck,} in the repository;

• Serv is a set of services containing at least services for indexing, searching,
and browsing;

• Soc is a society.

12Figure 2.12 is extracted from [Gon04]

58 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Figure 2.13: 5S – DL ontology

On top of this framework they proposed an ontology with the aim of arranging
the concepts of the framework and identifying the relationships among them. Fig-
ure 2.1313 presents graphically this ontology.

The main differences arising with respect to our Reference Model are:

• The Ss are very general purpose constructs and, in our opinion, result less im-
mediate than a pragmatic approach as that proposed in our model. However,
based on a mathematical formalisation of such constructors Gonçalves et. Al.
have been able to provide a formal theory defining the identified concepts.
Our approach is different, we have introduced and identified a broaden set of
concepts and relationships among them and one of the future work is to define
mathematically such concepts.

• In our framework we decided to provide different perspectives of the same en-
tity, i. e. the digital library, because different users have diverse perceptions of
this complex entities as commonly observed [FAFL95]. Moreover, we intro-
duced and stressed the presence of systems realising the digital libraries.

• By relying on the concept of space, Gonçalves et. Al. introduced as first-
class citizens probability spaces, vector spaces, topological spaces, etc. We
considered such elements too fine grained with respect to the goal of our model
and left them out.

• In the 5S Framework the modelling of services, the counterpart of our compo-
nents, is provided in terms of scenarios and thus focuses on their behavioural

13Figure 2.13 is extracted from [Gon04].

2.7. RELATED WORK 59

description. Moreover, via the structure concept it is possible to model co-
operating services. We consider such an approach valid for descriptive and
modelling purposes, therefore we preferred to introduce the concept of ref-
erence architecture in order to suggest and constrain a pattern to follow in
building digital library systems as well as we stressed the implementation and
deployment details in order to being able to cover such concepts.

It is also important to notice the similarity existing between our concept of informa-
tion object and the concept of digital object present into the 5S framework. This is
to confirm that digital libraries objects have been more investigated and probably
better understood than the other elements constituting such complex systems.

To conclude, the two models have the common goal to introduce a formalisation
of the complex framework of the digital library world. While the 5S concentrates
on the mathematical foundations and takes care of capturing behavioural aspects,
our reference model derives from a pragmatic description of the digital libraries
and takes care of introducing the systems needed to realise concretely such entities.
Moreover, by providing different perspectives our model allows the consumers and
the providers of such system content to share a common understanding of the system
itself, thus promoting a fruitful co-operation.

2.7.2 The DELOS Classification and Evaluation Scheme

In the context of the DELOS Network of Excellence on Digital Libraries [DEL], the
working groups dealing with the evaluation of digital libraries problem proposes a
model [FHM+01] broader in scope than those usually adopted in their context with
the aim to be able to satisfy the needs of all kinds of DL researchers, i. e. research
community and traditional library community.

They starts from a general purpose definition of digital library and identify
three non-orthogonal components within this digital library domain: the users, the
data/collection, and the system/technology used as reported in Figure 2.1414. These
entities are related and constrained by means of a series of relationships, namely (i)
the definition of the set of users predefines the range and the content of the collection
relevant and appropriate for them, (ii) the nature of the collection predefines the
range of technologies that can be used, and (iii) the attractiveness of the collection
content with respect to the user needs and the ease of use of the technologies by
these users determines the extent of usage of the DL. By relying on these core con-
cepts and relationships it is possible to move outwards to the DL Researcher domain
and create a set of researcher requirements for a DL test bed.

Recently [TKP04], this model has been enriched by focusing on the inter-relationships
between the basic concepts, i. e. the User-Content relationship is related to the use-
fulness aspects, the Content-System relationship is related to the performance at-
tributes, while the User-System is related to usability aspects. For each of these

14Figure 2.14 is extracted from [FHM+01].

60 CHAPTER 2. THE DIGITAL LIBRARY REFERENCE MODEL

Figure 2.14: DELOS generalised schema for a Digital Library

three aspects they introduce techniques and principles for producing quantitative
data and implementing their evaluation.

The comparison between this model and the Reference Model suffers from the
different goal underlying them. In particular, the DELOS framework localises on
introducing measures of the characteristics of the DL systems in order to evaluate
them. On the contrary, the Reference Model introduces a great amount of concepts
and relationships and is capable to support the evaluation via the quality of service
dimension assigned to their functionality. Thanks to that our framework deals with
different perspectives of the digital library entity we consider it able to integrate all
the aspects covered by the DELOS model in a fine grained fashion. The problem
of how to obtain measurements is out of the scope of the proposed reference model,
however we have the construct to also express the “quality” of the quality parameter
we are going to evaluate and thus provide an effective information about the observed
value.

Chapter 3

Virtual Information Objects

A key aspect in building a Virtual Digital Library is to mediate between the represen-
tation of the information objects provided by the shared heterogeneous information
sources and that manipulated by the DL services that implement the end-user func-
tionality. This mediation may involve not only a change of the information object
representation but also either splitting or aggregating them to produce either sim-
pler or more complex new ones, respectively. This chapter presents an approach for
supporting this mediation based on the introduction of a powerful document model,
named DoMDL, and a Repository service capable of maintaining and disseminating
DoMDL-compliant objects. The chapter also describes an implementation of such
service in two concrete systems, i. e. OpenDLib [CP02, CP03] and OpenDLibG, a
modified version of OpenDLib which exploits Grid technologies [FKT01, FKNT02]
for broadening the types of managed information objects.

The chapter is organised as follows. Section 3.1 introduces the problems under-
lying the heterogeneous information space in the context of Virtual Digital Libraries
and highlights the needs and the opportunities arising from the presence of virtual
information objects. Section 3.2 presents the Document Model for Digital Libraries
(DoMDL), the model we propose to represent structured, multilingual and multi-
media information objects whose parts may be dynamically generated or gathered
from external sources. Section 3.3 introduces the architecture of a repository ser-
vice capable of supporting the virtualization through DoMDL. Section 3.4 reports
details on the implementation of the Repository service and of DoMDL in the con-
text of the OpenDLib system. Moreover, it presents examples of the exploitation
of the proposed document model, and related services, for fulfilling the desiderata
of real community scenarios. Section 3.5 reports on the implementation of an en-
hanced version of the repository service capable to profit from grid facilities and
shows an exploitation of such novel service. Finally, Section 3.6 discusses related
research work by presenting the solutions implemented in concrete DL systems as
well as comparing DoMDL with various standards for representing and exchanging
information objects.

62 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

3.1 Dealing with Heterogeneous Information Ob-

jects

Digital libraries mediate between content providers and content consumers. Infor-
mation objects gathered from the providers’ different information sources may vary
in their structure, format, media, and physical representation; they may be described
by different metadata formats and their access may be regulated by different poli-
cies; they may either be physically copied from proprietary repositories into the DL
own repositories or they may be accessed on demand following the link stored into
the corresponding metadata records.

Content consumers want to search, retrieve, access and manipulate information
objects semantically meaningful in their application domain. For instance, some
communities may want to see the whole information space as composed of journals
structured in articles, while others may want to work with information objects con-
taining the papers produced by an author or with composite objects made by a text
and all the images that illustrate that text. Such information objects may not cor-
respond to the objects actually submitted to the DL nor to the objects maintained
in the shared information sources, rather they may be virtual information objects
created by reusing or by processing real objects or parts of them.

In order to fulfil this mediation role a digital library system must be equipped
with mechanisms to transform the particular model of the information objects stored
in the shared sources into the model required by the services that make them acces-
sible to the DL users.

A key mechanism for supporting such mediation is the document model1 that is
supported by the DL system. Information objects collected from different sources
are logically represented to and known by all the digital library services as objects
compliant with this model. The services thus provide functionality that acts at the
level of abstraction specified by the model. The selection of an appropriate model
is therefore of key importance in determining which level of virtualisation can be
reached by the informations objects through a DL system. The next section presents
DoMDL, the document model we propose for covering this important role.

3.2 The Document Model for Digital Library

The Document Model for Digital Library (DoMDL) has been designed to represent
structured, multilingual and multimedia information objects and can be customised
according to the DL content to be handled. For example, it can be used to describe
a lecture as the composition of the teacher presentation together with the slides, the
video recording and the summary of the talk transcript. However, the same lecture

1We use the term “document model” for historical reasons. In the reference Model introduced
in Section 2 this model is named “Information Object Model”.

3.2. THE DOCUMENT MODEL FOR DIGITAL LIBRARY 63

V i e wR i g h t s
E d i t i o nR i g h t s

D o c u m e n tR i g h t sH a n d l e

M a n i f e s t a t i o nR i g h t sU R I

H a se d i t i o nI d e n t i fi e r
H a sv i e wH a sm a n i f e s t a t i o n

M e t a d a t a
C o n t e n t R e f e r e n c eB o d yI s i m a g eo fH a sm e t a d a t a

H a sp a r t I ss p e c i a l i z e db y
Figure 3.1: DoMDL – Document Model for Digital Library

can be disseminated as the MPEG3 format of the video or the SMIL document
synchronising its parts.

In order to be able to represent information objects with completely different
structures DoMDL distinguishes four main aspects of document modelling, in ac-
cordance to the reference model introduced in Chapter 2. These aspects are rep-
resented, using terms and definitions very similar to the IFLA FRBR model [IFL],
through the following entities: Document, Edition, View, and Manifestation (see
Figure 3.1).

The Document entity, representing the information object as a distinct intellec-
tual creation, captures the more general aspect of it. For example, a book such
as “Digital Libraries and Electronic Publishing” by W. Arms or a lecture such as
“Introduction to Mixed Media Digital Libraries”, by C. Lagoze, can all be modelled
as Document entities. Each entity of this type is identified via the Handle attribute.

The Edition entity, representing a specific expression of a distinct intellectual
creation, models an information object instance along the time dimension. The
preliminary and draft version of a paper, its version submitted to a conference, and
its version published in the conference proceedings, are all examples of editions of
the same information object. Any Edition is related to the appropriate Document
with an Identifier whose value is linear and numbered.

The View entity, modelling a specific intellectual expression, is the way through
which an edition is perceived. A view excludes physical aspects that are not related
to how a document is to be perceived. For example, the original edition of the
proceedings of a workshop might be disseminated under three different views: (i) a
“structured textual view” containing a “Preface” created by the conference chairs,
and the list of thematic sessions containing the accepted papers, (ii) a “presentation
view”, containing the list of the ppt slides used in the presentations, and (iii) a

64 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

“metadata view”, containing a structured description of the proceedings.
The Manifestation entity models the physical formats by which an information

object is disseminated. Examples of manifestations are: the MPEG file containing
the video recording of a lecture made at a certain summer school, the AVI file of
the same video, the postscript file of another lecture given at the same school, etc.
Physical formats are accessible via URIs, used to associate local or networked file
locations.

These entities are semantically connected by a set of relationships. The rela-
tionships Has edition, Has view, and Has manifestation link the different aspects of
an information object. Note that these relationships are multiple, i. e. there can be
several objects in the range associated with the same object in the domain. This
means that there can be multiple editions of the same information object, multiple
views of the same edition and multiple manifestations of the same view.

The View entity is further specialised in two sub-entities: Metadata and Content.
The former allows a document edition be perceived through the conceptualisation
given by its metadata representations. These may be a flat list of pairs (fields,
values), as in the Dublin Core metadata records [Dub], or more complex conceptual
structures, such as in the IFLA-FRBR records. Typically, this metadata view is
indexed to support attribute-based querying and browsing operations, but it may
otherwise be used. For example, it may be disseminated free of charge while the
document contents are regulated by fee access, or disseminated on a mobile device.
By using the Has metadata relationship it is possible to model the fact that also
content views can be described by one or more metadata records in different formats.

The Content view has two sub-entities: Body, and Reference. The former is a
view of the information object content when it is to be perceived either as a whole
or as an aggregation of other views. For example, a textual view of the proceedings
a workshop is built as the aggregation of the textual views of its component articles.
The relationship Has part links a Body view with its component views. A Body view
may be specialised by other views that represent more detailed perceptions of the
same content. For example, an article of the cited proceedings may be specialised by
two views related to the French and English version of that document, respectively.
A view is related to all its specialisation through the relationship Is specialised by.

The Reference entity represents a view that does not have associated manifesta-
tions because it is linked with an already registered manifestation. This entity has
been introduced to represent the relationship between views of different informa-
tion objects editions. Articles presented at the same workshop, for example, can be
modelled as single information objects and grouped together by the workshop pro-
ceedings information object that contains only the references to them. It is worth
noting that this entity, bringing together parts of real or virtual information objects,
makes it possible to manage virtual objects that are not explicitly maintained by the
DL storage system. For example complex reports, or training lectures, can easily be
modelled as composition of parts extracted from real objects. A reference view is
linked with another view via the relationship Is image of.

3.3. VIRTUALIZATION THROUGH DOMDL 65

Each of the entities described above has a set of attributes that specify the rights
on the modelled information object aspects. This makes it possible, for example,
to model possibly different rights on different editions, different access policies on
different views or on different parts of the same view, and so on.

3.3 Virtualization through DoMDL

From the architectural point of view, the virtualization of information objects re-
quires the introduction of a number of components. Figure 3.2 presents the main
modules constituting the internal architecture of a Repository service capable of
supporting such a virtualization.

The main module is represented by the Document Manager that is in charge
of mapping the operations expressed in terms of DoMDL objects (i.e., objects sup-
ported by the document model) into operations on the storage back-end or on the
Document Conformer. This component is a type of Information Mediator and plays
two roles: it contains a module in charge of injecting external information objects
(acquired via either harvesting or ad-hod developed wrappers) into the Repository
by representing them as objects compliant with the supported model. Moreover,
this component is equipped with a set of Content Transformers that are capable to
generate alternative manifestations. It is worth noting that (i) the injection process
is guided by a set of configuration parameters, i. e. the way through which the ex-
ternal information objects are mapped into common model objects is customisable,
and (ii) alternative manifestation can be generated at publishing time, i. e. when
the information object is created into the repository and thus the new manifestation
is stored, or at access time, i. e. when the particular manifestation is accessed via
the API.

3.4 The OpenDLib Implementation

The DoMDL model and the above described architectural components have been
successfully validated by implementing them in the OpenDLib system [CP02, CP03].
OpenDLib has been, at our knowledge, the first system to offer the functionality of
DLMS. It supports the creation and maintenance of very different DLs thanks to its
high capability of being customised and to the adoption of the DoMDL document
model. In particular, by exploiting the features of this model it is capable of handling
digital information objects that not only may be the analogous of reports, books,
journals, videos, archival records, but can also consist of scientific data, programs
and any other kind of multimedia documents the user communities may consider as
appropriate instruments for supporting their communication. OpenDLib has been
designed to interoperate with existing archives and digital libraries: it supports the
management of external resources located anywhere, e.g. papers maintained by

66 CHAPTER 3. VIRTUAL INFORMATION OBJECTSAccessP resent ati on

I S 1 I S 2 I S n. . .

U s e r I n t e r f a c e S e a r c h S e r v i c e

M edi ati on
R e p o s i t o r y A P I

S t o r a g eS t o r a g eM a n a g e rD o c u m e n tM a n a g e r D o c u m e n t C o n f o r m e r H a r v e s t e rM o d u l eA d 9 h o cw r a p p e rA d 9 h o cw r a p p e rA d 9 h o cw r a p p e rI nf ormati onS pace M anagement
C o n t e n tT r a n s f o r m e rC o n t e n tT r a n s f o r m e rC o n t e n tT r a n s f o r m e r

Figure 3.2: The Repository architecture

their authors on personal web pages; the harvesting of document representations,
e.g. archive records, and of their manifestations through the Open Archive Initiative
protocol; the loading of documents stored on local file-system or FTP servers, e.g.
documents not yet published world wide. A more detailed description of this system
is reported in Appendix A.

Supporting DoMDL in OpenDLib has brought a number of benefits but it has
also implied a number of design and development challenges not only in the imple-
mentation of the Repository Service but also in the realisation of the other functions
that exploit the richness of DoMDL. In the rest of this section, we first describe the
OpenDLib representation of DoMDL and then analyse and describe how the in-
troduction of this model impacts on the realisation of the following functionality:
(i) information object storage, (ii) information object discovery, (iii) information
object access, and (iv) information object visualisation. At the end of the section
we also briefly illustrate two OpenDLib DLs serving different application areas by
showing which level of virtualization has been obtained.

3.4.1 DoMDL Representation

The representation of a complex object compliant with the proposed document
model usually deals with two issues: (i) the description of the internal relations
among information object entities, and (ii) the management of the related physical
parts of each entity.

The OpenDLib solution to these problems is to decouple the definition of the

3.4. THE OPENDLIB IMPLEMENTATION 67

document model instance from its real data. With this approach an information
object is really composed by several files. The instance of the document model
for a given information object is described in a separate file, named Structure file,
which is the only mandatory element that must be provided. The goal of this file
is to explain the composition and the relations among the other files that compose
the document. Thus, the repository file is the concrete placeholder the Repository
maintains for each virtual information object.

The natural way to express such structured data is through an XML document.
Therefore, a major design issue was to define an appropriate XML Schema, capable
to cover all the DoMDL features. XML Schemas provide a standard means to specify
which elements may occur in an XML document and in which order, and to constrain
certain aspects of these elements. The result of this effort is the DoMDL XML
Schema2. An XML document validated against this Schema describes a particular
edition of a document; main entities (views and manifestations) belonging to an
information object are represented with tags while relationships among them are
expressed by nesting these tags. As well, a number of attributes on the entity tags
allows their type and the related behaviour be specified. In this way, a Structure
file can put together different physical components to form an unique and coherent
structured information object. Different editions of the same information object
are not physically linked together, rather they are logically grouped by the storage
model in order to obtain a higher flexibility of the system. The storage model, in
fact, is able to manage editions as a single entity since they share the same document
identifier.

Finally, according to the document model specification, it is also possible to
express a set of rules that regulate the rights on the information object views via
the properties child tag; in this implementation the rights to download, deliver,
transcode or display a view may be, or not be, granted.

3.4.2 Information Object Storage

At the hearth of any digital library system, as in any information system, there is
its storage capability and the related model, that is how the system maintains the
information it needs. Here we do not argue about the physical storage manager
implemented by OpenDLib since, traditionally, a storage model decouples the doc-
ument model adopted from the underlying technologies used to store documents.
Rather we present both the constraints and opportunities that the utilisation of
DoMDL has introduced in the system. Some of them, namely those that conducted
us to investigate Grid technologies, are presented in Section 3.5.

Primarily, according to the DoMDL specification, the storage model must be able
to manage multiple metadata formats for the same information object and multiple
physical manifestations for the same view of an information object. This allows

2http://www.opendlib.com/resources/schemas/domdl.xsd

68 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

OpenDLib to be enriched with the capability to: (i) automatically move from one
metadata format to another one by using appropriate XSLT stylesheets, and (ii)
automatically migrate from one physical manifestation (e. g. a pdf file) to another
one using a transformation procedure provided by the system or configuring the
system to use a third party tool.

Among the others, two major advantages rising from these capabilities are (i) to
make it easy to create new information objects for populating new digital libraries
starting from existing and heterogeneous information sources and (ii) to preserve
documents from the technological obsolescence. Regarding manifestations, they are
identified by URIs. As a consequence, a manifestation can be stored inside or outside
the system, depending on the time in which the URI is dereferenced.

When a new information object is created, a number of solutions are offered in
order to support a range of different needs. In fact, a manifestations can be: (i)
directly uploaded with the document, (ii) automatically retrieved from an exter-
nal location and locally stored, (iii) maintained as an external manifestation and
dynamically retrieved at the access time, or (iv) maintained as an external manifes-
tation and displayed through its original location at the access time.

These options are made available by properly combining the values of the at-
tributes of the manifestation tags in the document Structure file. The combina-
tion of these options at the information object level makes it possible to build new
structured documents that enrich the original ones by aggregating multiple parts of
different objects from different heterogeneous information sources. Moreover, these
choices promote the optimal utilisation of the storage resources. For instance, if
a manifestation requires too many storage resources to be stored internally, it can
simply be referred to its external original location. This optimisation is also sup-
ported by the reference view mechanism. Following the model specification, a view
can be a reference to another view of a different document; by implementing this
mechanism, data duplication can be avoided.

The last advantage we mention here is the possibility to submit and manage doc-
uments that are modelled in very different fashions in the same OpenDLib instance,
if they are compliant with the DoMDL XML Schema. This introduces a high level of
flexibility and promotes a full integration among heterogeneous information sources
with different types of documents or metadata.

Finally, let us mention addressability. The basic addressable unit is the single
manifestation. Moreover, the list of all views or manifestations as well as the list of
editions of a information object can also be addressed.

3.4.3 Information Object Access

The access granularity, i. e. how an information object or its components can be ac-
cessed, is closely tied to the storage model. Possible options include: (i) to expose
data according to the document model representation, and (ii) to hide the represen-
tation and provide an interface to query the model in order to obtain the document

3.4. THE OPENDLIB IMPLEMENTATION 69

parts.
OpenDLib implements both solutions by providing direct access to the Structure

file and also an interface to query a given information object. This design choice
allows users (either humans or services) to select the option that fulfils their needs
at best. For instance, to speed up the operations, other OpenDLib modules retrieve
from the storage subsystem the Structure files and then manage the corresponding
information objects. Other services should instead be interested in requiring the in-
formation object entities (e. g. all the editions of a document, all the manifestations,
etc.) in order to manipulate and rearrange them independently from the DoMDL
representation.

3.4.4 Information Object Discovering

Information object discovering is a crucial component of any distributed digital li-
brary system. This feature is usually achieved through indexing and search services.
OpenDLib provides these functionalities both on the information object metadata
and, when possible, on the information object themselves (full-text indexing) via its
search subsystem. The adoption of DoMDL had a great impact during the design
of this subsystem because information objects can be expressed in any format and
thus no assumptions could be made about the presence of any field or structure
of the indexed information. The result is a highly customisable search subsystem
based on: (i) a complete configuration of any index concerning the metadata or
manifestation format, of the elements to be indexed and the set of elements to be
returned after a query, (ii) an abstraction layer between the query engine and the
format-independent query language supported, and (iii) inspection mechanisms that
support the discovery of which indexed format, which query operators and which
result sets are supported by a particular instance of an index. Therefore, thanks to
the document model, an OpenDLib instance can have multiple indexes able to index
any format independently of their number or location. Also the graphical user inter-
face provided to interact with the search subsystem has the capability to configure
itself, depending on which index it currently interacts with, by automatically adding,
removing or changing both its components and its look and feel. In addition, the
search subsystem offers the very new possibility to execute queries across documents
handled by different information sources and expressed in different formats.

3.4.5 Information Object Visualisation

The visualisation of information objects is the last main issue strictly related with
the document model. DoMDL gives a great number of opportunities for the presen-
tation of complex and structured objects. For instance, it allows information object
visualisation be personalised by deciding who has the rights to view what.

OpenDLib provides two kinds of information object visualisation, one tab-based
(Figure 3.3) and one window-based (Figure 3.4), both able to display information

70 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

Figure 3.3: DoMDL tab-based visualisa-
tion

Figure 3.4: DoMDL window-based visual-
isation

objects compliant with the DoMDL model. In either mode, a graphical rendering
of the document structure is visualised and manifestations are retrieved on demand
next to the user requests. As well, OpenDLib can easily be extended with additional
visualisation features; this is specially useful for OpenDLib instances that manage
classes of documents with the same structure, e. g. papers or talks, to better exploit
the specific structure of those documents. The mechanisms above make it possible
to present the same document in different ways by making the concept of virtual
document concrete.

3.4.6 DELOS Exploitation

The first example we report is extracted from the DELOS DL3. This DL handles doc-
uments published by the homonymous Network of Excellence on Digital Libraries.
It stores, maintains, and disseminates, among the others, the proceedings of several
DELOS events like the ECDL conferences, a number of thematic and brainstorming
workshops, and the documents of the international summer schools.

These documents are characterised by a large number of inter-relationships that
are emphasised to improve the accessibility and readability of semantically related
information objects.

Figure 3.5 depicts a typical edition of an ARTICLE maintained in this DL.
Each edition has the following views: Metadata, Abstract, and Content which are
related to manifestations in different formats; Related Talk, which links with the
presentation of the article made by its author during the related event; and In-
Proceedings, which links with the document that represents the proceedings where
the article has been published. Reference views are also used to link a TALK
document with the content of the edition of the respective article. It is also important

3DELOS Digital Library Web site http://delos-dl.isti.cnr.it

3.4. THE OPENDLIB IMPLEMENTATION 71

Figure 3.5: DELOS Digital Library documents

Figure 3.6: ARTE Digital Library Documents

to point out that in the DELOS DL different metadata formats are used to represent
the description of an article, that multiple manifestations in different formats are
associated with the same view, and that the video manifestations are stored on
video streaming servers able to improve their fruition. Finally, we highlight that
the end-user perceives an intellectual creation via the homogeneous and coherent
presentation of a virtual information object that, instead, is obtained collecting
parts of different and heterogeneous stored information objects.

3.4.7 ARTE Exploitation

The second example is extracted from the ARTE DL4. This DL stores, maintains,
and disseminates the digitised versions of ancient texts and images linked by re-
lationships that express semantic associations among them, such as the contains,
is contained in, is related to, and has authored by relationships. The original doc-
uments are collected from very heterogeneous information sources, that (i) range
from different types of database to file-system based storage systems, and (ii) are

4ARTE Digital Library Web site http://arte-sns.isti.cnr.it

72 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

based on proprietary content representations. A typical edition of an ICONOG-
RAPHY is represented by its metadata and related picture. The value added by
using DoMDL is perceived by analysing the information objects relationships. In
fact, using reference views it has been possible to model virtual information objects
allowing end-users to navigate the relationship from an iconographic object to the
book that contains it, analyze the textual part before and after the mentioned pic-
ture, browse the book to see other similar information objects, and also immediately
access the other related iconographic objects.

Finally, it is important to note other specific characteristics of the documents
managed by this digital library, namely: the wide heterogeneity of the representation
and description formats; the existence of access policies regarding many parts of the
documents; and the variety of new documents that are created by the users of the
digital library by composing parts of existing documents.

3.5 The OpenDLibG Implementation

DoMDL has also been used as a key element in OpenDLibG, an enhanced version of
the OpenDLib that is capable of exploiting the storage and processing capabilities
offered by a Grid infrastructure5. Thanks to this new feature OpenDLibG can
manage documents requiring huge storage capacities, like particular types of images,
videos, and 3D-objects, and can also support on-demand creation of them as the
result of a computational intensive elaboration on a dynamic set of data.

The main extension introduced in OpenDLibG with respect to OpenDLib is a
new Repository service, named Repository++, described in the next section.

3.5.1 Repository++

Repository++ acts as a virtual repository, i. e. it is capable of the same operations
as those required to store and access information objects but its logic is completely
different because it does not store any content locally but it relies on the storage
facilities provided by both the OpenDLib Repository and the gLite infrastructure
via the gLite SE broker, i. e. a service interfacing with a gLite [EGEb] based grid
infrastructure in order to store and access files.

In designing this component we decided to make it configurable with respect
to the strategy to be adopted in distributing content on the two kinds of storage
systems.

The configuration aspects exploit the DoMDL management functionality that
allows any supported manifestation type to be associated with a predefined work-
flow tailored to deliver customised storage, access, and retrieve capabilities. Thanks
to this characteristic it is possible to design and implement the most appropriate

5This work is partially funded by the European Commission in the context of the DILIGENT
project, under the 2nd call of FP6 IST priority.

3.5. THE OPENDLIBG IMPLEMENTATION 73

processes for each new type of raw data managed by the DL and easily associate
these processes with the related manifestation type without taking care of the logic
of the Repository itself. In the current version, one of these workflows has been
implemented. It allows storing, accessing, and retrieving files maintained in stor-
age elements accessible through the described gLite wrappers. For instance, it is
possible to configure the Repository++ service in order to maintain all metadata
manifestations on a specific OpenDLib Repository instance, a certain manifestation
type on another OpenDLib Repository, while data and other manifestations accessed
less frequently and requiring a huge amount of storage can be stored, with the help
of the gLite SE broker, on a storage element provided by the gLite Infrastructure.
The characteristics of the content to be stored should drive the designer in making
the configuration. Usually, manifestations that require to be frequently accessed, or
that need to be maintained under the physical control of a specific library institu-
tion, should be stored on standard OpenDLib Repository services. On the contrary,
content returned by processes, that is either not directly usable by the end-user, or
that can be freely distributed on third-party storage devices should be stored on
gLite storage elements.

Cryptography capabilities are under investigation to mitigate the problems mostly
related to the copyright management for storing content on third-party devices. The
envisaged mechanism is based on splitting the file in parts and encrypting them with
a standard key based encryption algorithm. The key consists of 64 binary digits and
it is preserved on the Repository++ service. In this way, any single part of the
file is protected and, anyhow, it is not meaningful without the other parts. Obvi-
ously, in this case the Repository++ service must collect all the file parts, decrypt
them, and reconstruct the whole file before responding to a request for accessing a
manifestation.

Another important feature added to the enhanced repository is the capability of
associating a job or a DAG of jobs with a manifestation6. This feature allows the
management of a new type of document manifestation that actually is dynamically
generated by running a process at access time. Thanks to this functionality novel
types of documents, such as documents with automatically changing manifestations
computed on demand from raw data, can be supported by the digital library. From a
technical point of view, this extension has a substantial impact on the DL features,
however, in the framework provided by OpenDLib, its implementation has been
quite simple. This is mainly due to the characteristics of the DoMDL model and
its related management functionality. In fact, DoMDL is able to associate the URI
of a specific task with a manifestation. In this case, this task uses the gLite WMS
wrapper7 in order to execute a process customised with the information identifying
the job/DAG to be executed and the appropriate parameters.

6In gLite terminology jobs are an application that can run on a Computing Element, and DAGs
are direct acyclic graphs of dependent jobs.

7The OpenDLibG service interfacing with a gLite based grid infrastructure in order to execute
jobs on third party computing elements.

74 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

A concrete example of exploitation of this functionality is provided in the fol-
lowing section.

3.5.2 OpenDLibG and the Environmental DL

The third example is related with the exploitation of OpenDLibG in the context of
the experimentation activity conducted into the DILIGENT project [DIL]. In this
context there is the needs to support a group of agencies working together to define
environmental conventions. By exploiting their rich information sources, that range
from raw data sets to maps and graphs archives, these organisations periodically
prepare reports on the status of the environment.

To demonstrate the potentialities of this DL powered by the Grid and the feasi-
bility of on-demand reports generation, level two ENVISAT-GOMOS products8 are
stored in the digital library in order to be elaborated on demand. In particular, the
GOMOS (Global Ozone Monitoring by Occultation of Stars) sensor measures ozone,
temperature, moisture, NO2, NO3, OClO, O3, and a specific application capable to
elaborate these data, named BEAT2GRID, was provided by the ESA organisation
and adapted to run on a gLite based infrastructure by the CNR team.

Moreover, a specialised user interface for visualising GOMOS virtual informa-
tion objects is produced. It allows end-users to ask for the elaboration of these
products in order to access to a number of human readable outputs. This interface
progressively shows the status of the workflow execution and at the end gives access
to the generated information. In particular the following output can be generated:
geolocation information extracted from the data file; the NO2/NO3 image profile
information showing the density with respect to the altitude; the NO2/NO3 profile
information comprising date, time, longitude of tangent point, latitude of tangent
point, longitude of satellite, latitude of satellite; the ozone density related to the
altitude and the ozone density covariance.

Figure 3.7 shows an example of report illustrating (i) the status of the work-
flow, (ii) the graphs resulting from a completed elaboration, (iii) the NO2 profile
information, and (iv) the derived report metadata.

3.6 Related Work

A lot of prior works exists with respect to the representation of information objects
both in the field of digital library than in other research area. In this section we
analyse the models and the related functionality offered by the three most important
and significant digital library systems, i. e. DSpace and Fedora, as well as we compare

8ENVISAT (Environment Satellite) is an ESA Earth observation satellite launched in March
2002. Its purpose is to collect earth observations: it is fitted with 10 sensors ASAR, MERIS,
AATSR, RA-2, MWR, DORIS, GOMOS, MIPAS, SCIAMACHY, LRR and other units. Detailed
information about the ENVISAT satellite can be found at http://envisat.esa.int/

3.6. RELATED WORK 75

Figure 3.7: A GOMOS Virtual Information Object

the object representation models underlying the MPEG21 standard and the METS
format.

3.6.1 The DSpace Data Model

DSpace9 [TBS+03b, TBS03a] is an open source digital library system designed to
operate as a centralised system for capturing, storing, indexing, preserving, and
redistributing documents in digital formats. It has been initially designed to manage
intellectual outputs of a university research faculty.

Item is the basic archival element in DSpace, as such it corresponds to the
DoMDL Document entity. An item is organised into bundles of bitstreams, where a
bundle is a set of somehow closely related bitstreams, partially corresponding to our
View entity, and a bitstream is a stream of bits. Usually, a bitstream is a computer
file, and it is therefore close to the physical part of our Manifestation entity. For
example, a document having two different manifestations, a PDF and an HTML
one, is modelled in DSpace as an item having two bundles: the PDF bundle, which
has a bitstream representing the PDF file, and the HTML bundle, which has a set
of bitstreams representing the component HTML files and images.

The ordered sequence is the only type of relationship that can be expressed
among bitstreams of the same bundle. The concept of edition is not explicit within
this model, even if it may be modelled via particular structural metadata by adapt-
ing some of the DSpace components. Furthermore, references, that enable the con-
struction of documents as aggregation of already existing ones, are not explicitly
supported.

DSpace manages descriptive, administrative and structural metadata. Each item
is associated with one qualified Dublin Core descriptive metadata record. The used
metadata schema can be changed but the system search and submission operations
must be explicitly updated as they are not capable to automatically adapt them-

9http://www.dspace.org

76 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

selves to these changes. The system manages only one descriptive metadata record
for each item. When multiple metadata records are available for a same document,
one is handled as a proper metadata record used in the discovery phase, the others
are stored into the system by using the bundle concept. Administrative metadata
include preservation metadata and authorisation policy metadata expressed in a
proprietary format. DSpace structural metadata can be considered as being fairly
basic, i. e. bitstreams of an item can be arranged into separate bundles as described
above. A plan exists to improve this aspect of metadata in future DSpace releases.

3.6.2 The Fedora Object Model

Fedora10[PT02, LPSW05] is a repository service for storing and managing complex
objects.

A Fedora digital object is composed by (i) a unique identifier, (ii) a set of
descriptive properties, (iii) a set of datastreams, and (iv) a set of disseminators.
Descriptive properties maintain the information that is needed for managing the
objects within the repository, i. e. the object type, its state, its creation, and last
update date. The type is used to distinguish among the primitive Fedora objects,
while the state is used to distinguish among active, inactive and deleted objects.

Datastreams are containers used to maintain both data and metadata belonging
to an object. Therefore the same concept is used to model bytestreams representing
the document as well as metadata to express relationships with other objects, policies
and audit data. Moreover, a datastream is used both to encapsulate any type of
bytestream internally as well as to reference to it externally. Datastreams are thus
a very flexible mechanism that makes it possible to aggregate the local content with
the external content and the document structure with its content. The broad concept
of datastream, which is equivalent to the DoMDL view, uses reserved datastreams
to differentiate between its types. For instance, a datastream of type DC is used to
express the DC Metadata record [DC], while a datastream of type REL-EXT is used
to express object-to-object relationships following a well established relationships
ontology11.

Disseminators are components that associate an external service with the object
in order to supply a virtual view of the object itself or of its datastream content.
The Fedora repository produces this virtual view by interoperating with the service.
The Fedora approach to virtual views is thus object centric, i. e. in order to offer a
new view over a set of documents a service capable to disseminate this view must
be created and all the objects of the set must be updated to include the new service.

Fedora object model covers also versioning related to components, i. e. datas-
treams and disseminators. The system automatically creates a new version of them
whenever they are modified, while maintaining also the former representation with-

10http://www.fedora.info
11http://www.fedora.info/definitions/1/0/fedora-relsext-ontology.rdfs

3.6. RELATED WORK 77

out changing the document structure. The same component maintains then all
the versions and each of them is identifiable via its own identifier internal to the
component.

DoMDL and Fedora digital object models have many commonalities and both
aim at managing complex structured documents. Main differences concern mecha-
nisms for offering virtual views as well as for decoupling structural information from
content information.

3.6.3 MPEG 21 and the DIDL

Although MPEG21 [BdWH+03] originates within the multimedia community, its
framework is general-purpose and can accommodate any kind of complex digital ob-
jects, including electronic texts, electronic journals, scientific datasets, etc. . There
is a clear overlap between the problem domain addressed by the MPEG21 effort
and those related to the management of information objects in the digital library
community.

Despite of such similarities, MPEG21 has received little attention from the DL
community, partly for the seemingly different areas of application and partly because
MPEG standards must be purchased. To our knowledge, Los Alamos National Lab-
oratory (LANL) Research Library is the only example of Digital Library technology
adopting MPEG21 DIDL as the reference language for its information objects rep-
resentation [BHdS03].

The standard puts the bias on two essential concepts: Digital Items (DIs), which
are the units of exchange (the “what”), intended as hierarchical containers of re-
sources, metadata, and other digital items; and Users, which are the producers
and consumers of DIs (the “who”). Currently twelve high-level, modular parts of
MPEG21 are defined.

The crucial part of MPEG21 is the Digital Item Description Language (DIDL),
an XML Schema for the definition of Digital Item Declarations (DIDs). DIDs declare
DIs, meaning both their content and behavior, i. e. relations with users and with the
processing environment.

The DIDL XML schema reflects a set of abstract concepts according to which a
DI can be described as a combination of nested containers, items, components, and
resources12.

DID is a container, which contains a sequence of other containers or items; an
item can include other items or a sequence of components, which in turn include a
sequence of resources. Resources, i. e. their content, within the same component are
considered equivalent, thus an agent may use any of them. Furthermore, descriptor
elements can be included in elements of a DID to describe properties and behavior
of the including elements, such as identification, processing information (code or

12Actually the data model includes other primitives, but they are outside the aim of this com-
parison

78 CHAPTER 3. VIRTUAL INFORMATION OBJECTS

pointers to code for the processing of an element), and rights and permissions.
Other, personalized, descriptors can be customized by users to describe element
context-specific properties.

From the digital library perspective, DoMDL and DIDL are high-level approaches
for complex digital object description and representation, in that they both accom-
modate any kind of metadata formats and object datastreams. However, the two
models propose different level of abstraction and their comparison resorts to the
well-known trade-off between high-level and low level models. DoMDL is specif-
ically designed to model digital library information objects. Thus its primitives
represent components, properties, and relationships, targeting the application con-
text. DIDL is attractive because of the generality and flexibility offered by its data
model, plus the extensibility supported by the descriptors approach. Indeed, any
system of interrelated components can be described as a DID.

3.6.4 METS

The Metadata Encoding and Transmission Standard (METS) [The02] provides an
XML document format for encoding metadata necessary for both management of
digital library objects within a repository and exchange of such objects between
repositories.

A METS document consists of seven major sections: (i) METS Header, con-
tains metadata describing the object itself; (ii) Descriptive Metadata, reports the
descriptive metadata, possibly in multiple manifestations, that can either be in-
ternally embedded or point to an external source; (iii) Administrative Metadata,
reports administrative metadata (e. g. how object is created and stored, its intel-
lectual property rights, its provenance) and can be internally stored or reference
to external sources; (iv) File Section, contains the list of all files representing the
object content grouped with respect to the version of the digital object they belong
to; (v) Structural Map, contains the hierarchical structure for the digital object, and
links the elements of that structure to content files and metadata that pertain to
each element; (vi) Structural Links, contains the hyperlinks between the nodes of
the Structural Map; and (vii) Behaviour, contains the metadata used to associate
executable behaviour with the information object.

Many similarities exists between such rich and complex model and the DoMDL.
In particular, the structural map that allows the components of a complex object
be organized hierarchically corresponds to the DoMDL structure file. Notable is
the behaviour section which allow the object be equipped with the logic needed
to dynamically generated alternative manifestations. These similarities validate the
DoMDL modelling choices. The transformation of the objects from one model to the
other is an easy task and improves the interoperability between diverse systems.

Chapter 4

Information Space Organisation:
the Collection Service

In this chapter we present the design and implementation of the Collection Ser-
vice, a service introduced into the Reference Model that is mandatory for efficiently
building Virtual Digital Libraries. In particular this service provides the mechanism
of collections, i. e. virtual views over the information space. Thanks to this mecha-
nisms users and services are enabled to tailor the information space to their needs
and thus improve the discovery of and the access to the information objects they
need, e. g. identify the portion relevant for a community, organise the content into
novel and unpredictable sets, reduce the space where to search in.

This chapter is organised as follows. Section 4.1 introduces the service and the
collection mechanism as instruments to dynamically customise and organise the in-
formation space of a Virtual Digital Library. Section 4.2 reports a functional view of
the Collection Service and details of the metadata and the definition language needed
for managing collections. Section 4.3 presents the architecture of the service by re-
porting on the main components, their functionality and the relationships among
them. Section 4.4 reports on the query-based sampling technique as the mechanism
used to acquire a description of the information sources constituting the informa-
tion space. Section 4.5 introduces the source selection technique as the mechanism
used by the collection service in order to find the appropriate information sources
where to search for identifying the objects belonging to the collection. Section 4.6
reports the results of the experimental evaluation of the proposed techniques that
has been conducted to prove the effectiveness of the approach. Section 4.7 presents
the implementation of a collection service in the context of the Cyclades project
(IST-2000-25456). Here, the central role such type of service plays and the im-
provement it produces are highlighted in the context of a DL built by aggregating
third-party information sources. Finally, Section 4.8 reports on related research.

80 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

4.1 Introduction

Building a Virtual Digital Library by aggregating content from a set of different
heterogeneous information sources provided by third parties, that grow indepen-
dently along the time, presents many advantages but also introduces problems. One
of the advantages is that thanks to these type of DLs the content produced to
serve the information needs of those communities for which the information sources
were originally set up becomes available to meet also the needs of other multidis-
ciplinary communities whose interests span across various information sources. On
the contrary, one of the main problems encountered in designing these DLs is the
implementation of an efficient and effective resource discovery mechanism. The het-
erogeneity of the content and the huge dimension of the stored information render
this problem hard to solve.

In the past, the most common way to deal with resource discovery consisted in
structuring the whole information space into a number of well established content
classes, possibly organised hierarchically. Before formulating their queries, user are
asked to navigate in the hierarchy and to locate the class that best satisfies their
needs. This organisation is based on some fixed set of criteria – e. g. subject, date,
location – that reflect both the typology of the underlying information sources and
the needs of the expected user communities. This solutions fails for Virtual Digital
Libraries. Each new document added to the information sources constituting the
information space, or stored into the new sources must be explicitly indexed accord-
ing to the terms of the established organisation. This organisation may over the
time become obsolete and not capable to satisfy anymore the needs of the new and
heterogeneous communities of users asking for Virtual Digital Libraries.

We propose a novel approach to dealing with information space organisation.
This is based on the Collection Service (CS), that is a dynamic information space me-
diator that mediates between the real organisation of the set of information sources
constituting the information space, and the virtual organisation of information ob-
jects into virtual sets, named collections, that are meaningful from the perspective
of the user communities as well as of the services constituting the Virtual Digi-
tal Library. Via a collection, a set of information objects logically correlated can
be grouped together in order to satisfy an information need and to be referred as
an information unit. The most important characteristic is that this set of objects
is characterised via logical criteria and thus it is dynamic, e. g. if a new informa-
tion object meets the collection definition criteria then it automatically becomes a
member of the collection. The CS accepts requests for the creation of new collec-
tions, expressed in term of a set of criteria and, by exploiting the information about
the underlying information space configuration, dynamically generates collection
descriptive metadata that are disseminated to the other services on request.

4.2. THE COLLECTION SERVICE FUNCTIONALITY 81

4.2 The Collection Service Functionality

The proposed service introduces a novel path in accessing an information space. In
particular, it allows users to follow the search strategy proposed in [Bla02]. Here
a two-stage search process is presented in order to improve the document retrieval
from large information spaces. The first phase of this process consists of the par-
titioning of a large information object collection into small collections (partitions),
while the second phase consists of submitting the query representing the informa-
tion needs to the right partition, i. e. the partition which is likely to contains the
desired documents. The Collection Service supports the partitioning mechanism via
the definition of virtual collections. A collection is usually defined as a statically
identified set of documents. Our service, instead, implements virtual collections as
it does not gather nor stores the documents belonging to a collection, as other solu-
tions do – e. g. [WBB01, Ber02], but it characterises and identifies them via a set
of definition criteria. This means that CS collections are capable to adapt to and
follow the dynamism of the underlying information space. If a new document meets
the collection definition criteria then it is automatically included in the collection.
The requests for the creation of new collections are submitted to the CS. These
are formulated via a declarative collection definition language named Membership
Condition language that is presented in Section 4.2.2.

Collection definitions are stored by the CS and information about them is dis-
seminated to the other services upon request. A collection is described by Collection
Metadata, i. e. a set of data about the collection that comprises identification and
managing information. The format and and the semantics of this metadata are
described more in detail in Section 4.2.1.

4.2.1 Collection Metadata

Collection Metadata is the information that the system stores about a collection and
disseminates upon request. The collection metadata are generated by a stepwise
process that is composed by the following phases:

1. Via the CS GUI (Section 4.7.2) the user expresses his own information need
using a definition language. Note that this kind of information need is not
a one-time request, i. e. it is not intended for the identification of the single
information object the user is interested in, but it represents an expression of
interest about a set of information objects with certain characteristics where
further to search in for an information object;

2. The system processes the request of the user in order to generate the collection.
During this phase detailed data about the collection (see Section 4.2.1) are
derived by the system using a set of internal and automatic procedures. The
most important procedure identifies the information objects that belong to

82 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

the collection. These objects are characterised by the set of characterisation
criteria that forms the Retrieval Condition (see Section 4.5 for details);

3. The collection is now ready to be consumed by other DL services. Example of
exploitation can be found in Section 4.7 where we present the implementation
of the Collection Service in the context of the Cyclades project and describe
its central role in supporting an appropriate search and an advanced recom-
mendation functionality in a context of heterogeneous information sources.

Collection metadata is composed by the following fields:

• Identifier - the unique identifier of the collection;

• Name - the name of the collection;

• Description - the textual description associated with the collection;

• Membership Condition (MC) - the condition that the creator has used to define
the collection. It is maintained as a formal specification of the collection;

• Retrieval Condition (RC) - the condition that specifies how to retrieve, effec-
tively and efficiently, the documents belonging to the collection;

• Parent - the identifier of the parent collection. It is used to maintain the
hierarchical organisation in the set of collections.

This is the minimal set of fields required to manage collections. It contains iden-
tification information (Identifier, Name and Description), information on how to
formally (MC) and operationally (RC) retrieve the content of the collection and
information (Parent) about its position in the the hierarchical organisation of the
set of collections. This set of fields can be extended with other type of information
– e. g. statistics about content, policies to regulate the access, and so on – in order
to allow other services having a more rich and detailed description of the collection.
The richer this set of fields is the more accurate is the functionality that the other
services can supply building over collections.

The main issue that the CS comes up against is the automatic derivation and
generation of these metadata fields. A lot of them, e. g. Name, can be derived
directly from the definition criteria expressed by the user, others are generated by
the system, e. g. Identifier, whereas others require supplementary knowledge that
the CS must either receive as input or acquire automatically. Sections 4.4 and 4.5
discuss the latter case in more detail.

4.2.2 Membership Condition Language

The CS allows users to specify their own information needs via a declarative col-
lection definition language named Membership Condition Language. This language

4.3. THE COLLECTION SERVICE ARCHITECTURE 83

must be simple, expressive and quite powerful to capture any kind of information
need arising from users. On the other hand, the definitions given in this language
must be translated into a condition that all the information sources constituting the
information space understand.

The syntax of the language that has been used in the prototype implementation
of the Cyclades CS (Section 4.7) is given below using the Backus-Naur Form
(BNF):

query ::= condition* [, (archiveList)]

condition ::= ([weight,] field, predicate, value)

weight ::= + | - | 1..1000

field ::= [schemaName":"]attributeName

predicate ::= cw | < | <= | >= | > | = | !=

archiveList ::= archiveName | archiveName, archiveList

This is an ALTAVISTA-style language where a query is a set of conditions, which are
either optional, mandatory (+) or prohibitive (-). In addition, it allows for weight-
ing of optional conditions. With respect to the structure of metadata records it
assumes that they have a one-level structure and allows for the use of namespace
(schemaName). The set of predicate supported is composed from the classical com-
parison operators (<, <=, >=, >, = and ! =) plus cw operator used to specify a
condition on the content of a text field, e. g. (description, cw, library) stands
for “the field description contains the term library”.

This language has pros and cons:

• it is quite simple and intuitive as it is similar to others, well known query
languages;

• it is quite general, the assumption about the one-level metadata record struc-
ture can be simply removed using the attribute name path instead of the
attribute name;

• it is not expressive as others query languages are, e. g. SQL. We are currently
working at the evaluation of the right grade of expressive power required in
order to define collections.

4.3 The Collection Service Architecture

Figure 4.1 shows the logical architecture of the Collection Service expressed in terms
of the Digital Library Service Reference Architecture (Section 2.6). This picture
shows how the initial user description of the collection, i. e. the membership condition
MC, is manipulated in order to produce the collection metadata MD that are stored
into the system and disseminated upon request via the CS API, in accordance with
the process presented in Section 4.2.

84 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

I n f o r m a t i o n S p a c e M a n a g e m e n tAccess
M edi ati on

C o l l e c t i o n S e r v i c e A P I
L a n g u a g e M o d e l G e n e r a t o rQ u e r y S a m p l i n gM o d u l e H a r v e s t e rM o d u l e M DR e p o s i t o r yL o a d

U s eR C G e n e r a t o rM o d u l eL a n g u a g eM o d e lR e p o s i t o r i e s
S o u r c eS e l e c t i o nM o d u l eU s e

P resent ati on

I S 1 I S 2 I S n. . .

M CR C
C o l l e c t i o nS e r v i c e G U I S e a r c h S e r v i c e

Figure 4.1: The Collection Service Logical Architecture

The CS contains a module, the RC Generator Module, that is responsible for the
generation of the retrieval condition RC, i. e. the condition that is used in order to
find the documents belonging to the collection. The RC consists of the membership
condition plus a set of automatically selected information sources1 that are relevant
to the conditions specified via the membership condition.

One of the functionality provided by the Collection Service is the translation
of the Membership Condition, i. e. the collection definition criteria, in terms of Re-
trieval Condition, i. e. the query actually used to identify the information objects
constituting the collection. The purpose of this translation is twofold: on the one
hand it is necessary to rewrite the MC into the query language supported by the
information sources in order to render them able to reply; on the other hand it is
important to identify in advance the information sources to query for collecting col-
lection objects in order to reduce the number of sources to interact with. The latter
aspect is also known as source selection: the CS generates a Retrieval Condition
that contains the list of information sources to be queried in order to identify the
information objects belonging to the collection.

In order to identify this set of archives the RC Generator module uses the Source
Selection Module. This module is responsible for solving the source selection prob-
lem, i. e. the selection of the subset of information sources relevant to a given query

1In the follow we will use the terms archive and information source as synonyms.

4.4. LANGUAGE MODEL AND QUERY-BASED SAMPLING 85

among the set of accessible sources (see Section 4.5).

In order to choose the right information sources, the CS must know them, i. e. it
must have an appropriate knowledge of the content of each information source. How
to best represent an information source content is an open problem. The current
approach to this problem is based on the use of a language model. This approach
will be presented in detail in Section 4.4 where a technique used for acquiring the
language model from a set of non co-operating information sources is reported.

Finally, it is worth noting that due to the mediation role that the logical modules
play, some of them must interact directly with heterogeneous information sources
and, therefore, part of their implementation is strictly dependent on that environ-
ment.

4.4 Language Model and Query-Based Sampling

In order to select the information sources relevant to a query, the CS must have a
description of their content. From our point of view an information source is a set
of information objects. The issue of how to best describe this set is still open. The
most widely used approach consists in using a language model, i. e. a list of terms
with their term frequency or term weight information. As it will be clarified in the
next section, this knowledge is sufficient for the source selection technique that we
have adopted.

However, we can assume that the language model is provided by the single infor-
mation sources only in a federated environment where the participating institutions
agree on a number of rules and thus collaborate in providing system functionality.
Instead, in the context of Virtual Digital Libraries where the information sources
are pre-existent and it is required the minimal effort in participating to the system,
we cannot assume that the information sources supply their own language model
and thus we need to envisage a mechanism to acquire it.

In our Collection Service we have envisaged two mechanisms for learning the lan-
guage model. The first assumes that the Information Sources act as data providers as
in the context of the Open Archive Initiative [LV01], i. e. adopt the OAI-PMH tech-
nical framework as a means of exposing metadata records about their content. Then
the Collection Service collects all the metadata records and extract from them the
needed information. The quality of the language model acquired via this approach
depends on the quality of the metadata records exposed. The second methodology
comes from the distributed information retrieval area and is known as query-based
sampling requiring query-response capabilities by the Information Sources.

The query-based sampling technique has been proposed by Callan and Con-
nell [CC01] for acquiring accurate resource description2 in a context where informa-
tion sources are text databases. This technique does not require the co-operation of

2Resource description is a kind of knowledge about the content of an information source.

86 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

source providers, nor does it require that source providers use a particular search en-
gine or presentation technique. Resource descriptions are created by running queries
and examining the information objects returned. At the end of this process a sample
of the records of the information source that represent its content is acquired. This
set is called resource description and using it the language model of the archive can
be derived.

1: query = generateInitialTrainingQuery();
2: resultSet = run(query);
3: if(|resultSet| < Ltr){
4: go to 1;
5: }else{
6: updateResourceDescription(resultSet);
7: if(NOT stoppingCriteria()){
8: query = generateTrainingQuery();
9: resultSet = run(query);
10: go to 6;
11: }
12: }

Figure 4.2: Query-based Sampling Algorithm

Figure 4.2 reports the query-based sampling algorithm that we have appropri-
ately extended in order to deal with information sources presenting information ob-
jects annotated with multiple text attributes – e. g. bibliographic records – (similar
to [XCLN98]). This algorithm uses the functions explained below:

generateInitialTrainingQuery() generates the start training query. In order to
generate a query we need: (i) a set of words among which randomly choose the
ones to build the condition and (ii) a set of attributes among which randomly
choose the ones to build the condition. For each selected attribute we randomly
select 1 to maxt distinct terms and for each pair we choose an operator to relate
attribute and term into the condition.

This function, like the generateTrainingQuery(), is dependent on the infor-
mation source query language and from other parameters. Here we assume
that each query language supports at least conditions on single attribute of a
bibliographic record. All the other aspects are configurable.

In the Cyclades CS prototype (Section 4.7) we have taken the following
design choices: (i) the words belongs to the set of terms that characterise the
second and the third level of the Dewey Decimal Classification [DDC] system,
(ii) the attributes that we have used belongs to the Dublin Core [DC] fields,
(iii) maxt = 4, and (iv) the operator used is always the cw operator.

updateResourceDescription() updates the set of information objects that rep-
resent the resource description. Note that a query must return at least Ltr

4.5. SOURCE SELECTION TECHNIQUE 87

objects before the objects collected (the top Ltr) can be added to the resource
description data set. This minimum result size is required because query re-
turning small results do not capture source content well.

In our prototype we have used Ltr equals to 4 as proposed in [XCLN98], this
is just another configuration aspect.

stoppingCriteria() evaluates if the stopping criteria was reached. In our best
knowledge no one has proposed significantly stopping criteria.

Callan and Connell [CC01] experiments have been conducted stopping the
sampling after examining 500 documents, a stopping criteria chosen empiri-
cally observing that augmenting the number of documents examined the lan-
guage model does not improve significantly.

In our prototype implementation the stopping criteria is reached when the
system runs 10 queries, each ones returns at least Ltr records without resource
description records set changes. This is an aspect that we plan to further
investigate in the future.

generateTrainingQuery() generates the next training query. Training queries
are generated as follows:

1. randomly select an object R from resource description data set;

2. randomly select a set of attribute of R to use in training query;

3. for each attribute to be included in the training query, construct a pred-
icate on it by randomly selecting 1 to maxt distinct terms (stopwords
are discarded) from the corresponding attribute value and using the cw

operator.

In order to investigate the accuracy of the learned resource description acquired
via the sampling technique, we have conducted some experiments whose results are
reported in Section 4.6.

4.5 Source Selection Technique

As already stated, source selection is the technique allowing to identify from a large
set of accessible information sources the ones relevant to a given query. In our case
the query is the MC, i. e. the collection characterisation criteria, while the selected
information sources are used in the generation of the Retrieval Condition in order
to allow a faster discovery of the information objects belonging to the collection.

The source selection problem can be formally defined as follows.

Definition 4.5.1 (Source Selection Problem) Let IS = {IS1, IS2, . . . , ISN} be
a set of Information Sources. Let q be a query. The source selection problem consists
in computing E ⊆ IS such that ∀F ⊆ IS Goodness(q,E) ≥ Goodness(q,F).

88 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

Goodness is a function on the results returned by a set of IS E against a query q

defined as follows:
Goodness(q, E) =

∑

ISi∈E

si (4.1)

where si is the result size returned by ISi for query q.
In order maximise the Goodness value for a query it is sufficient to rank the

various information sources estimating the result size returned by each one. The
weighting scheme that we propose has been obtained by appropriately extending
the CORI schema [CLC95] in order to manage bibliographic records instead of plain
text documents and to consider a richer query language than a keyword-based ones.

In accordance with the Membership Condition Language reported in Section 4.2.2
we consider a keyword-fielded-based query model, this mean that a query q is defined
as a list of condition (wi, ai, oi, vi) where:

• wi is the weight of this condition. + mean that the condition must be fulfilled,
- that the condition must not be fulfilled (the boolean NOT);

• ai is the field of the bibliographic record involved in the condition;

• oi is the operator to use, e. g. <=, =, cw, etc.;

• vi is the keyword.

For example, to retrieve all the records having author “Candela” and subject “Cy-
clades” we use the following query:

(+,author,cw,‘‘Candela’’)(+,subject,cw,‘‘Cyclades’’)

The technique exploits the discriminatory power of different conditions to in-
crease the accuracy of archives selection. This is done by summarising the content
of the information source IS via the language model LM . As stated in Section 4.4
the language model consists of a list of terms with their term frequency and can be
acquired by a sample of the source content. Using it the CS is able to calculate the
document frequencies (denoted by dfi,j) defined as the expected number of records
in ISi that match against the condition cj plus other statistical values described in
what follows.

Formally, the Goodness score G(q, ISi) for IS ISi and query q is defined as
follows:

G(ISi, q) =







0 if ∃k ∈ [1..|q|] |wk ∈ {+,−} ∧ p(ck|ISi) = 0
∑|q|

k=1 p(ck|ISi)

|q|
otherwise

(4.2)
where the “belief” p(ck|ISi) in ISi for condition ck is defined as

4.6. EXPERIMENTAL EVALUATION 89

p(ck|ISi) =

{

Ti,k · Ik · wk if wk ∈ [1..1000]
Ti,k · Ik if wk =“+” or wk =“−”

(4.3)

Ti,k =
dfi,k

dfi,k + 50 + 150 ·
cwi,k

cwk

(4.4)

Ik =
log

(

|D|+0.5
cfk

)

log (|D| + 1.0)
(4.5)

where:
dfi,k is the expected number (estimated via LMi) of ISi documents satisfying ck,
cwi,k is the number of terms in attribute ak in LMi,
cwk is the mean cw of the ISs being ranked,
cfk is the number of ISs satisfying ck,
|D| is the number of the ISs being ranked.

Note that the accuracy of the automatic source selection using this technique is
promising, i. e. the RC that is generated approximates very well the MC as demon-
strated by the experiments presented in Section 4.6.

4.6 Experimental Evaluation

Before proceeding with the description of the tests conducted to evaluate the tech-
nologies and the approaches proposed, we describe the test corpus we adopted for
our experimentation.

4.6.1 Test Corpus

To the best of our knowledge, no corpus exists in the literature that fits to our
settings. Thus we built a suitable corpus by taking the data from the Internet.

We decided to assemble two different corpus, one based on records gathered via
the OAI-PMH protocol and another based on web documents selected from the Open
Directory Project3 (ODP or DMOZ).

The first corpus, named the OAI Corpus, is built on about 1000K records gath-
ered from the 62 OAI compliant archives available in the context of the Cyclades
project [CS04]. To evaluate the query-based sampling, we built two information
sources:

• Archive 1, quite small and homogeneous information source containing 1616
records, 13,576 unique terms after stopwords removing and consisting in com-
puter science papers published by the same authority;

3The Open Directory Project http://dmoz.org

90 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

• Archive 2, a larger and heterogeneous information source containing 16,721
records, 79,047 unique terms after stopwords removing and consisting in papers
published by different authorities on different topics.

To evaluate the source selection technique we randomly generated 200 collections,
i. e. the Membership Conditions, using Dublin Core fields. The collections generated
are of two types, each type consisting of 100 collections:

• T1, generated using a combination of conditions on description and title

fields;

• T2, generated using a combination of conditions on all fields of the Dublin
Core schema.

The second corpus, named DMOZ Corpus, is built by relying on the largest human-
edited directories of the Web made available by the homonymous project. These data
include over 5.1 million sites, about 69,000 editors and over 590,000 categories and
power the core directory services for the Web largest search engines, e. g. Google4.
The document base we considered in our experiment is a subset of the categories
under the Science umbrella consisting of 1415 folders and 18,091 documents. To
evaluate both the query-based sampling and the source selection algorithms we
aggregate the information objects according to three different information source
distribution schemes whose characteristics are reported in Table 4.1:

• ScienceI, each of the 23 information sources corresponds to the first-level sub-
category of Science into the DMOZ hierarchy. As a consequence, the informa-
tion objects of an information source share the same topic;

• Quasi-random, each of the 85 information sources contains information objects,
which have been selected randomly, from a subset of the first-level sub-category
of the Science category. Thus these information sources are more heterogeneous
than the previous ones because the set of objects contained into each source
belongs to a different, but limited, set of categories. In this case we have
multi-topic information sources;

• Random, each of the 100 information sources contains information objects
randomly selected from the whole corpus. Thus the information sources are
highly heterogeneous.

The creation of a pool of test collections is easy. In particular, we created 300
Membership Conditions by taking the terms from three categories of Science, i. e.
Agriculture, Anomalies and Alternative Science, and Astronomy. A collection defi-
nition criteria corresponds to the set of top 100 terms belonging to the documents
classified under the DMOZ category.

4Google web site http://www.google.com

4.6. EXPERIMENTAL EVALUATION 91

Environment Number of Source Size
Information Max Min Avg

Sources
ScienceI 23 15,722 11 3,027.47

Quasi-random 85 5,660 1 809.67
Random 100 768 621 696.32

Table 4.1: The DMOZ Information Sources Experimental Environments

4.6.2 Query-based Sampling Evaluation

To evaluate the effectiveness of the query-based sampling mechanism as algorithm
for approximating the information source content we compared the learned resource
description of an information source with the real resource description for that infor-
mation source. Resource descriptions are usually represented using two information,
a vocabulary V of the set of terms appearing in the information source objects and
a frequency information for each vocabulary term. This frequency, also called docu-
ment frequency (df), represents the number of information objects containing that
term. In accordance to [CC01] we have used two metrics to evaluate the quality
of the resource description acquired by sampling, (i) the ctf ratio (CTF) to mea-
sure the correspondence between the learned (V ′) and the real (V) vocabulary and
(ii) the Spearman Rank Correlation Coefficient (SRCC) to measure the correspon-
dence between the learned and the real frequency information. These metrics are
calculated using formulas 4.6 and 4.7 where:

• ctf i is the number of times term i occurs in the resource description of an
information source,

• δi is the rank difference of common term i where term rankings are produced
by learned and actual df values,

• n is the number of terms.

CTF =

∑

i∈V ′

ctfi

∑

i∈V

ctfi
(4.6)

SRCC = 1 −
6

n3 − n

∑

δi
2 (4.7)

OAI Corpus Experimentation

Five trials were conducted for each information source and for each trial a resource
description consisting of a maximum of 500 records was acquired. The results re-
ported here are the average of the results returned by the trials.

92 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400 450 500

C
T

F

Number of records

creator
date.available

date.issued
description.abstract

title
Record

Figure 4.3: Archive 1 – CTF Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400 450 500

S
R

C
C

Number of records

creator
date.available

date.issued
description.abstract

title
Record

Figure 4.4: Archive 1 – SRCC Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400 450 500

C
T

F

Number of records

creator
date.available

date.issued
description.abstract

title
Record

Figure 4.5: Archive 2 – CTF Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400 450 500

S
R

C
C

Number of records

creator
date.available

date.issued
description.abstract

title
Record

Figure 4.6: Archive 2 – SRCC Graph

Within this context we decided to compare the characteristics of the language
model calculated with respect to the various fields with those obtained while con-
sidering the whole object as a blob of plain texts. In particular, we conducted the
sampling by issuing per field queries with values taken from the set of terms assigned
to that field in the case of the attribute curves, i. e. creator, date.available,
date.issued, description.abstract, and title. In the case of the Record curve,
the sample was conducted by issuing a query on the whole content with terms ran-
domly taken from the whole set of acquired terms, independently from the field they
came from.

Figures 4.3 and 4.4 show respectively the graphs of the CTF and the SRCC
metrics calculated by field and by number of information objects for Archive 1,
varying the number of records considered building the resource description, while
Figures 4.5 and 4.6 report the same metrics in the case of Archive 2.

By observing the CTF graphics we note that the language model acquired for the
first archive is generally better then the one acquired for the second one. Moreover
we can note that the language model acquired on different fields has diverse char-
acteristics and that those acquired for the whole record can be considered a good
representative of the archive content because outperform many of the per field met-
rics. The reasons of this behaviour are twofold: on the one hand they are related to

4.6. EXPERIMENTAL EVALUATION 93

the characteristics of the information source, Archive 2 contains more information
objects and is more heterogeneous in terms of content than Archive 1 ; on the other
hand they depend on the intrinsic characteristics of the fields, i. e. certain fields are
more heterogeneous than others, e. g. creator is characterised by more terms than
e. g. date.

By observing the SRCC graphics we can notice that it suffers of the same draw-
backs of the CTF curve related to the characteristics of the information sources and
of the fields. However, in the case of the whole record considered as a blob of texts,
the measures obtained are encouraging since are greater than 80% (see Record line).

The major outcome of these experiments is that the acquisition of the language
model by issuing queries on the whole record is a good compromise between the
quality of the information source description acquired and the number of queries
performed. Moreover, the other interesting aspect is that even if the metrics on the
quality of the language model are not impressive, i. e. are not equals to one, the
source selection works well with the sample acquired using our algorithm as shown
in the Source Selection Evaluation section.

DMOZ Corpus Experimentation

In the case of the DMOZ corpus it is not possible to investigate on the per field
sampling because of the nature of the information objects, i. e. web documents.
Thus we concentrated of the characteristics of the language model acquired with
respect of the characteristics of the Information Sources. Thus in this case the
sample is acquired by issuing terms based queries, similar to those we use in Google,
and the terms are selected from the whole set of terms present into each information
object constituting the partial sample.

In Table 4.2 we report the characteristics of the information sources and their
approximations in terms of number of records gathered and number of terms in the
samples, respectively.

Avg Record Avg Terms
Environment Source Sample Sample% Source Sample Sample%

ScienceI 3,027.47 279.17 9.22% 102,375 17,707.2 17.29%
Quasi-random 809.67 238.3 29.43% 46,197.7 18,083.17 39.14%

Random 696.32 295.74 42.47% 48,571.31 27,121.01 55.83%

Table 4.2: The DMOZ Information Sources and their Samples – The Characteristics

In Table 4.3 we report the results of CTF and SRCC effectiveness metrics. For
example, observing the ScienceI case, we can note that acquiring just the 9% of the
records of the source we are able to have a very close representation of the content
of the information sources as we obtain a CTF of about 90% and an SRCC of
80%. Moreover, note that the effectiveness of the approximations are quite inde-
pendent from the content homogeneity of the information sources constituting the

94 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

environment. But, for instance, by observing the Random environment case, we can
note that the number of records acquired by the sample process is much greater in
percentage than that for the ScienceI case in order to get similar CTF and SRCC

values. Essentially, and quite intuitively, the more heterogeneous is an information
source with respect to its content, the more information objects have to be gathered
in its sample to reasonably approximate the information source content.

CTF SRCC

Environment Max Min Avg Max Min Avg
ScienceI 98% 74% 87% 97% 53% 80%

Quasi-random 100% 71% 98% 100% 63% 85%
Random 92% 78% 87% 90% 75% 85%

Table 4.3: DMOZ – Statistics of Samples

4.6.3 Source Selection Evaluation

To evaluate the effectiveness of the source selection process, the idea is to compare
the set of objects retrieved by query with the Membership Condition the set of se-
lected sources against the set of objects obtained by querying all the information
sources available. Due to the characteristics of our two test corpus and due to the di-
verse goal of the test conducted on each corpus different metrics are used to evaluate
the effectiveness and are reported and discussed into the following subsections.

OAI Corpus Experimentation

We use the classic metrics of information retrieval,i. e. precision and recall, to evalu-
ate the effectiveness of the source selection mechanism in the case of the OAI Corpus.
In particular, given a collection definition MCi and the relative RCi obtained after
source selection, Precisioni is defined as the quantity:

Precisioni =
|ret(RCi) ∩ ret(MCi)|

|ret(RCi)|
(4.8)

and Recalli is defined as the quantity

Recalli =
|ret(RCi) ∩ ret(MCi)|

|ret(MCi)|
. (4.9)

where:

• ret(MCi) is the set of records retrieved by submitting the MCi query to all
the archives of the dataset and for each taking the top-100 records. ret(MCi)
is considered as the set of records effectively to be retrieved;

4.6. EXPERIMENTAL EVALUATION 95

Precision

0.00 – 0.11 – 0.21 – 0.31 – 0.41 – 0.51 – 0.61 – 0.71 – 0.81 – 0.91 –

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 – 0.10 0.33% 0 0 0 0 0 0 0 0 8% 8.33%

0.11 – 0.20 0 0 0 0 0 0.16% 0 0 0 5.83% 6%

R 0.21 – 0.30 0 0 0 0 0 0 0 0 0 5.83% 5.83%

e 0.31 – 0.40 0 0 0 0 0 0 0 0 0 7.5% 7.5%

c 0.41 – 0.50 0 0 0 0 0 0.16% 0 0 0.16% 12.16% 12.5%

a 0.51 – 0.60 0 0 0 0 0 0.16% 0 0 0 2.5% 2.66%

l 0.61 – 0.70 0 0 0 0 0 0 0.16% 0 0 8.66% 8.83%

l 0.71 – 0.80 0 0 0 0 0 0 0 0.5% 0.33% 8.83% 9.66%

0.81 – 0.90 0 0 0 0 0 0 0 0 1.33% 9.83% 11.16%

0.91 – 1.00 0 0 0 0 0 0 0 0 0 27.5% 27.5%

0.33% 0 0 0 0 0.5% 0.16% 0.5% 1.83% 96.66%

Table 4.4: Source Selection – Precision and Recall in OAI Corpus

• ret(RCi) is the set of records retrieved by submitting RCi as query, i. e. sub-
mitting the MCi query to the information sources mentioned in RCi.

Table 4.4 reports the results of tests on the OAI Corpus composed by 200 collections.
In it, each row/column pair (r, p), where r and p are intervals denoting respectively
recall level and precision level, dictates the percentage of test pairs (MCi, RCi) such
that Recalli ∈ r and Precisioni ∈ p. Furthermore, the right most column and
the bottom row report the total amount w. r. t. a row and a column, respectively.
For instance, from Table 4.4 we have that 27.5% of the test pairs (MCi, RCi) have
recall and precision level in [0.91, 1], while 96.66% of the tests have precision level
in [0.91, 1].

In Table 4.5 we report the response time needed to identify the records constitut-
ing each collection in the case of usage of Membership Condition, i. e. query all the
information sources, compared with the usage of the Retrieval Condition, i. e. query
a subset of information sources among those available. The improvement is terms
of response time of the RC w. r. t. the MC is impressive. Thus we can conclude that
with little loss in the set of records identified as members of the collection retrieved
after automatic source selection we can obtain an high improvement in terms of the
response time needed to identify them.

DMOZ Corpus Experimentation

The goal of the experimentation conducted with the DMOZ corpus is to investigate
on the number of information sources to be inserted into the Retrieval Condition. In
fact, even if the source selection is based on the ranking of the information sources
based on the goodness value it is usually not appropriate to insert into the RC all

96 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

T1 T2 Average
MC 162874 ms 186909 ms 174892 ms
RC 48469 ms 52253 ms 50361 ms

Improvement in ms 114405 ms 134655 ms 124530 ms
Improvement in % 70.24% 72.04% 71.20%

Table 4.5: Source Selection – Average Response Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

F
1-

S
co

re

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
All Archives

Figure 4.7: ScienceI – F1-Score Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

S
R

C
C

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
All Archives

Figure 4.8: ScienceI – SRCC Graph

the information sources having a positive value because the number of these sources
can be similar to the number of all those available and thus reduce the advantage of
source selection. As a consequence a threshold is identified, e. g. the top-n ranked
information sources, and the sources fulfilling this constraint are selected to be
inserted into the RC.

For each of the 300 collections constituting the DMOZ corpus, we have evaluated
the effect of varying the number of information sources to be used into the RC and
the number of records (from 1 to 500) to be considered being part of the collection.

The metrics used to evaluate the effectiveness of our source selection algorithm
are the SRCC (see equation 4.7 on page 91) and the F1-score, i. e. the harmonic
mean of Precision (equation 4.8) and Recall (equation 4.9), defined as follows:

F1-Score =
2 · Precision · Recall

P recision + Recall
(4.10)

The ranked list used to compute such metrics for each collection are obtained by
issuing the query constituting the collection MC respectively to all the archives of
the dataset (the baseline) and to the set of archive to be inserted into the RC (the
test).

In Figures 4.7 and 4.8 we report the results for the ScienceI case. As previously
observed, in this case an information source is homogeneous, i. e. its records belong
to the same topic or set of topics. The selection of just the top-1 information source
for each collection produces high F1 value, about 80%, and a high SRCC value.
This means that our algorithm is able to find the most appropriate information

4.6. EXPERIMENTAL EVALUATION 97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

F
1-

S
co

re

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
50 Archives
All Archives

Figure 4.9: Quasi-random – F1-Score
Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

S
R

C
C

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
50 Archives
All Archives

Figure 4.10: Quasi-random – SRCC
Graph

source w. r. t. the collection in case the information source has a homogeneous topic.
Selecting more than one information source produces a deterioration of the results as
the selected information sources contain documents less pertinent to the collection
topic.

In Figures 4.9 and 4.10 we report the results for the Quasi-random case. As pre-
viously observed these information sources are more heterogeneous than the previous
ones, i. e. the records of a source may belong to a different but limited set of topics,
and records about a topic are distributed among a limited number of information
sources. In this case selecting just the top-1 information source to each collection
produces a lower F1-Score than for the previous case. Moreover, the performance
decreases if the number of records considered belonging to the collection increases.
Selecting more than one source produces an improvement of the results as the se-
lected information sources contain records relevant to the collection. Concerning
the SRCC curve we note that increasing the number of records to be considered
in a collection, each curve has a decreasing phase and finally it increases. The end
of the decreasing phase coincides with the point where the F1-Score value starts
to decrease. This indicates that the number of common records, between the base-
line rank and the test rank, decreases and, thus this improves the SRCC. On the
other hand, the numerator of both precision and recall decreases and, thus, F1-Score
decreases.

In Figures 4.11 and 4.12 we report the results for the Random case. In this
environment, the information sources are highly heterogeneous, i. e. the records of
a source can belong to many different topics, and the records of a collection are
distributed, potentially, among all sources. This is the worst case. We can note
that the performance decreases if the number of records to be considered part of
a collection increases, while it increases if the number of information sources to be
included into the RC increases. However, our algorithm is still able to find the most
appropriate information sources w. r. t. the collection.

98 CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

F
1-

S
co

re

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
50 Archives
All Archives

Figure 4.11: Random – F1-Score Graph

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 200 100 50 20 10 5 2 1

S
R

C
C

Number of records (Logarithmic scale)

1 Archive
2 Archives
5 Archives

10 Archives
20 Archives
50 Archives
All Archives

Figure 4.12: Random – SRCC Graph

4.7 Implementation: the Cyclades Collection Ser-

vice

One of our main goals in designing and implementing the Collection Service has been
reusability and adaptability to different contexts. In particular, we were interested
in providing a service as a component of a Digital Library System useful to build
Virtual Digital Libraries.

To enlarge the clientele of our Collection Service we decided to follow the com-
ponent oriented approach as well as to stress the configuration aspects of both the
various modules and the service as a whole. Many characteristics of the service are
easily modifiable, namely aspects of the Membership Condition Language like the
set of attributes or the set of predicate supported, tuning parameters of the query
based sampling process like the set of words to use in query generation or the num-
ber of information objects to examine, the process to use in building the language
model, tuning parameters of the source selection algorithm like the threshold.

In this section we report some details on the implementation of the first prototype
of the Collection Service performed within the context of the Cyclades project
(IST-2000-25456), thus partially funded by this project. Further details are reported
in [CCP03b, CS04].

It is worth noting to highlight that (i) the components of this prototype have
been used to implement the OpenDLib [Ope, CP02, CP03] collection service and (ii)
the on-going IST project BRICKS [BRI] is exploiting the design and implementation
choices proposed here.

4.7.1 Cyclades: a Personalised and Collaborative DL

The objective of Cyclades is to provide an integrated DL environment for users
and groups of users (communities) that want to use, in a highly personalised and
flexible way, “open archives”, i. e. electronic archives of documents compliant with
the OAI [LV01]. Informally, the OAI is an initiative between several Digital Archives

4.7. IMPLEMENTATION: THE CYCLADES COLLECTION SERVICE 99

in order to provide interoperability among them. In particular, the OAI defines an
easy-to-implement gathering protocol over HTTP, which give data providers (i. e.
the individual archives) the possibility to make the documents’ metadata in their
archives externally available. This external availability of the metadata records then
makes it possible for service providers to build higher levels of functionality. To date,
there is a wide range of archives available in terms of its content, i. e. the family of
OAI compliant archives is multidisciplinary in content. Under the above definition,
Cyclades is an OAI service provider and provides functionality for (i) advanced
search in large, heterogeneous, multidisciplinary digital archives ; (ii) collaboration;
(iii) filtering; (iv) recommendation; and (v) the management of records grouped
into collections.

Worth to recall that the main principle underlying Cyclades is the folder
paradigm. That is, users and communities of users may organise the working space
into their own folder hierarchy, as e. g. may be done with directories in operating
systems, bookmark folders in Web browser and folders in e-mail programs. As a
consequence the folder becomes a holder of information items, which are usually se-
mantically related and, thus, implicitly determines what the folder’s topic is about.
On this principle it is based the whole recommendation mechanism constituting one
of the biggest value added of Cyclades as DL. The system automatically noti-
fies each folder with novel information objects, collections, users, and community
deemed as relevant with respect to the folder topic [RS02, ACS].

The architecture of the Cyclades system follows a Service-oriented approach
and is depicted in Figure 4.13. Its services can be easily classified in accordance to
our Digital Library System Reference Architecture (Section 2.6).

The Cyclades system is accessible through the Cyclades portal that presents
the system functionality via different environments accessible with a web browser
provided by the single services. The Collaborative Work Service, the Search &
Browse Service, the Access Service, and the Collection Service provide their own
user interfaces. The Cyclades portal (actually the user interface of the Mediator
Service) integrates these user interfaces and ensures that those services are called
only for authorised users. Moreover, it provides the registration and login interface,
and a system administration interface (for assigning access rights, etc.).

The functionality allowing the Cyclades services to co-operate are provided by
the Mediator Service. It represents the main entry point to the Cyclades system
functionality, acts as a registry for the other services, checks if a user is entitled
to use the system, and ensures that the other services are only called after proper
authentication.

The DL Management area (Section 2.6.3) contains the Filtering & Recommen-
dation Service and part of its functionality are covered by the Collaborative Work
Service; the Access area (Section 2.6.2) in mainly composed by the Search & Browse
Service and parts of the expected functionality are covered by the Collaborative
Work Service; the Information Space Management area (Section 2.6.5) is mainly
covered by the Collaborative Work Service with the support of the Access Service

100CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

E nabli ngF rameworkI nf ormati on S pace M anagement
M edi ati on A c c e s s S e r v i c e C o l l e c t i o n S e r v i c e
DL M anagement F i l t e r i n g &R e c o m m e n d a t i o nS e r v i c e A ccessC o l l a b o r a t i v e W o r kS e r v i c e S e a r c h &B r o w s eS e r v i c e

P r e s e n t a t i o n C Y C L A D E SP o r t a l

I S 1 I S 2 I S n. . .O A I À P M H
Figure 4.13: Cyclades Architecture

and the Collection Service.
The Collaborative Work Service plays a central role in the system because it

provides the folder-based environment for managing metadata records, queries, col-
lections, external documents, received recommendations, ratings and annotations.
Furthermore, it supports collaboration among Cyclades users by way of folder
sharing in communities, discussion forums and mutual awareness.

The Search & Browse Service supports the activity of searching records from the
various collections, formulating and reusing queries associated to the folder by the
user, and saving records to folders.

The Filtering & Recommendation Service provides filtered search, recommenda-
tions of records, collections, users, and communities deemed relevant to the user’s
interests.

With respect to the concrete access to the information objects, two services
constitute the Mediation area, i. e. the Access Service and the Collection Service.

The Access Service is in charge of interfacing with the underlying metadata
archives. In this prototype, only archives adhering to the OAI specification were
accounted for. However, the system is extensible to other kinds of archives by just
modifying the Access Service. A user may also ask Cyclades to include newly
OAI compliant archives as well. It is worth noting that this service provides an API

4.7. IMPLEMENTATION: THE CYCLADES COLLECTION SERVICE 101

exposing the single archive as they are, i. e. it builds an index for each OAI archive
and do not build an index of all the records constituting the information space.
Thus, from the other services perspective, the information space is constituted by a
set of information sources capable to reply to queries.

The Collection Service manages personalised collections (i. e. their definition,
creation, and update) and stores them, thus allowing a dynamic partitioning of
the information space according to the users’ interests, and making the individual
archives transparent to the user.

The major outcomes of a service like the Cyclades Collection Service are (i)
the users may organise the information space into more meaningful, from their
perspective, and dynamic set of information objects, (ii) the user may focus their
research by partitioning the heterogeneous information space resulting from the
aggregation of information sources, and (iii) the system is able to recommend an
entire collection of information object to the user.

4.7.2 The Cyclades Collection Service: API, GUI and other
implementation details

The Cyclades Collection Service is fully implemented in Java and in particular
as a servlet. It builds the mechanisms for source selection on the facilities provided
by the Jakarta Lucene5 for storing retrieved information objects and extracting the
needed statistics. The service-call protocol supported and used is the XML-RPC6.
In order to enhance data portability we have used the XML to represent collection
metadata as well as the Membership Condition. We defined the XML scheme that
can be used to validate these data [CCP03b]. The service was subjected to, a series
of tests to validate its performance as extensively documented in [CCP03b].

Cyclades CS API

The Collection Service provides an API allowing the other Cyclades services to
easily access its functionality. The methods constituting this API are reported in
the follow.

• cId addCollection()

This method creates a new collection identifier cId which can be assigned to
a collection which will be created soon.

• cId initializeCollection(cId, cName, cDescr, MC, userId)

This method creates a collection, whose parent collection is the Cyclades col-
lection, if the membership condition MC is legal.

5http://jakarta.apache.org/lucene
6http://www.xmlrpc.com/

102CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

• cId initializeCollection(cId, cName, cDescr, MC, userId, parentC)

This method creates a collection whose parent collection is parentC, if the
membership condition MC is legal.

• void deleteCollection(collectionId, userId)

This method removes a collection from the set of existing collections if: a) the
user is authorised to do it and b) the specified collection exists.

• (cId, cName, cDescr, parentC)* listCollections(userId)

This method returns the list of existing collections whose owner is userId.

• (cId, cName, cDescr, parentC)* listCollections()

This method returns the list of existing collections.

• void editCollection(cMetadata, userId)

Update collection metadata description.

• (cId, cMetadata)* getCollectionMetadata(cIds*)

For each specified collection identifier, this method returns the corresponding
descriptive metadata.

• (cId, cName, cDescr, parentC)* getPersonalCollections(userId)

This method returns the list of personal set of collections for user userId.

• void deleteUser(userId)

Notify the Collection Service that user userId was removed from the system.

• void deleteArchive(archiveId)

Notify the Collection Service that archive archiveId was removed from the
system.

Graphical User Interface

The graphical user interface of the CS is accessible via a web-browser. It has been
designed keeping in mind the easy-to-use concept so it has been organised into two
areas, the menu area and the working area as shown in figure 4.14. Menu area
contains a menu bar (at the upper) and an action menu. Working area contains a
collection hierarchy area and a collection data area.

The topmost part of the interface (under the Collection Management title bar)
contains the menu bar with three menus and/or action shortcut.

Via the Browse menu the user may choose the set of collections shown in the
working area among own created collections and all Cyclades collections.

Via the Personal Collections Set shortcut the user can browse/edit his “personal
collection set”. Figure 4.15 shows the GUI that allows user to manage his personal
collection set. This GUI has a working area a little bit different from the previous,
there are two collections hierarchy areas, one (the left) for the “actual” personal

4.7. IMPLEMENTATION: THE CYCLADES COLLECTION SERVICE 103

Figure 4.14: Cyclades CS GUI – The Main View

Figure 4.15: Cyclades CS GUI – The Personal Collections Set

collections set and the other (the right) for all collections. Clicking on a collection
in the left area the user can remove this from the actual personal collection set,
clicking on a collection in the right area the user can add this from the actual
personal collection set. Collection data area in the middle shows collection data
(e. g. name, description) for the selected collection.

104CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

Via Collection→New the user can create a new collection. The system presents
a form (Fig. 4.16) to fill in whereto enter the name and the description of the
new collection (useful to identify it later), the parent collection (collections may
be organised hierarchically), and the membership condition (a Cyclades query
and/or one or more archives). The membership condition is the set of conditions
that characterise the set of documents belonging to the collection. Interestingly, the
system automatically determines the best source from which to search for (this is
the “Retrieval Condition”).

Figure 4.16: Cyclades CS GUI – Create Collection Form

Under the menu bar the CS interface provides an action menu. The items of this
menu are related to the collection shown in the collection data area.

If the collection data area shows a collection created by the user, then the action
menu contains the items Edit, in order to edit this collection, and Delete in order
to delete this collection.

On the left of the working area there is the collections hierarchy area. In this
area there is a navigable hierarchical view of the set of collections actually in use
(own created collections or all collections).

Clicking on a collection allows a user to see collection data in the collection data
area and, if the user has the rights, to manage them (via the action menu).

On the right of the working area there is the collection data area. This area shows
collection data (e. g. name, description) for the selected collection in the collections
hierarchy area.

4.8. RELATED WORK 105

4.8 Related Work

In the DL field the concept of collection is broad, there is still confusion about what
a collection is and what its characteristics are. In many papers, e. g. [JF02, Ber02,
WBB01] the term “collection” is used as synonym of information source and the
issue is how to automatically populate it. This paper has focused on collections as
mechanisms for self-organising the information space that a DL manages. However,
we intend a collection as a virtual information source as it does not actually store
any documents.

The concept of collection service proposed by Lagoze and Fielding in [LF98]
shows many similarities with our CS. The most significant of them are: (i) collection
membership is defined through a set of criteria rather than containment and (ii) CS
must supply an independent mechanism for introducing meaningful and dynamic
structure into a distributed information space. No implementation of this concept
has ever be delivered.

Greenstone [WBB01] propose a collection-centric approach where each collection
has a user interface that allows users to search and browse over the collection. This
kind of collection is similar to an IS, as the collection creator has to supply the
documents belonging to it. This approach is quite static, the collection creator can
add documents to a collection but has to do that manually.

In [GGMM02] the term “virtual collection” is introduced and a set of benefits
for digital libraries that contain collections are outlined. That paper focuses on
how to easily generate collection-level metadata without specifying how collection’s
documents have been collected and selected.

Many papers have been proposed about source selection in different fields. Xu
et. Al. in [XCLN98] proposes a database selection technique called TQRS for
resolving the problem of query routing where the ISs are databases with multiple
text attributes. That technique uses query sampling in order to acquire database’s
knowledge and then an extensions of the CVV ranking method [YL97] to rank each
database. This is similar to the solution that we have proposed but we have used a
revised version of CORI [CLC95] instead of CVV because it is one of the most stable
and effective [FPC+99], and it is compatible with resource descriptions acquired by
query-sampling, while CVV is not [SC02].

106CHAPTER 4. INFORMATION SPACE ORGANISATION: THE COLLECTION SERVICE

Chapter 5

Semantic Search Across
Heterogeneous Information
Sources

Search is one of the most critical functionality of a digital library. Often, the qual-
ity of the whole DL is measured with respect to the flexibility and efficacy of its
search functionality. This functionality usually relies on indexing of either full text
or metadata. When indexing is provided by different heterogeneous information
sources, each adopting their own metadata formats and ontologies, the implementa-
tion of the search requires special approaches to offer homogeneous query languages
and results set formats to the end-users.

In this chapter we present an innovative technique for the carrying out of a search
functionality across heterogeneous information sources. By exploiting semantic in-
formation embedded in the metadata formats and vocabularies used by the different
sources, this technique offers a new form of virtualization that supports a better
user-query formulation and processing. This technique is based on the introduction
of two particular services: Index and Query Mediator. While the former is mainly
a Mediator service and its role is to provide an uniform view of the heterogeneous
information space, the latter is a type of search service that acts as orchestrator, i. e.
it organises the access to the various Index Services thus providing an unique point
of access to a search functionality across multiple sources.

The chapter is organised as follows. Section 5.1 shows the limitations of existing
techniques for performing search across shared independent information sources.
Section 5.2 presents the logical architectural framework that we assumed in this
work. Section 5.3 introduces the first part of a theory we have developed and shows
how it is exploited by the Index Service. It also provides concrete examples for
explaining the implications of the presented theory. Section 5.4 introduces the rest
of the theory which is used by the Query Mediator service and shows the advan-
tages obtained. Section 5.5 presents the exploitation of the theoretical framework
introduced by previous sections by reporting the experience in building an advanced

108 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

search service for the OpenDLib Digital Library System. Finally, Section 5.6 com-
pares our approach to related research.

5.1 Searching Across Information Sources

Institutions maintaining information sources describe their documents using specific
cataloguing rules. Even when a standard metadata format is used, the semantic
interpretation of the metadata fields and the cataloguing terms used are strongly
influenced by the assumptions and terminology of the application context in which
any institution operates. When a DL is built using shared information sources, the
different cataloguing rules used at the source level become completely transparent to
the DL users, who formulate queries that express their information needs in terms of
the metadata formats and controlled vocabularies supported by the digital library
search service.

This dichotomy between the information source cataloguing environment and
the search environment complicates both the formulation and the processing of user
queries. As in the DL framework the users neither know how information objects
have been originally described nor have access to their original description format,
they are not always able to formulate precisely the conditions required to retrieve
information objects that satisfy their needs. Most DL search services attempt to
minimise this problem by automatically expanding the user query with the help of
stemming and query expansion algorithms.

In order to process the user queries the system must be able to map the query
conditions against the descriptive metadata of the information objects provided by
the different information sources. The most common solution implemented today to
carry out this task is to enforce interoperability by requiring to every DL information
source provider to expose the descriptions of their information objects in at least
a shared common metadata format. This format is usually also the one accepted
by the DL search service language. In order to fulfil this requirement, the source
provider establishes a mapping between its internally used metadata format(s) and
the mandatory metadata format and then it applies this mapping to all the metadata
records of its resources. The DL search service thus operates in a context where the
metadata descriptions and the query language are homogeneous and can process the
query with traditional techniques.

Moreover, current DL systems support both query formulation and processing
using techniques based on syntactic manipulations, without exploiting any seman-
tic information about the metadata schemas and controlled vocabularies. One of
the reasons of excluding such a solution is the lack of techniques for exploiting it
successfully.

In this chapter we introduce a new technique that instead is able to exploit this
semantic information. This technique relies on a theory that we have elaborated by
modifying the work presented in [TCS01]. this work that focuses on object asso-

5.1. SEARCHING ACROSS INFORMATION SOURCES 109

ciated with ontologies of terms has been extended in order to apply it to the DL
framework where information objects are characterised by both metadata schemas
and controlled vocabularies. The proposed technique takes advantage from the
specialisation relationships among the metadata fields and among the terms of the
controlled vocabularies used. This information is obtained by exploiting the transla-
tion relationships that are produced by the information source providers when they
transform the local description formats into the common format. This information,
usually discarded, is semantically richer than the final common format and can be
used for building more powerful search services. The resulting search service is thus
able to offer the choice among a range of possible different interpretations for the
same query and the users can select the one that better satisfy their needs. Note
that this technique does not require any explicit generation of the metadata records
in a pre-defined shared format.

The illustrated technique has been experimentally integrated in the OpenDLib
[CP02, CP03] search service. This particular application is described in Section 5.5.
Before introducing the theory and the services in detail, in the next section we
discusses the limitations of the virtualization techniques implemented by the current
search services that exploit only syntactic relations.

5.1.1 Motivations

In experimenting digital libraries built by re-using content from heterogeneous sources,
we have often encountered situations in which the users could not formulate queries
that express their needs and the system was not able to process them properly.

Let us consider a simple DL in which the provider of the information source IS1

publishes the following metadata records:

Subject Subject.ACM

doc1 text processing unspecified
doc2 unspecified I.7.1 Document and Text Editing

According to the internal rules of the DL institution, the authors can describe
their documents by assigning either a code extracted from the ACM Computing
Classification System to the field Subject.ACM or a free term to the more generic
field Subject. The records produced are processed by the system in order to extracts
the information required to process the user queries.

Imagine now that the user John Smith wants to retrieve exactly those documents
that have been described with Subject equal to “text processing”. The trivial solu-
tion is to formulate the following query: “Subject = text processing”. The search
service has only to match the query condition against the information extracted
from the metadata records and it usually replies including doc1 and excluding doc2.

Consider now another user of the same DL, Henry Stamp, who is interested in
retrieving all the documents about the topic that his community of interest refers as
“text processing”. Using a traditional search service, this user cannot do anything

110 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

better than formulate the same query as that expressed by John Smith. However,
the result expected in this case is different. It should include: (i) the documents re-
trieved under the previous more strict interpretation, (ii) the documents whose Sub-
ject contains values morphologically and syntactically close to the query term, e. g.
“textual processing” and “documents and text processing”, and (iii) the documents
whose more specific subject, i. e. Subject.ACM, contains values that are semantically
close to the query term. Under this interpretation the system should, therefore, re-
turn not only doc1, but also doc2 since its more specific subject field, Subject.ACM,
contains I.7.1 “Documents and Text Editing” which is an ACM subcategory of I.7
“Documents and Text Processing”.

While the majority of DL search services that support an interpretation of the
query based on automatically extracted morphological and syntactic relationships,
e. g. stemming and query expansion, are able to return the documents described in
(i) and (ii)) above, they are not capable to exploit the semantic relationships that
exist among the different concepts represented by the metadata fields. This means
that the current search services do not usually return documents, like doc2, which
are indexed under metadata fields that are specialisation of those indicated in the
query, i. e. subject.ACM.

Despite this example may seem very trivial, it must be remembered that in order
to satisfy the requirements of the second user, the query must find doc2 which has
been classified using a narrower subject field but a broader classification term. When
manipulating complex metadata formats and sophisticated categorisation schemas
this kind of document identification is not a simple task.

The limitation described above becomes more incisive in VDLs where the infor-
mation space is composed by multiple information sources, each describing its doc-
uments with different metadata formats. In order to achieve search interoperability
over a set of information sources, current DLs often require them to publish their
metadata in a shared format, e. g. Dublin Core (DC) [DC]. To adhere to the rules
of the DL, each information source provider maps its local format into the shared
format. This mapping is done locally by people that have a clear understanding
of the semantics associated with the original metadata fields. This information is
never transmitted to the DL system that only receives the metadata records in the
shared format. The query interpretation made by the system is thus defined without
taking into account the local descriptive interpretations. This behaviour negatively
influences the quality of the DL search service.

To exemplify this point, let us add another information source, IS2, to our
example. It maintains a set of audio-video (A/V) documents of university courses
described as in the following example:

CourseArea CourseTopic AudioVideoSubject

doc3 Computing Methodologies Text processing Document Management

where AudioVideoSubject is the subject of the A/V document, i. e. the subject of
a specific course lecture, CourseTopic is the topic of the course, and CourseArea

5.2. THE ARCHITECTURAL FRAMEWORK 111

is the course research area. Following this semantics, the A/V document, being a
course element, which belongs to a specific area, is also implicitly classified under
the subject of the course and the subject of the area.

Suppose now that DC is the common metadata format. The institution that
maintains IS1 maps both Subject and Subject.ACM into dc:subject, whereas the
institution that maintains IS2 maps only AudioVideoSubject to this field. Under
this hypothesis, any query interpretation provided by the search service is unable
to return doc3 as a result of the query presented at the beginning of this section
even if the query term exactly matches the subject of the course which the video is
a part of.

The situations exemplified above, and many others, convinced us that the search
functionality implemented so far by DLs are too strict especially if it is applied
to the VDL framework where the heterogeneity and the needs for interoperability
are stressed. Search services that better satisfy the user needs must be provided.
We propose an approach, which can be implemented with reasonable costs, able
to exploit, as far as possible, the existing semantic mapping among the document
description terminologies.

5.2 The Architectural Framework

Figure 5.1 shows a logical DL architectural framework for our approach. The infor-
mation space of the DL is built by aggregating a number of independent heteroge-
neous Information Sources IS1, IS2, . . . , ISn that disseminate the metadata records
of their information objects in one or more formats. These records are indexed by
specific services, the Index Services. For simplicity, we assume that records of differ-
ent Information Sources in different formats are indexed by separate Index services1.
An Index processes queries formulated according to the same terminology, i. e. meta-
data format and controlled vocabularies, used for the indexed records. We assume
that this terminology and the corresponding semantic descriptions are known to the
Index, i. e. the Index has access to the schemas that specify the metadata format
and the controlled vocabularies associated with the metadata fields. For simplic-
ity, we also assume that all the Index services accept the same query structure and
relational operators.

An Index service supports different interpretations of the same query condition.
Each interpretation is characterised by a different level of precision given to the
condition. For example, the different intended semantics given by John Smith and
Henry Stamp in the query “subject = text processing” mentioned in the previous
section are two different interpretations of this condition.

The DL user queries are actually not directly evaluated by the Index services
but are first processed by the Query Mediator service. The role of this service

1This assumption is only given for simplicity of exposition, it does not compromise the generality
of the solution.

112 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

M edi ati on
A ccess I n d e x 1

I S 1I n t e r p r e t a t i o nQ u e r yt e r m i n o l o g y I n d e x 2
I S 2I n t e r p r e t a t i o nQ u e r yt e r m i n o l o g y I n d e x n

I S nI n t e r p r e t a t i o nQ u e r yt e r m i n o l o g y. . .

Q u e r y M e d i a t o r
a 1 Q u e r yt e r m i n o l o g ya 2 a n. . . a r t i c u l a t i o n s . . .

Figure 5.1: The Distributed Search Architectural Framework

is to hide the heterogeneity caused by the great number of Index Services. The
Query Mediator serves search operations formulated in terms of the query terminol-
ogy that is shown to the user2. It first maps the queries received by the user into
queries formulated in the terminology of the underlying information sources, then
it dispatches them to the Index services and, finally it merges the results received.
The mapping is done by exploiting the knowledge of specific semantic relationships
between the handled terminology and the local indexed terminologies. These rela-
tionships are defined by the Information Source providers and they are stored by the
corresponding Index Services. It is worth noting the difference in terms of require-
ments for engagement that our approach imposes with respect to other approaches.
Protocols like OAI-PMH [OAI], a simple protocol underlying the Open Archive Ini-
tiative [LV01]3, require that any information source provides at least a common DC
metadata description of its items. In order to adhere to this protocol, each infor-
mation source provider must first define the mapping between its local metadata
format and DC, and then generate the DC records. Our approach makes less de-
mand on the information source providers than OAI-PHM since it only requires the
mapping, while it does not need the explicit generation of the records in the agreed
common format. The Query Mediator, similarly to the Index, can support different
mapping modalities. The choice of which mapping to apply depends on the query
interpretation that is required by the user.

The next two sections introduce our approach from the theoretical point of

2A DL can also offer search operations defined on more than one terminology. This situation
can be handled by introducing a Query Mediator for each of these terminologies

3The focus of this protocol is “open” the archives from the architectural perspective defining
and promoting interfaces that facilitate the availability of content from a variety of providers.

5.3. THE INDEX 113

view. The solution proposed is based on the theory introduced by Tzitzikas et
Al. in [TCS01]. Following the terminology introduced by Tzitzikas et al., we pro-
pose a theory that applies to our framework composed by metadata schemas and
controlled vocabularies. In particular, we specify the different query interpretations
that can be supported by the Index and Query Mediator services and how they are
obtained by the existing terminology mappings.

5.3 The Index

Each information source uses a metadata schema to describe its own documents.
This metadata schema is a pair (F ,≤F) where F is a set of schema fields and ≤F is
a subsumption relation over F4 that models the existing specialisation relationship
among these fields. For example in Figure 5.2, Subject.ACM ≤F Subject means
that Subject.ACM is a more specialised property than Subject. Each field f of
the schema is populated via an appropriate terminology defined as a pair (Vf ,≤Vf

)
where Vf is a set of terms and ≤Vf

is a subsumption relation over Vf that models the
existing specialisation relationship among these terms. For example, in Figure 5.2
Multimedia DL ≤Vf

DL means that Multimedia DL is a more specialised term than
DL. In certain cases the latter assumption is too strong. A field is often populated via
free terms or free text. In these cases, the terminology can easily and automatically
be obtained considering that each term is in relation only with itself or, if we are
going to use stemming, we can assume that the term t is subsumed by the stemmed
term t′.

Digital Library

Multimedia DL
Digital Library

Service System

Library

Information

System

DL
~

Terminology

Subject

Audio.Subject
Subject.ACM

Description
Research Area

Metadata Schema

Figure 5.2: A Metadata Schema and a Terminology

Combining the metadata schema with the set of terminologies Vf
5 that the Index

uses, one for each field of the schema, we can define the query terminology that the
Index “speaks” as a pair (C,≤C), where C is a set of conditions or pairs (f, v) such
that f ∈ F , v ∈ Vf . The latter pair models the boolean condition “field f equals
term v”. For example, a valid condition for the Index in Figure 5.2 is (Subject,
Digital Library) representing the information need expressed as “the documents
whose Subject is Digital Library”.

4Each subsumption relation ≤ is a reflexive and transitive relation over the reference universe.
We write o1 ∼ o2 meaning that the two objects are equivalent w. r. t. ≤ if both o1 ≤ o2 and o2 ≤ o1.

5We will use Vf instead of (Vf ,≤Vf
) were no confusion arises.

114 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

The subsumption relation over C, ≤C, models the specialisation among these
conditions and is formally defined as follows:

Definition 5.3.1 (Subsumption relation) Let (F ,≤F) be a metadata schema.
Let (Vf ,≤Vf

) be the terminology for the field f of the schema. Given c1, c2 ∈ C
where ci = (fi, vi), fi ∈ F and vi ∈ Vfi

we define c1 ≤C c2 ⇐⇒ f1 ≤F f2 ∧ v1 = v2.

Considering Figure 5.2 we are saying, for example, that (subject.ACM, DLSS) ≤C

(Subject, DLSS) or that (Audio.Subject, Library) ≤C (Research Area, Library)
meaning that the first condition is a specialisation of the second one in each of the
exemplified cases.

As ≤C is a subsumption relation over C we can define the equivalence relation
w. r. t. ≤C as c1 ≤C c2 and c2 ≤C c1 and we will write c1 ∼C c2. Theorem 5.3.1 follows
from Definition 5.3.1:

Theorem 5.3.1 (Equivalence among conditions) For each c1, c2 ∈ C where ci =
(fi, vi)

c1 ∼C c2 ⇐⇒ f1 ∼F f2 ∧ v1 = v2

Proof. For each pair of objects o1, o2 ∈ U , where U is a generic set of object, and
subsumption relation ≤ over U hold that o1 ∼ o2 ⇐⇒ o1 ≤ o2 ∧ o2 ≤ o1. As a
consequence c1 ∼C c2 ⇐⇒ c1 ≤C c2 ∧ c2 ≤C c1. From Definition 5.3.1 follows that
c1 ≤C c2 ⇐⇒ f1 ≤F f2 ∧ v1 = v2 and c2 ≤C c1 ⇐⇒ f2 ≤F f1 ∧ v2 = v1. Observing
that f2 ≤F f1 ∧ f1 ≤F f2 ⇐⇒ f1 ∼F f2 we conclude c1 ≤C c2 ∧ c2 ≤C c1 ⇐⇒
f1 ∼F f2 ∧ v1 = v2.

In the remaining text we will write ci ≁C cj meaning that ci is not equivalent to cj,
i. e. ¬(ci ∼C cj).

A query for the Index is either a simple condition or a combination of conditions
using the classical connectives ∧,∨,¬ and is formally defined as follows:

Definition 5.3.2 (Query) Let C be a query terminology, and c ∈ C. A query is
any expression derived by the following BNF grammar:

Q ::= c | Q ∧ Q | Q ∨ Q | ¬Q

For example, a simple query can be (subject, Digital Library) ∨ (Description,
Library).

Definition 5.3.3 (Interpretation) An interpretation I of a query terminology C
is a function I : C → 2Obj that associates each condition of C with a set of objects
of the domain.

Each Index has an interpretation I that is the result of the indexing phase. Table 5.1
presents an interpretation of the Index presented in Figure 5.26.

6For simplicity, we will use the same terminology to populate all the schema fields.

5.3. THE INDEX 115

Field Value Documents

Subject Digital Library {d1}
DL {d2}
Information System {d5}
Library {d6}

Subject.ACM DLSS {d3}
Audio.Subject Information System {d4}

Library {d4}
Research Area DL {d7}

DLSS {d8}
Information System {d9}
Library {d9}
Digital Library {d10}

Description DL {d7, d11}
Multimedia DL {d8}
Information System {d9}
Library {d9}

Table 5.1: A Stored Interpretation

The interpretation that an Index uses for query evaluation must comply with
the structure of the query terminology (i. e. ≤C). This requirement is expressed by
introducing the notion of model.

Definition 5.3.4 (Model) An interpretation I is a model of a query terminology
if ∀ c1, c2 ∈ C where ci = (fi, vi), c1 ≤C c2 ⇒ I(c1) ⊆ I(c2) and f1 = f2 ∧ v1 ≤Vf

v2 ⇒ I(c1) ⊆ I(c2).

For example, suppose that an Index has indexed a set of documents under the
condition c1 and another set of documents under the condition c2 and no document
under the condition c that subsumes the previous two conditions. This interpretation
is acceptable as we can “respect” the structure of ≤C by defining the interpretation
of c as the union of the set of documents indexed under c1 and the set of those
indexed under c2. Note that it is always possible to generate a model from an
interpretation by extending the interpretation of the conditions that do not comply
with the terminology. The smallest model generated from an interpretation is the
one used to answer queries.

For technical reasons we assume that every query terminology C contains two
special queries, the top query ⊤C and the bottom query ⊥C . These two queries have
the following properties: the top query subsumes every other query, i. e. ∀c ∈ C :
c ≤C ⊤C , while the bottom query is strictly subsumed by every other query different
from ⊤C and ⊥C, i. e. ∀c ∈ C : c 6= ⊤C ∧ c 6= ⊥C ⇒ ⊥C <C c. Moreover we assume
that every model I of C satisfies the condition I(⊥C) = ∅. For the same reason, we
assume that (a) every metadata schema F contains the special fields top field ⊤F

and bottom field ⊥F , and (b) every terminology Vf contains the same special fields
top term ⊤V and bottom term ⊥V .

As there may be several models of C, we assume that each Index is able to
process queries from one or more models of its interpretation. In this paper, we will
use two families of models for query processing, the sure evaluation models and the

116 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

possible evaluation models. In order to define these models formally we need two
preliminary definitions: the first one allows us to follow the subsumption relation
over the fields of the metadata schema, while the second one allows to follow the
subsumption relation over the terminologies.

Definition 5.3.5 (Tail and Head) Given a condition c ∈ C, c = (f, v), we define

tail(c) = {c′ ∈ C|c′ ≤C c}

head(c) = {c′ ∈ C|c ≤C c′}

Intuitively, tail(c) and head(c) contain c and, respectively, all the conditions that
are stricter than c and wider than c according to the query terminology and,
in particular, to the subsumption relations over the schema fields. For exam-
ple, considering Figure 5.2, tail(subject, DL)={(subject, DL), (subject.ACM, DL),
(Audio.subject, DL)} while head(subject, DL)={(subject, DL), (Research Area,
DL), (Description, DL)}.

These definitions can be reformulated considering the Definition 5.3.1 as follows:

tail(c) = {c′ ∈ C|f ′ ≤F f ∧ v′ = v}

head(c) = {c′ ∈ C|f ≤F f ′ ∧ v = v′}

Definition 5.3.6 (Value models) Given an interpretation I of C and a condition
c ∈ C, c = (f, v), we define three kinds of value models for c generated by I as
follows:

IV
∼(c) =

⋃

{

I(c′)|f = f ′ ∧ v′ ∼Vf
v
}

IV
≤(c) =

⋃

{

I(c′)|f = f ′ ∧ v′ ≤Vf
v
}

IV
≥(c) =

⋂

{

IV
≤(c′)|f = f ′ ∧ v ≤Vf

v′ ∧ v ≁Vf
v′

}

The above interpretations correspond to three different ways in which the Index can
evaluate a condition that involves the field f using the stored interpretations and
the semantic information about the terminology. These interpretations correspond
to the set of documents considered indexed under conditions involving the field f

and, respectively, the value v or values equivalent to v (IV
∼), the value v or values

subsumed by v (IV
≤), and all the values that subsume v (IV

≥).

Theorem 5.3.2 (Relationship among value models) If I is a model for a query
terminology then IV

∼, IV
≤ and IV

≥ are models and IV
∼ ⊆ IV

≤ ⊆ IV
≥.

Proof. The proof that IV
∼, IV

≤, IV
≥ are models is trivial and follows from Defini-

tion 5.3.6.

5.3. THE INDEX 117

Let c1 = (f1, v1) and c2 = (f2, v2) and c1 ≤C c2, i. e. f1 ≤F f2 ∧ v1 = v2:

IV
∼(c1)

def
=

⋃
{

I(c′)|f1 = f ′ ∧ v′ ∼Vf
v1

}

⊆
⋃

{

I(c′)|f2 = f ′ ∧ v′ ∼Vf
v2

} def
= IV

∼(c2) as f1 ≤F f2

IV
≤(c1)

def
=

⋃
{

I(c′)|f1 = f ′ ∧ v′ ≤Vf
v1

}

⊆
⋃

{

I(c′)|f2 = f ′ ∧ v′ ≤Vf
v2

} def
= IV

≤(c2) as f1 ≤F f2

IV
≥(c1)

def
=

⋂
{

IV
≤(c′)|f1 = f ′ ∧ v1 ≤Vf

v′ ∧ v1 ≁Vf
v′

}

⊆
⋂

{

IV
≤(c′)|f2 = f ′ ∧ v2 ≤Vf

v′ ∧ v2 ≁Vf
v′

} def
= IV

≥(c2) as f1 ≤F f2

Let c1 = (f1, v1) and c2 = (f2, v2) and f1 = f2 ∧ v1 ≤Vf
v2:

IV
∼(c1)

def
=

⋃
{

I(c′)|f1 = f ′ ∧ v′ ∼Vf
v1

}

⊆
⋃

{

I(c′)|f2 = f ′ ∧ v′ ∼Vf
v2

} def
= IV

∼(c2) as v1 ≤Vf
v2.

IV
≤(c1)

def
=

⋃
{

I(c′)|f1 = f ′ ∧ v′ ≤Vf
v1

}

⊆
⋃

{

I(c′)|f2 = f ′ ∧ v′ ≤Vf
v2

} def
= IV

≤(c2) as v1 ≤Vf
v2.

IV
≥(c1)

def
=

⋂
{

IV
≤(c′)|f1 = f ′ ∧ v1 ≤Vf

v′ ∧ v1 ≁Vf
v′

}

⊆
⋂

{

IV
≤(c′)|f2 = f ′ ∧ v2 ≤Vf

v′ ∧ v2 ≁Vf
v′

} def
= IV

≥(c2) as v1 ≤Vf
v2.

In order to prove that IV
∼ ⊆ IV

≤ we can just observe that ∀c = (f, v),
{

c′|f = f ′ ∧ v′ ∼Vf
v
}

⊆
{

c′|f = f ′ ∧ v′ ≤Vf
v
}

and that I is a model.

Let us prove that IV
≤ ⊆ IV

≥. IV
≥(c)

def
=

⋂
{

IV
≤(c′)|f = f ′ ∧ v ≤Vf

v′ ∧ v ≁Vf
v′

}

.
As IV

≤ is a model, it holds that ∀c′, IV
≤(c) ⊆ IV

≤(c′), so we can conclude IV
≤ ⊆ IV

≥.

By exploiting the definitions given above, we can now define the sure evaluation
model and the possible evaluation model of the stored interpretation I. These are
obtained taking into account the subsumption relations among the schema fields
and the subsumption relations among terminologies.

Definition 5.3.7 (Sure models) Given an interpretation I of C we define three
kinds of sure evaluation models of C generated by I as follows:

I−
∼ (c) =

⋃

{

IV
∼(c′)|c′ ∈ tail(c)

}

I−
≤ (c) =

⋃

{

IV
≤(c′)|c′ ∈ tail(c)

}

I−
≥ (c) =

⋃

{

IV
≥(c′)|c′ ∈ tail(c)

}

Theorem 5.3.3 (Relationship among sure models) If I is a model then I−
∼ ,

I−
≤ and I−

≥ are models and I−
∼ ⊆ I−

≤ ⊆ I−
≥ .

Proof. The proof that the sure evaluation models I−
∗ are models is quite trivial.

Let c1 = (f1, v1) and c2 = (f2, v2) and c1 ≤C c2, i. e. f1 ≤F f2 ∧ v1 = v2:

I−
∗ (c1)

def
=

⋃
{

IV
∗ (c′)|c′ ∈ tail(c1)

}

⊆
⋃

{

IV
∗ (c′)|c′ ∈ tail(c2)

} def
= I−

∗ (c2) as tail(c1) ⊆
tail(c2).

118 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

Let c1 = (f1, v1) and c2 = (f2, v2) and f1 = f2 ∧ v1 ≤Vf
v2:

I−
∗ (c1)

def
=

⋃
{

IV
∗ (c′)|c′ ∈ tail(c1)

}

⊆
⋃

{

IV
∗ (c′)|c′ ∈ tail(c2)

} def
= I−

∗ (c2) as tail(c1) ⊆
tail(c2).

The proof that I−
∼ ⊆ I−

≤ ⊆ I−
≥ is a trivial consequence of their definitions and of

Theorem 5.3.2 that states IV
∼ ⊆ IV

≤ ⊆ IV
≥.

Definition 5.3.8 (Possible models) Given an interpretation I of C we define
three kinds of possible evaluation models of C generated by I as follows:

I+
∼ (c) =

⋂

{

I−
∼ (c′)|c′ ∈ head(c) ∧ c′ ≁C c

}

I+
≤ (c) =

⋂

{

I−
≤ (c′)|c′ ∈ head(c) ∧ c′ ≁C c

}

I+
≥ (c) =

⋂

{

I−
≥ (c′)|c′ ∈ head(c) ∧ c′ ≁C c

}

Theorem 5.3.4 (Relationship among possible models) If I is a model then
I+
∼ , I+

≤ and I+
≥ are models and I+

∼ ⊆ I+
≤ ⊆ I+

≥ .

Proof. In order to prove that the possible evaluation models I+
∗ are models we

can just observe that ∀c1 = (f1, v1), c2 = (f2, v2), if c1 ≤C c2 ∨ (f1 = f2 ∧ v1 ≤Vf
v2)

then head(c1) ⊆ head(c2).
The proof that I+

∼ ⊆ I+
≤ ⊆ I+

≥ is a trivial consequence of their definitions and of
Theorem 5.3.2 that states IV

∼ ⊆ IV
≤ ⊆ IV

≥.

Theorem 5.3.5 (Relationship among sure and possible models) If I is a model
then the following relationships hold between sure and possible models:

I−
∼ ⊆ I+

∼ I−
≤ ⊆ I+

≤ I−
≥ ⊆ I+

≥

Proof. All the relationships will be proved in the same way. First of all, we
can observe that possible models are defined in terms of sure models, i. e. I+

∗ (c) =
⋂

{I−
∗ (c′)|c′ ∈ head(c) ∧ c′ ≁C c}. For each c′ ∈ {c′|c′ ∈ head(c) ∧ c′ ≁C c} it holds

that I−
∗ (c) ⊆ I−

∗ (c′) as c ≤C c′, so I−
∗ (c) ⊆ I+

∗ (c).

Table 5.27 shows the interpretation models of our Index that uses the terminology
in Figure 5.2 and the stored interpretation in Table 5.1.

We have stated that an Index stores its interpretation I. Our approach allows
us to observe that, even if the indexing phase is correct, certain documents may not
have been indexed under all the conditions that could apply to them. So, given a
simple query c, we may want the source to be able to answer including either all

7In this table we have used i referring to di of Table 5.1, e. g. 1 is d1.

5.3. THE INDEX 119

Condition I I−
∼ I

−
≤

I
−
≥

I+
∼ I

+

≤

⊥C ∅ ∅ ∅ ∅ ∅ ∅
(Subject,Digital Library) {1} {1,2} {1,2,3} {1,2,3,4} {1,2,7} {1,2,3,7,8}
(Subject,DL) {2} {1,2} {1,2,3} {1,2,3,4} {1,2,7} {1,2,3,7,8}
(Subject,Info. Sys.) {5} {4,5} {1,2,3,4,5} {1,2,3,4,5,6} {4,5,9} {1,2,3,4,5,7,8,9}
(Subject,Library) {6} {4,6} {1,2,3,4,6} {1,2,3,4,5,6} {4,6,9} {1,2,3,4,6,7,8,9}
(Subject.ACM,DLSS) {3} {3} {3} {3} {3} {3}
(Audio.Subject,Info. Sys.) {4} {4} {4} {4} {4,5} {1,2,3,4,5}
(Audio.Subject,Library) {4} {4} {4} {4} {4,6} {1,2,3,4,6}
(Research Area,DL) {7} {1,2,7,10}{1,2,3,7,8,10} {1,2,3,7,8,9,10} {1,2,7,10,11}{1,2,3,7,8,10,11}
(Research Area,DLSS) {8} {3,8} {3,8} {3,8} {3,8} {3,8}
(Research Area,Info. Sys.) {9} {4,5,9} {1,2,3,4,5,7,8,9,10}{1,2,3,4,5,6,7,8,9,10}{4,5,9} {1,2,3,4,5,7,8,9,10,11}
(Research Area,Library) {9} {4,6,9} {1,2,3,4,6,7,8,9,10}{1,2,3,4,5,6,7,8,9,10}{4,6,9} {1,2,3,4,6,7,8,9,10,11}
(Research Area,Dig. Lib.) {10} {1,2,7,10}{1,2,3,7,8,10} {1,2,3,4,7,8,9,10} {1,2,7,10,11}{1,2,3,7,8,10,11}
(Description,Multimedia DL){8} {8} {8} {1,2,3,7,8,11} {8} {8}
(Description,DL) {7,11}{1,2,7,11}{1,2,3,7,8,11} {1,2,3,4,7,8,9,11} {1,2,7,10,11}{1,2,3,7,8,10,11}
(Description,Info. Sys.) {9} {4,5,9} {1,2,3,4,5,7,8,9,11}{1,2,3,4,5,6,7,8,9,11}{4,5,9} {1,2,3,4,5,7,8,9,10,11}
(Description,Library) {9} {4,6,9} {1,2,3,4,6,7,8,9,11}{1,2,3,4,5,6,7,8,9,11}{4,6,9} {1,2,3,4,6,7,8,9,10,11}

Table 5.2: Interpretations of an Information Source Index

the documents that are known to be indexed under c or all the documents that are
possibly indexed under c. In the first case we are considering the sure evaluation
model while in the latter case we are considering the possible evaluation model.

Referring to Definition 5.3.2, we define the query answering as follows:

Definition 5.3.9 (Sure and Possible Query answering) Let q be a query over
C and let I be an interpretation of C. The sure answer I−

≤ (q) and the possible answer
I+
≤ (q) are defined as follows:

I−
≤(c) =

⋃

{

IV
≤(c′)|c′ ∈ tail(c)

}

I−
≤ (q ∧ q′) = I−

≤ (q) ∩ I−
≤(q′)

I−
≤ (q ∨ q′) = I−

≤ (q) ∪ I−
≤(q′)

I−
≤ (¬q) = I−

≤ (q)

I+
≤(c) =

⋂

{

I−
≤ (c′)|c′ ∈ head(c) ∧ c′ ≁C c

}

I+
≤ (q ∧ q′) = I+

≤ (q) ∩ I+
≤(q′)

I+
≤ (q ∨ q′) = I+

≤ (q) ∪ I+
≤(q′)

I+
≤ (¬q) = I+

≤ (q)

where we use I to indicate the set-complement operation on the set I. All the other
sure and possible answers for the other models, i. e. I−

∼ , I−
≥ , I+

∼ and I+
≥ , are defined

in a similar way.

Each of the above query answering modes represents a modality of query processing.
Note that the sure answer is appropriate for users that focus on precision while the
possible answer is for users that focus on recall. Moreover, in both the family
of sure answers and that of possible answers, we can distinguish more precision-
oriented responses, i. e. I−

∼ , versus more recall-oriented responses, i. e. I−
≥ . An Index

that stores an interpretation, like the one given in Table 5.1, and that has access

120 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

to the semantics of the metadata schema and its controlled vocabularies, can thus
potentially offer a range of additional interpretations, like the ones given in Table 5.2,
to any of its clients to express their information needs more precisely.

For example, expressing the query (Subject, DL) a user could be interested
in those documents that have been described using the field Subject, or a more
specialised one, and the term DL or an equivalent term, so this user is asking for
I−
∼ . Another user expressing the same query could be interested, instead, in those

documents that have been described using the field Subject, or a more generic field,
and the term DL or an equivalent term, so this user is asking for I+

∼ . In the case
of Table 5.2, the Index will return the set of documents {d1, d2} to the first user
and the set of documents {d1, d2, d7} to the second user. Note that while d1 and d2

are indexed under the condition (subject, DL) and (subject, Digital Library),
respectively, the document d7 is indexed under a pair of conditions, (Research Area,
DL) and (description, DL), more general but pertinent to the one expressed by the
user.

5.4 The Query Mediator

The previous section has described which are the potential query evaluation choices
of an Index service that exploits semantic information. Having clarified this point, we
can now examine the more general problem of understanding which query evaluation
choices can be supported by a Query Mediator service. In what follows we will
assume that such kind of mediator dispatches queries to Index services that behave
as described in the previous section.

Abstractly a Query Mediator service can be considered as an Index service that
virtually stores all the objects of the underlying sources and supplies a query lan-
guage that satisfies the needs of its users community.

However, there is an important difference between a Query Mediator and an
Index: the Query Mediator does not store explicitly any interpretation of the in-
formation space. Such interpretations are maintained by the Index services. The
Query Mediator only stores an articulation for each source, i. e. a set of relationships
among the terminology of the Mediator and the terminology of the Index.

A Query Mediator is formally defined as follows:

Definition 5.4.1 (Query Mediator) A Query Mediator over n Index services
I1, . . . , In, such that Ii = (Ci,≤Ci

), consists of:

1. a query terminology (CM ,≤CM
) and

2. a set of articulations ai, one for each Index Ii; each articulation ai is a sub-
sumption relation over CM ∪ Ci which contains:

• a subsumption relation, �i
F , over FM ∪ F i, i. e. a set of relationships

among the Mediator metadata schema and the Index metadata schema,

5.4. THE QUERY MEDIATOR 121

• a set of subsumption relations, �i
Vf

, over VM
f ∪V i

f ′, i. e. a set of relation-
ships among each field terminology of the Mediator and the corresponding
ones in the Index. There exists one of such relation for each pair of (Me-
diator field terminology, Index field terminology).

For simplicity, we introduce a special subsumption relation between Mediator and
Index field terminologies, Πf , that is a short-cut to indicate that every term of the
first terminology is mapped into the same term of the second terminology. In such
case we impose that V i

f ′ = VM
f , i. e. the terminology of the Index is the same as that

of the Mediator, and �i
F is defined so that for each v ∈ V i

f ′ and v′ ∈ VM
f , v ∼i

Vf
v′ if

and only if v = v′, i. e. the term on the Mediator is equivalent to the same term of
the Index w. r. t. the articulation.

The Mediator query terminology is defined similarly to the Index terminology,
i. e. CM is a set of pairs (f, v) such that f ∈ FM , v ∈ VM

f , and ≤CM
is a subsumption

relation over CM . Moreover each VM
f is a terminology, i. e. a pair (VM

f ,≤Vf
) where

≤Vf
is a subsumption relation over VM

f .

Subject

Audio.Subject
Subject.ACM

Research

Area

Description

subject

1.5 Keywords

9 Classification

Query Mediator
Index
1
 Index
2

~

a
1
 a
2

~

~

Digital Library

Multimedia

DL

Digital Library

Service System

Library
Information

System

DL
 ~

9.1 Description
 9.4 Keyword

H.3.7 Digital

Libraries

~

H.3 Information

Storage &

Retrieval

H.3.6 Library

Automation

H Information

Systems

Free terms

TT
subject

Figure 5.3: A Query Mediator over two Indexes

Figure 5.3 shows an example of a Query Mediator that operates over two In-
dexes. This mediator uses the DC metadata schema and the ACM Computing
Classification System as controlled vocabulary for the field subject8. The Index
services in Figure 5.3 are Index1, that has been introduced in the previous section,
and Index2, an Index service that uses the LOM metadata schema [LOM] and free
terms to populate the fields shown in the figure.

The query interpretations that are supported by the Query Mediator are defined
in terms of both the interpretations stored by the Index services and the existing
articulations. In order to identify these interpretations we proceed in the following
way:

8For brevity the example shows only a partial view of the Query Mediator.

122 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

1. we define a query ci for Ii as a translation of each c ∈ CM obtained using ai,
i = 1, . . . , n;

2. we evaluate ci at Ii, i = 1, . . . , n;

3. finally, we define I(c) as the union of the answers to queries ci returned by the
Index services.

Several possible translations can be applied. In the following we show the possible
ways to perform the translation. In order to define these translations formally we
need some preliminary definitions, i. e. the concepts of head, body and tail w. r. t. an
articulation and the concept of approximations over values.

Definition 5.4.2 (Tail, Head and Body w. r. t. an Articulation) Given a con-
dition c ∈ CM where c = (f, v) and an articulation ai we define

taili(c) =
{

(f ′, v′)|f ′ �i
F f ∧ v = v′ ∧ f ′ ∈ F i

}

bodyi(c) =
{

(f ′, v′)|f ′ ∼i
F f ∧ v = v′ ∧ f ′ ∈ F i

}

headi(c) =
{

(f ′, v′)|f �i
F f ′ ∧ v = v′ ∧ f ′ ∈ F i

}

Intuitively, taili(c), bodyi(c), and headi(c) contain, respectively, all the conditions in
the Index query terminology that are narrower than c, equivalent to c and broader
than c w. r. t. the articulation. The conditions above involve Index metadata fields
that are, respectively, subsumed by, equivalent to or that subsumes the field used
on the Query Mediator w. r. t. the semantic mapping among the Mediator metadata
schema and Index metadata schema.

Definition 5.4.3 (Value Approximations w. r. t. an Articulation) Given a con-
dition c ∈ CM where c = (f, v) and an articulation ai. Let

tildei(c) =
{

c′ ∈ Ci|f
′ = f ∧ v ∼i

Vf
v′

}

loweri(c) =
{

c′ ∈ Ci|f
′ = f ∧ v �i

Vf
v′

}

upperi(c) =
{

c′ ∈ Ci|f
′ = f ∧ v′ �i

Vf
v ∧ v′

≁Vf
v
}

we define three kinds of approximations over values:

ci
∼ =

∨

tildei(c)

ci
≤ =

∨

loweri(c)

ci
≥ =

∧

{

c′i≤|c
′ ∈ upperi(c)

}

5.4. THE QUERY MEDIATOR 123

The above approximations correspond to three different ways in which a condition
on a field can be reformulated into a set of conditions that take into account the
semantic relationships among the Query Mediator field terminology and the Index
field terminology.

Now we are able to define formally the precise approximations, the lower approx-
imations and the upper approximations of a condition ci ∈ CM . Roughly speaking
the precise approximation of ci w. r. t. aj is the disjunction of all the conditions in
Cj that are equivalent to ci in aj , ci

∼; the second one, ci
≤, is the disjunction of all

the conditions in Cj that ci subsume in aj; while the last one, ci
≥, is the conjunction

of all the conditions that subsume ci in aj. These families of approximations are
formally defined as follows:

Definition 5.4.4 (Precise Approximations w. r. t. an Articulation) Let M =
(CM ,≤CM

, a1,

. . . , an) be a mediator over sources S1, . . . , Sn. Given a condition c = (f, v) ∈ CM

we define three kinds of precise approximations of c w. r. t. ai as:

ci
p∼

=
∨

{

ci
∼|c

′ ∈ bodyi(c)
}

ci
p≤

=
∨

{

ci
≤|c

′ ∈ bodyi(c)
}

ci
p≥

=
∨

{

ci
≥|c

′ ∈ bodyi(c)
}

Definition 5.4.5 (Lower Approximations w. r. t. an Articulation) Let M =
(CM ,≤CM

, a1,

. . . , an) be a mediator over sources S1, . . . , Sn. Given a condition c = (f, v) ∈ CM

we define three kinds of lower approximations of c w. r. t. ai as:

ci
l∼

=
∨

{

ci
∼|c

′ ∈ taili(c)
}

ci
l≤

=
∨

{

ci
≤|c

′ ∈ taili(c)
}

ci
l≥

=
∨

{

ci
≥|c

′ ∈ taili(c)
}

Definition 5.4.6 (Upper Approximations w. r. t. an Articulation) Let M =
(CM ,≤CM

, a1,

. . . , an) be a mediator over sources S1, . . . , Sn. Given a condition c = (f, v) ∈ CM

we define three kinds of upper approximations of c w. r. t. ai as:

ci
u∼

=

{
∧

{

c′il∼|c
′ ∈ headi(c) ∧ c′ ≁ c

}

if headi
≤(c) \ c 6= ∅

ci
l∼

otherwise

The other upper approximations ci
u≤

and ci
u≥

are defined in a similar way changing
accordingly the kind of lower approximations to use.

124 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

Here are reported some examples of approximations for the mediator shown in Fig-
ure 5.39:

(DC.subject, H.3.7)1
p∼

= (subject, Digital Library) ∨

(subject, DL)

(DC.subject, H.3.7)2
l∼

= (1.5, H.3.7) ∨ (9, H.3.7) ∨

(9.1, H.3.7) ∨ (9.2, H.3.7)

The approximations are just queries to the information source Si and can have
sure (three kinds) or possible (three kinds) answer as shown in Section 5.3. For
this reason we can define at least 54 possible interpretations I for the mediator10.
We denote these interpretations using this formalism Ia,b where a is the kind of
approximation that the mediator uses and b is the kind of answer from the source,
e. g. Iu≤,+≤

means that the mediator uses the upper approximation with ≤, while
the sources reply following the possible model I+

≤ . Note that these approximations
are defined as the set union over the source interpretations w. r. t. the mediator
approximation, e. g. Iu≤,+≤

(c) =
⋃n

i=1 I+
≤ (ci

u≤
).

As the mediator can be considered an information source it can give either one
of the three sure answers or one of the three possible answer for each of the above
interpretations, i. e. we can have 324 possible modes under which the mediator can
operate. We denote these operations modes using this formalism Ic

a,b where a is the
kind of approximation that mediator uses, b is the kind of answer from the source
and c is the answer that the mediator produces, e. g. I

+≤

u≤,+≤
means that the mediator

uses the upper approximation with ≤ and replies following the possible model with
≤ while the sources reply following the possible model I+

≤ .

5.5 Implementation: the Enhanced OpenDLib

Search Service

The approach we have described so from a theoretical point of view has been
exploited for building an advanced search service for the OpenDLib Service Sys-
tem [CP02, CP03].

The OpenDLib architecture of the search service is very similar to the logical one
described in Section 5.2. However, this service does not support any subsumption
between attributes of the metadata format and assumes the standard subsumption
relation between terms and their stems. Moreover, the search functionality over
heterogenous metadata formats is supported thanks to a common metadata format.

9For brevity we have used the code of the fields or the code of a terminology term instead of the
whole value as no confusion arise. Clearly the abbreviated terms must be replaced by the whole
term.

10For simplicity we assume that all the Indexes respond using the same kind of answer.

5.5. IMPLEMENTATION: THE ENHANCED OPENDLIB SEARCH SERVICE 125

One of the on-line DLs powered by the OpenDLib software is called tLibrary.
It manages documents harvested from different ISs. Some of these sources repre-
sent their content using DC, others use the qualified version of this format, others
apply proprietary metadata descriptions. The different semantic interpretations of
the same metadata fields and the presence of a variety of field qualifiers reduce the
quality of the search functionality when heterogeneous information sources are se-
lected by the user, even when all the different metadata descriptions of the content
are indexed.

To overcome this problem we decided to design an experimental search ser-
vice fully based on the illustrated techniques. We needed to (i) easily drive users
in querying both homogeneous and heterogenous information sources, (ii) simply
present how to ask for a more precision-oriented, or recall-oriented, query evalua-
tion, and (iii) hide the complexity of the proposed approach.

Taking into account that our harvested information sources have not used con-
trolled vocabularies, and therefore was not possible to identify subsumption relations
between values, we decided to maintain the support of the standard subsumption re-
lation between terms and their stems. Moreover, we decided to only support the Πf

approximation, i. e. we chose to simplify the approach of the users with the system
loosing the exploitation of the relation among different controlled vocabularies, e. g.
the Dewey Decimal Classification (DDC), the Library of Congress Classification,
etc.

The resulting search service is based on two relation operators11, literal and
contain, and two search functionalities, simple and cross-schema.

The simple search functionality supports query requests on homogeneous in-
formation sources. It allows to choose between two possible query interpretation
models, sure and possible. This means that, for each query, users can now specify
the personalized recall that they think is needed to satisfy their needs. For exam-
ple, the user John Smith, who is confident that he is interested only in documents
that are classified exactly with token “text processing”, can specify the query as
“subject literal text processing”. The second user, Henry Stamp, who searches for
documents about the same token but does not know how they have been classified,
can ask for an interpretation of the query that also takes into account documents
that are classified under the semantically specialized “subject” field, i. e. he can se-
lect the sure interpretation that will return also doc2. Finally, we can consider a
third user, who want to retrieve documents about “digital libraries”, clearly focus-
ing his interest on recall, can specify the query as “subject contain digital libraries”
and select the possible interpretation, implicitly asking for a I+

≥ query answering.
In order to implement this functionality the Index service has been enhanced to
support the sure, I−

∼(c) and I−
≥ (c), and possible, I+

∼ (c) and I+
≥ (c), evaluation models

described in Section 5.3. Preliminary tests demonstrate that we can best manage
field qualifiers using the sure evaluation model if the query has been expressed on

11Using relation operators, the user specifies how the system must interpret the query tokens.

126 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

a field that supports qualifiers, and the possible evaluation model if the query has
been expressed on a qualifier of a field.

The cross-schema search functionality supports requests on heterogenous infor-
mation sources. It allows to choose between three possible query interpretation mod-
els, precise, lower, and upper, that indicate the type of approximation the system ap-
plies to navigate heterogenous metadata schemas. This means that, for each search
request, users can now specify how the system, using the relation among the differ-
ent metadata schemas, must reformulate the user query. Clearly, the lower is more
precision-oriented while the upper is more recall-oriented. In order to implement this
functionality we enhanced the QM service to ingest the mapping schema, which con-
tains the definition of the non-trivial articulations between metadata schemas, and
to support the precise, lower, and upper approximations as defined in Section 5.4. In
particular, we verified the benefits in query processing where the QM applies lower
approximations asking the Indexes to use the sure evaluation models, and where the
the QM applies upper approximations and Indexes use possible evaluation models.

These restrictions on the set of possible combinations mean that a user of tLi-
brary can only ask for six possible interpretations of the query on heterogenous
information sources and four possible interpretations of the query on information
sources that use the same metadata schema. Nevertheless, from the user’s point of
view, the appropriate use of these personalized search evaluations makes it possible
to improve recall without losing search precision.

We are now working to identify other combinations between approximations
and query evaluation models that could help users to satisfy their needs without
increasing too much the complexity of the interaction between users and system.
We also plan to support the articulation between terminologies to offer a second
generation search service over metadata schema and ontologies.

5.6 Related Work

Prior works, mainly in the area of Distributed Information Retrieval (DIR), ad-
dress problems similar to those introduced into this chapter. Actually, in the DIR
area there are three approaches for interoperability and distributed discovery which
differ in the amount of standardization or effort required, i. e. federated approach,
harvesting, and gathering.

In the federated approach a number of organisations agree on a number of spec-
ifications, usually selected from formal standards, in building the services that pro-
vide the data. The problem of establishing a federation is the effort required by each
organization to implement and keep them current with all the agreements. For in-
stance, many libraries have standardized on the Z39.50 protocol to meet the needs for
record sharing and distributed search [Z3903]. This protocol specifies rules allowing
a client to connect, search, request information (about available collections, formats,
and syntaxes), and browse indexes available on the server. Most implementations

5.6. RELATED WORK 127

emphasize searches on bibliographic attributes of MARC catalog records [MAR05]
however, since the protocol is flexible, large, and complex, there exist (i) different
implementations that have different features and (ii) catalogs that can be internally
organized and presented in different ways. All these factors limit the interoperabil-
ity. Dienst is another example of protocol built on top of web technologies to operate
the Networked Computer Science Technical Reference Library (NCSTRL) [DL96].
In this environment, the services forming the library are divided in four categories:
repositories, indexes, collections, and user interface. When a distributed query is
issued, it is broadcasted to all the servers and the results are locally rearranged by
the user interface.

The best current example of harvesting approach is illustrated by the Open
Archive Initiative (OAI) [LV01]. Here, at the root of the technical agreement lies a
distinction between two classes of participants: (i) data providers, i. e. participants
that adopt the OAI technical framework as a means of exposing metadata about
their content, and (ii) service providers, i. e. participants that harvest metadata
from data providers using the OAI protocol and use the metadata as the basis for
value-added services. The initiative promotes the use of the Dublin Core [DC] as
standard metadata format, but community-oriented metadata formats can be used.
In this case the problem of interoperability in providing a search functionality is
shifted on the service providers that still have to deal with different data quality,
semantic interoperability, and duplicate detection.

Gathering is the approach less demanding among those presented. It repre-
sents the mechanism commonly used by web search engines that gather the in-
formation objects via appropriate crawlers and then provide search facilities over
them [WSY+02]. However, this approach suffers the hidden web problem, i. e.
valuable information objects are only accessible through search interface of web-
accessible databases and the traditional crawlers fails in accessing them.

All these approaches suffer, in a different measure, the semantic interoperability
problem. This problem can easily be tackled within a federated approach by adopt-
ing a common standard, even though this results in greater costs in terms of effort
in participating to the federation. In the case of the others two types of methods a
solution for transforming the acquired information objects and the related metadata
into a common format have to be envisaged. The problem, i. e. finding correspon-
dences between information represented in different schemas or format, is known
in literature as schema matching or information integration. It arises in different
contexts, namely each time different information sources are grouped together to
form an homogeneous source to search in as in the case of federated databases,
search engines or virtual digital libraries. The common approach is to transform
queries from the global schema to the local schema while information objects are
transformed from local schema to the global schema. Many efforts exist in au-
tomatizing this process [RB01, Len02]. In particular, a hot-topic is the automatic
discovery and learning of the mapping rules, e. g. [NS05, NF01, DMD+03]. The ma-
jor improvement brought by our approach and its novelty are represented by that

128 CHAPTER 5. DISTRIBUTED SEMANTIC SEARCH

users can influence the way through which the system uses these rules to reply to
queries. Our framework can easily manage mapping rules both manually provided
or dynamically generated.

Finally, a detailed and general purpose comparisons of approaches to interoper-
ability for digital libraries can be found in [PCWGM98].

Chapter 6

Virtual Digital Libraries
Generator

In the previous chapters we focused on dealing with various heterogeneity problems
in reusing the elements of the information space by providing virtual views of them
in order to support their reuse in building virtual digital libraries. As formalised in
our reference model (i) a digital library is made by other resources than information
objects and (ii) behind a digital library there is a digital library system in charge
to implement the perceived digital library. Thus, in order to provide virtual digi-
tal libraries we must be able to aggregate all the components constituting a digital
library system and thus a digital library. The goal of this chapter is to present
the Virtual Digital Libraries Generator, i. e. a service allowing DL Designers to de-
fine the characteristics of the digital libraries they are interested in and partially
replacing the task of the DL System Administrators in implementing such digital
libraries1. We demonstrate the feasibility of the proposed service by providing ex-
amples illustrating the facilities provided and reporting on its exploitation in the
context of the ongoing IST project DILIGENT [DIL].

The chapter is organised as follows. Section 6.1 gives an overview of the pro-
posed approach. Section 6.2 presents the design of the Virtual Digital Libraries
(VDL) Generator introducing its main components. Section 6.3 reports on the log-
ical model governing the behaviour of the service. Section 6.4 introduces the on
going DILIGENT project and provides example of exploitation of the VDL Genera-
tor in such environment. Finally, Section 6.5 concludes by presenting and discussing
related work.

1This work is partially funded by the European Commission in the Context of the DILIGENT
project, under the 2nd call of the FP6 IST priority.

130 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

6.1 The Approach

In the reference model introduced in Chapter 2 we have identified two actors that
are in charge of creating a digital library fulfilling the requirements of the DL End-
users, i. e. the DL Designer and the DL System Administrator. The former actor is
responsible for gathering the requirements of the digital library the user community
is interested in and to express them in terms of information space entities and
functionality the digital library must be equipped with. This actor is usually an
expert librarian who has no perception of which digital library system is needed to
fulfil such requirements. Instead, the latter actor, i. e. the DL System Administrator,
must be able to understand the DL Designer requirements and map them into the
components of the digital library system to be configured and deployed in order to
match the expectation of the designer. Usually the envisaged approach is conducted
without any form of automatic support and the creation of a digital library is up to
the capabilities of the human actors.

This manual approach is not feasible in the case of the virtual digital library
scenario, where the number of digital library resources potentially available becomes
huge. Some of the reasons why such an approach is unfeasible are (i) the presence
of thousands of possible choices and (ii) the presence of thousands of constraints
that can result to be difficult to deal with even for experts. Automatic or semi-
automatic processes aiding the activity of both the DL Designers and the DL System
Administrators reduce the risks of inconsistency and increase productivity.

From an abstract point of view, the digital library management system acts as
a broker, while the clients of the broker are DL resource producers and consumers.
The producers are the individuals and the organisations that decide to share, under
the supervision of the broker, their resources according to certain access and use
policies, while the consumers are the user communities that want to build their
own VDLs. The resources managed by this broker can be of different types ranging
from collections of information objects to software components and hosting nodes.
Moreover, it is important to recall the different views the DLMS must provide over
such resources according to our reference model. The DL Designer perceive the
information space as composed by collections of information objects and a digital
library as an entity providing functionality to act over such objects. The DL System
Administrator perceives such abstract resources in terms of concrete resources to be
produced, i. e. software components and hosting nodes where such components can
be deployed in order to produce the expected functionality and information space.

The digital library management system manages the registered resources by sup-
porting their discovering, monitoring, reservation, and by implementing a number
of functionality that aim at supporting the required controlled sharing and level of
quality of service.

A user community, more precisely a DL Designer, can create one or more DLs by
specifying a set of requirements with the support of the system. These requirements
specify conditions on the information space and on the functionality the digital

6.2. THE VIRTUAL DIGITAL LIBRARIES GENERATOR DESIGN 131

library must provide. The DLMS, acting as a DL System Administrator, satisfies
the given requirements by selecting, and in many cases also deploying, a number of
resources among those accessible to the community, gluing them appropriately and,
finally, making the new DL accessible to DL users.

In the next section the design of the virtual digital libraries generator is presented
and the assumptions about its operating environment are reported.

6.2 The Virtual Digital Libraries Generator De-

sign

The virtual digital library generator envisaged in this dissertation is a component
designed to rely on an infrastructure represented by the digital library management
system that is in charge of actually realizing the virtual views defined and identified
by it. However, the dependencies with respect to such enabling infrastructure are
well known and can be limited to the gathering of the information about the avail-
able resources and to the provision of the DL specification the infrastructure must
implement in order to provide the virtual digital library.V D L G e n e r a t o r U s e r I n t e r f a c eV D LG e n e r a t o rC o r e

V D LR e a s o n e rR e s o u r c e sK BV D LD e f i n i t i o n sR e p o s i t o r y
V D LS p e c i f i c a t i o nA v a i l a b l eR e s o u r c e s

Figure 6.1: The VDL Generator Logical Architecture

Having clarified this point, the logical architecture of the VDL Generator is
presented in Figure 6.1.

The User Interface provides the graphical environment enabling the DL De-
signer to perform its tasks. In particular, the expected functionality must offer the
possibility to define a VDL by selecting the resources among those available, mod-
ify a previously defined VDL starting from the previous definition, and removing
a previously defined virtual digital library while allowing the designer to establish
the actions to be executed in order to preserve the information objects produced
in the context of such a digital library and make them available for further digital
libraries. It is worth noting that the design of this component relies on the outcome
of the reference model, i. e. we decided to organise the environment on the DL main
concepts in a hierarchical way, e. g. under the category Information Space the DL

132 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

Designer is entitled to define the characteristics of the related concepts while under
the category Functionality it is entitled to select the functionality the digital library
must be equipped with. Moreover, it is important to notice that, by interacting
with the VDL Generator Core component, the user interface is in charge to prevent
the designer from performing inconsistent choices.

The VDL Generator Core component represents the most important element of
the proposed architecture. It is responsible for implementing the application logic
needed to (i) guide the User Interface in showing, step-by-step, which components
can be used and how they can be customized, thus preventing the designer from per-
forming inconsistent choices, (ii) produce the VDL specification that represents the
mapping of the DL Designer requirements into the components needed to implement
the expected digital library, (iii) notify the infrastructure when a digital library pre-
viously created must be removed, and (iv) maintain updated its knowledge of the
available resources.

In order to support the VDL Generator Core component in providing its func-
tionality we equipped the service with the VDL Reasoner. This component is in
charge of implement a logic-based approach to the identification of the components
needed to fulfil the specified requirements. Further details on this process are pre-
sented in Section 6.3. In brief, the idea is as follows. Both the VDL definition criteria
and the available components together with the related applicability/usability con-
straints are expressed by a knowledge representation mechanism. By adopting the
inference mechanism supported by such a mechanism the system is able to identify
the set of available components needed to satisfy the definition criteria.

The reasoner and in general the whole service thus needs to be aware of the
resources that the infrastructure makes available and maintains an in dept knowledge
about them into the Resource KB.

The latter component is represented by the VDL Definitions Repository. This
component is in charge of maintaining the original definition of the virtual digital
library as well as the computed virtual digital library definition.

6.3 The Components Selection Model

As discussed by presenting the architecture of the VDL Generator service carefully
attention must be posed on and effort must be spent in realising a powerful user
interface making easy the work of the DL Designer and on the process in charge to
match the set of components needed to fulfil the expressed requirements. In this
section we describe the second point by focusing on the logic based approach we
envisaged.

The first problem we face is related to the identification of an appropriate knowl-
edge representation mechanism/formalism. It must be powerful enough to allow to
expressing the knowledge we need to represent as well as it must have an inference
mechanism that is computable in an human acceptable time. Moreover, it must exist

6.3. THE COMPONENTS SELECTION MODEL 133

a system that provides support for the implementation of the identified mechanism
because our goal is not to implement a knowledge representation system. In partic-
ular, we analysed the approach proposed for the semantic web [BLHL01]. In this
research area two very different modelling paradigms have been proposed [PSH],
i. e. the Classical paradigm and the Datalog paradigm. The classical paradigm is
based on the notions from standard logics, such as propositional logic, first-order
logic, and Description Logic [BCM+03]. This approach is embodied in the W3C
recommendation for Semantic Web languages, RDF [MM04] and OWL [DSB+04].
The Datalog is based on notions coming from Object-oriented Databases [AG89]
and rule languages [Ull88]. This approach enbodied in previous version of RDF
and proposal for Semantic Web languages, e. g. OWL-Flight [dBPLF04]. There are
significant diffrences between these two paradigms. These differences range from
computational aspects, to expressive power and naturalness of modelling [PSH].

Basing on these characteristics, we decided that a suitable solution for our prob-
lem is represented by the Datalog approach. Datalog is a rule-based declarative
language. This means that a user has not to write a program that solves some prob-
lem but instead specifies what the solution should look like, and a Datalog inference
engine tries to find the way to solve the problem and the solution itself with the
available registered components. This is done with rules and facts. Facts are the
input data, and rules can be used to derive more facts, and the solution of a given
problem. In particular we concentrate on Disjunctive Datalog [EGM97], i. e. an ex-
tension of Datalog in which the logical OR expression (the disjunction) is allowed
to appear in the head of a rule.

The VDL Generator Service, and in particular the functionalities related to
the definition of a VDL and the automatic identification of the pool of resources
needed to fulfil the VDL requirements, can be modelled as a configuration prob-
lem [BCM+03]. The following two aspects characterize these kinds of problems: (i)
the artifact to build is composed by instances of components and (ii) components
interact in predefined ways, i. e. their dependencies from other components are well-
known. Moreover, all the systems for product configuration converge on describing
this problem representing two kinds of knowledge: (i) the domain description, i. e. a
description of all the types of components available, and (ii) the specification of the
desired product. This is also the approach we propose where the domain description
is characterised by the description of all the available components available via the
Resources KB while the specification of the desired product is provided by the DL
Designer via its interaction with the VDL Generator User Interface.

In particular, for domain modeling we adopt the component-port approach, i. e.
components are characterized by three elements: the type, the attributes, and the
ports:

• Types allow organizing components into a hierarchy that can be used during
configuration.

• Attributes specify descriptive features, such as functional or technical charac-

134 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

teristics, configuration parameters, etc. Each attribute has a single value or
can take values from a predefined range.

• Ports are used to establish connections between components. Usually when
defining ports restrictions may be imposed on the type and number of compo-
nents that can be connected to it. Constraints placed on ports are the natural
way to express compatibility between components. They allow expressing con-
ditions on attributes and ports that must hold in the model built to satisfy
the DL requirements.

It is worth noting that in order to make such approach working appropriately, an
ontology on these aspects must be identified and known by services providers that
are in charge to describe their resources accordingly. In our case, this ontology will
be guided by the reference model. It is also important to notice that the logic of
the application is guided by a Datalog set of rules and that these rules can be easily
modified making the behaviour of the whole service easily adaptable to different
contexts.

6.3.1 A Trivial Example

In this section we report a trivial example of a Datalog set of facts and rules in order
to show the power of the adopted formalism.

In order to represent the domain description we use two predicates: component

and yields. The former represents an available component while the latter take
care to declare the functionality provided by the component and the level of quality
of service of such functionality. The following set of facts represent a scenario in
which there are five available components and the first of them support the search
functionality with two type of level of quality of service, depending by a configuration
parameter.

component(1,searchType1). % component(id,name)

component(2,repository).

component(3,browse).

component(4,searchType2).

component(5,indexDistr).

yields(1,search,qos1). % yields(componentID,functionality,qos)

yields(1,search,qos2).

yields(2,repository,qos1).

yields(3,browse,qos1).

yields(4,search,qos3).

yields(5,index,qos3).

By adding a simple rule like the following it is possible to derive all the allowed

6.4. THE DILIGENT EXPERIENCE 135

functionality2.

allowedDLFun(FID,QOS) :- yields(_,FID,QOS).

In order to identify the components needed to fulfil a certain user requirement it
is sufficient to add the rule identifying the appropriate component and the fact
identifying requirement as follows:

dlComp(DL,CID,CN) :- reqFun(DL,FID,QOS),

component(CID,CN),

yields(CID,FID,QOS).

reqFun(myDL,search,qos3).

In this case the system identify the component 4 named searchType2 as those
capable to provide a search functionality with a quality of service qos3.

If we enrich the knowledge base by adding the facts modelling the dependencies
between components we are able to identify all the components needed to operate
the digital library correctly as follows. We add a fact predicate requires indicating
the component that in providing a certain functionality needs another component
(in the example, 4 needs 5 to provide the search) and overload the dlComp rule in
order to take care of such additional requirements.

requires(4,search,5).

dlComp(DL,CID,CN) :- dlComp(DL,CID2,CN2),

requires(CID2,FID,CID),

component(CID,CN),

reqFun(DL,FID,QOS).

In this case, if the DL Designer asks for a digital library with a search functionality
having a quality of service qos3 and the system identifies as components of such
digital library both component 4 and component 5.

This trivial example illustrates some of the capabilities that can be easily mod-
elled via the Datalog paradigm. We concentrate on the quality of service as discrim-
inant parameter guiding system choices, other aspects can be modelled similarly. In
a concrete example the predicates and the rules can assume more complex forms
however the feasibility of the approach remain unchanged.

6.4 The DILIGENT Experience

DILIGENT [DIL] is an ongoing IST project that aims to combine Grid [FK04]
and digital libraries technologies in order to provide a test-bed digital library infras-
tructure. The main goal of the project is to create an advanced test-bed that will

2This functionality is particularly useful in deriving the knowledge needed to populate the user
interface with the allowed functionality.

136 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

allow members of dynamic virtual e-Science organizations to access shared knowl-
edge and to collaborate in a secure, coordinated, dynamic and cost-effective way.
Actually this mean to provide the capability to implement virtual digital libraries
as presented in Section 6.1 where the whole infrastructure represents the resources
broker.

Figure 6.2: The DILIGENT Logical Architecture

The architecture of the DILIGENT system is depicted in Figure 6.23 accordingly
to the reference architecture presented in Chapter 2.

The DILIGENT infrastructure is being constructed by implementing a service-
oriented architecture in a Grid framework. In particular, DILIGENT exploits the
gLite Grid middleware [EGEb] and the Grid production infrastructure provided by
the EGEE project [EGEa] as well as the WSRF specification [Ban05] implementation
released by the Globus R© project [Glo]. By relying on such software framework the
DILIGENT services are entitled to act as Grid Services and have access to shared
resources via the grid based mechanisms. These resources are represented by both
the computing elements and storage elements provided by the EGEE project as well
as the Grid Services provided by the project itself.

3Provided by Pasquale Pagano.

6.4. THE DILIGENT EXPERIENCE 137

A brief overview of the services constituting the functional area of the DILI-
GENT system is presented in the remaining of this section.

The Mediation area includes a number of wrapper components all together man-
aged by the Wrapper service. They are in charge to access external information
sources in order to transform the external objects into DILIGENT information ob-
jects.

The Information Space Management area contains the Content Management ser-
vice that relies on the Replication Management and on the Storage Management to
maintain its data and thus represents the DILIGENT information objects reposi-
tory; the Metadata Management service that exploits the capabilities provided by
the Content Management for the storage and management of the metadata mani-
festations; the Annotation service and the Content Security service.

The Access area includes the Search service that exploits the capabilities pro-
vided by the Index Management, the Content Source Selection and Description,
and the Personalization services by means of the Query Optimization service. This
area contains also the Feature Extraction service that collects a number of features
extraction components specialized for different kinds of media.

The User and Resource Space Management area includes the Dynamic Virtual
Organization Support service. It is an aggregator that exploits the capabilities
provided by the Notification, User and Group Management, and Resource Registra-
tion Support services. Key functionality is the creation of the trusted environment
needed for ensuring a controlled sharing of the DILIGENT resources.

The Presentation area is strongly user-oriented. It supports the automatic gen-
eration of user-community specific portals, providing personalised access to the DLs.
It has been designed to support the plug and play of user communities specific visu-
alization tools. For this reason the DILIGENT project does not provide any specific
service of the DL Management area.

Finally, the services of the Enabling framework are in charge to provide the
following functionality:

• the monitoring and discovering of all the available DILIGENT resources (In-
formation Service);

• the implementation of a global strategy offering the optimal use of the hosting
node resources supplied by the DILIGENT infrastructure (Broker & Match-
maker Service);

• the orchestration needed to maintain up and running the pool of resources
that populate the various virtual digital libraries and to ensure certain levels
of fault tolerance and QoS (Keeper Service);

• the support to design and verify the specification of workflows, as well as
services ensuring their reliable execution and optimization (Process Manage-
ment).

138 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

6.5 Related Work

Virtual Digital Libraries represent the mechanism we envisaged in order to overcome
the drawbacks of the actual digital library development processes. The VDL Gen-
erator, being a component of the digital library management system, has not been
created nor proposed elsewhere simply because none of the actual digital library
systems provides the DLMS expected functionality.

The closest work to our approach is represented by a family of tools built on top
of the 5S framework and discussed in detail in the following section.

The problem of service composition has been studied in the web services com-
munity [MBH+04, AVMM04, PBB+04, NM02]. However, the proposed techniques
seem to suffer from the general purpose approach. The digital library area is re-
stricted to certain type of components and well known constraints, therefore the
problem is more manageable and can be tackled with different and domain specific
technique.

6.5.1 The 5S Products: 5SL, 5SGraph, and 5SGen

By relying on the 5S framework [GFWK04, Gon04], Gonçalves presented in his
dissertation a series of tools and applications for modelling and semi-automatically
customising digital library services named 5SL, 5SGraph, and 5SGen.

5SL [GF02] is a declarative domain specific language for digital library specifica-
tion. With this language the specification of a digital library consists of five models
related to the dimensions of the underlying formal framework. The stream model
is devoted to specify the format of media objects supported by the digital library
by relying on the web standard MIME types. The structural model defines via an
XML Schema the structure of the information objects as well as the properties of
collections and metadata the digital library deals with. The spatial model gives
details about the digital library retrieval model, the characteristics on indexes, and
the user interface appearance. The societal model makes it possible to model the
characteristics of actors and services by identifying the five core services each dig-
ital library must provide, i. e. user interface, index, search, repository, and browse.
For both actors and services, the set of attributes and the set of interactions with
the services are modelled. In the case of services the description of the operations
is provided as well. Finally, the scenario models the behaviour of a service via a
sequence of events. All these constructs are provided in XML.

As any domain specific language 5SL has its own problems, namely (i) different
semantics (at least one for each model) must be understood to define a digital library,
(ii) the definition of a complex digital library is difficult even for experts since there
is a great amount of XML to be manually produced and a number of semantic
constraint and dependencies to be verified in order to ensure consistency, and (iii)
it is difficult to obtain the big picture of the defined digital library. To overcome
these problems, the 5SGraph is proposed.

6.5. RELATED WORK 139

5SGraph [ZGS+03] is a domain specific visual digital library modelling tool whose
output is a specification of a digital library in terms of the 5SL language. This tool
can be configured with a set of characteristics on the allowed digital libraries (ex-
pressed in terms of a 5S metamodel) and thus is able to enforce these constraints and
ensure the semantic consistency and correctness of the digital library specifications
produced.

5SGen [KGF03] is the last link in the digital library development chain proposed.
In particular, this software system is dedicated to the semi-automatic production of
digital library components fulfilling the model of societies and scenarios expressed
in terms of the 5SL language. The approach they adopt is based on a component
oriented view of the digital library systems and thanks to this the DL designers are
entitled to model (via sequence diagrams and state chart diagrams) the behaviour
and co-operation of such basic components in delivering the digital library expected
functionality. Then, they are able to obtain a set of service manager modules that
produce the designed digital library functionality by relying on freeware tools capable
to dynamically generate Java code (i) from the XMI4 representation of the societies
models (XMI2Java) and (ii) from the finite state machine representation of the
society models.

In comparison, our proposed approach is less software engineering and code gen-
eration oriented as it aims at creating digital libraries without the production of
code. We consider coding as an activity conducted by the DL Application Develop-
ers (Section 2.5 on page 46) when a functionality that cannot be provided by any
existing digital library system component is needed. As a consequence, we do not
take care to define any specification language. Instead, by relying on the formal
model we support the DL Designers in expressing their information space and func-
tional requirements via an intuitive graphical user interface. Then, it is up to the
VDL Generator the identification and configuration of the pool of services needed
to fulfil the expressed requirements. The “glue” allowing the various components
to co-operate is represented by the enabling framework. It is important to note
that the digital library system components have been designed and implemented
to rely on this framework in accordance with the Digital Library System Reference
Architecture (Section 2.6 on page 50).

4An XML serialisation of the UML diagrams.

140 CHAPTER 6. VIRTUAL DIGITAL LIBRARIES GENERATOR

Chapter 7

Conclusion and Future Work

7.1 Summary

Current models for developing digital library are proving to be inadequate to fulfil
the large emerging demand for such systems. This fact has motivated the work
presented in this thesis in which a new development model is proposed and discussed,
and its implementation presented. This model is based on (i) controlled sharing of
resources among different digital libraries and (ii) virtualisation of such resources
in order to provide personalised and focused views matching the specific needs of
diverse user communities, i. e. we have proposed a model for virtual digital libraries.

To support such a paradigm a common understanding of what a digital library
is and what its characteristics are must be shared by all the actors interacting with
the library. Our model covers the different perspectives of such actors and highlights
and formalises the existence of both the digital library system and the digital library
management system as the entities creating the digital library.

Motivated by the need to reuse third-party pre-existing resources in order to
profitably build virtual digital libraries, we have introduced a series of approaches
to virtualisation making such a reuse easy and effective. In particular, we have
discussed the requirement for information object virtualisation and proposed a pow-
erful and flexible document model as an approach to satisfy this requirement. The
feasibility of such an approach has been proved; in fact a service to support the
proposed document model has been developed and exploited in three concrete and
complementary application scenarios.

The second requirement we have identified is related to collection virtualisation.
We have discussed the issues involved and proposed an approach for supporting
virtual views over a heterogeneous information space. The viability of this approach
has been demonstrated through the implementation of a service supporting virtual
collections and applying it in the context of the IST project Cyclades [CYC].

We have also envisaged the need for seamless search across multiple and het-
erogeneous information sources. In this respect, we have proposed, developed and

142 CHAPTER 7. CONCLUSION AND FUTURE WORK

discussed an approach that allows users to express their information needs with
a powerful language capable of capturing diverse semantic interpretations of the
same textual query and thus obtaining information objects that are closer to their
information needs than in the “classic” approach.

Finally, we have proposed the virtual digital libraries generator, i. e. a service
supporting the novel digital library development model by assisting users in ex-
pressing their needs and automatically identifying the appropriate pool of resources
needed to fulfil them. We discussed the exploitation of this approach in the context
of the on-going IST project DILIGENT [DIL] and proved the feasibility by reporting
concrete examples demonstrating the features of the proposed service.

7.2 Future Work

Each of the facets investigated in this dissertation could be further studied and
developed.

The activity related with the reference model is now a task of the DELOS Net-
work of Excellence on Digital Libraries. The importance of such a reference model
is also highlighted in the recent DELOS Brainstorming Report [CDISS05] prepared
to reply to the European Commission’s call for online consultation.

This activity, supported by the international research institutions participating
in the network is aimed at validating the main organisation of the proposed model
and refining and enhancing the set of concepts and relationships introduced to cover
the characteristics of digital libraries, digital library systems, and digital library
management systems. Particular attention is posed on the reference architecture.
According to the model, standards, protocols, and best practices will be studied in
order to ease the co-operation and sharing of information objects among different
digital libraries.

As for virtual digital libraries, DILIGENT is an ongoing project and the im-
plementation of the virtual digital library generator service is still in progress. This
component probably represents the most important issue to be solved for making
the process of digital libraries definition an easy task.

Further the in-depth investigation of the technicalities needed for describing com-
ponents and user requirements will be needed, in particular, mechanisms for dealing
with the description of the service provided in heterogeneous languages and schemas
must be studied in order to enlarge the pool of the components now available.

The evolution and the exploitation of mediation services also is an important
issue for future work. In particular, all the aspects of heterogeneity left out from
this dissertation could be object of future investigations, e. g. policies regulating
access to information objects are usually expressed in different languages, ontology
used to annotate information objects can be used for different purposes than the
search.

In the context of a new EU funded project named DRIVER (Digital Repository

7.2. FUTURE WORK 143

Infrastructure Vision for European Research) the needs for mediator services are
pressing. However the mediator services and approaches introduced in this disser-
tation fulfil the most important requirements of this project.

144 CHAPTER 7. CONCLUSION AND FUTURE WORK

Appendix A

OpenDLib: A Digital Library
Service System

OpenDLib [Ope, CP02, CP03] is a software toolkit that can be used to easily set
up a digital library, according to the requirements of a given user community, by
instantiating the software appropriately and then either loading or harvesting the
content to be managed. It consists of a federation of services that implement the
digital library functionality making few assumptions about the nature of the infor-
mation objects to be stored and disseminated. From a deployment viewpoint, the
entire set of services can be managed and hosted either by a single or by a multitude
of organisations that collaborate on the maintenance of the shared digital library,
each according to its own computational and human resources.

A.1 Services Model

Figure A.1 depicts a conceptual model that specifies the notion of OpenDLib service
and its characteristics.

This model is central to the digital library system design since it highlights the
properties (descriptive metadata) that define each service. Each service instance
is known by the other instances through the values of these properties, which are
disseminated on demand. These properties are modelled using structured attributes
that are associated with each entity of the model. As a natural consequence of the
relation between entities, a child entity inherits all attributes of its parent entity.
The whole set of attributes characterise an instance of a service in the OpenDLib
architecture.

A generic service of the OpenDLib architecture is modelled by the entity Ser-
vice. A service can be distributed over different servers, replicated, or if necessary
centralised. The model has an entity for each service type.

The distributed services are those that implement the same service through mul-
tiple instances, each of which manages data stored on a different server. The data

146 APPENDIX A. OPENDLIB: A DIGITAL LIBRARY SERVICE SYSTEM

Figure A.1: The OpenDLib Services Model

are distributed according to a set of criteria that may differ from service to service.
Note that each instance of a distributed service does not need to know anything
about the other instances of the same service. In the current version of OpenDLib
that we are illustrating, the services that are distributed are those that maintain a
huge amount of data and/or those that are strictly related to the information ob-
jects publishing institutions. These institutions usually prefer to maintain their own
object on their own server to have a physical control over them. Moreover, each in-
stitution usually has its own rules for information object submission/withdrawal, or
information space management, and therefore prefers to maintain these procedures
also in a common shared environment.

The replicated services are those implemented by a set of service instances, pos-
sibly located on different servers, where each instance is able to cover completely the
service functionality over the entire set of data. OpenDLib distinguishes three kinds
of replicated services: NoInput, CentralisedInput, or DistributedInput. A service is of
NoInput type if it is instantiated by pure replications, i. e. the different instances are
never distinguishable since they handle the same data and behave in the same way.
A service of CentralisedInput or DistributedInput type has one replication, which
acts as a master, and a set of replicates which act as slaves. In the case of the Cen-
tralisedInput, the master is a special instance of the service whose only purpose is to
maintain and distribute on demand an updated version of the information handled
by the service. The slave instances update their content by periodically invoking the
master. Both the master and slave replicas of a DistributedInput service can accept
new information and serve information requests. The master maintains the global
state of the service information: each time a slave updates its local information it
communicates the change to the master, which merges the new information with its
own information. Periodically, each slave updates its state by invoking the master.
The role of the instances of a replicated service, i. e. master and slave, is not stat-
ically assigned but can be changed in order to achieve a better connectivity or to

A.2. DESIGN CONSIDERATIONS 147

overcome temporary crash. In the current version of OpenDLib we have chosen to
replicate those services that are either not constrained by any proprietary (see dis-
tributed services), security or privacy constraint (see centralised). This replication
makes it possible to improve service efficiency and to increase its robustness. This
is, for example, the case of the replication of indexes to improve content access, or
the replication of meta information, i. e. the set of service descriptive parameters
and other configuration parameters, to improve digital library service access, and so
on.

A centralised service has always a single instance in the DL. Each time the
security and the privacy of the content of a service is an issue, the centralised
solution is preferred to the distributed and replicated ones.

Although the presence of multiple instances of a service increases fault tolerance,
reduces the overload of each instance, and makes it possible to dynamically reor-
ganise the environment when a server hosting a service instance is not reachable,
the replication and distribution of the services is not mandatory and therefore each
service can be instantiated as a single instance. This means that the level of dis-
tribution and replication, and the physical location of the service instances may be
freely chosen to better satisfy the needs of the specific digital library context.

A.2 Design Considerations

OpenDLib is a general purpose framework to build DLs in multiple domains ranging
from traditional libraries to multimedia and/or virtual courses, support for confer-
ence reviewing process, electronic publishing, etc. The reuse of OpenDLib in differ-
ent contexts imposes a set of constraints to the overall design of the services. Most
of them are made possible by the adoption of the Service Model presented in the
previous section.

Configuration – As stated in the previous section, services are designed to be dis-
tributed and replicated to better fulfil the needs to face out during a DL lifetime by
providing a great flexibility in the digital library design. This means that each time a
new DL has to be created, the appropriate set of services is instantiated and this set
can be expanded at any time by adding replicas or additional distributed instances.
For example, a replication of an Index instance can be created to reduce workloads
when the number of search requests exceeds an established threshold, whereas an
Index instance, able to serve queries in a language not previously supported, can be
added to satisfy the needs a new community of users. All these expansions can be
done on the fly, i. e. without switching off the digital library.

Deployment – The physical distribution of the services can be customised to
satisfy specific requirements. For example, an institution can decide to maintain an
instance of the Repository Service in order to have local control over its own docu-
ments, but to share all the other services with other institutions. The architectural
configuration is chosen when the digital library is set up, but it can also be changed

148 APPENDIX A. OPENDLIB: A DIGITAL LIBRARY SERVICE SYSTEM

later to satisfy new emerging needs.

Interoperability – From this viewpoint, the OpenDLib architecture has been de-
signed to be highly interoperable with other digital libraries that rely on other
systems. This ability of the system is mainly concentrated on the export of its
content upon request, and the import of information objects from existing content
sources. For the former, besides using its own protocol, OpenDLib can act as an
OAI [LV01] data provider by appropriately implementing the OAI-PMH [OAI] pro-
tocol. This implies that the metadata records about information objects maintained
by an OpenDLib digital library can be open to other digital libraries. The latter
ability, i. e. the import of information objects from other systems, is a crucial feature
that can determine the success of any digital library system, is obtained in two ways:
(i) OpenDLib can access the metadata published by any other OAI-PHM compliant
digital library since it is also a service provider (in the OAI meaning), and (ii) it also
takes care of the compatibility with non-OAI-PHM compliant systems by providing
basic tools to easily interact with existing information sources and development kits
to facilitate the development of customised importing tools.

Openness – The set of services constituting the OpenDLib system can be ex-
panded at any time by adding new services to satisfy community-specific needs.
Also for this aspect, appropriate development kits have been developed to facilitate
the implementation of new OpenDLib compliant services.

A.3 Services and Functionality

The overall functionality of OpenDLib is partitioned into a set of well-defined in-
teracting services that we have classified accordingly to our reference architecture
(Section 2.6) and described in the follow.

A.3.1 Enabling Framework

Manager Maintains and continually updates a picture of the status of the DL
service federation and disseminates it on request to all the other services.

A.3.2 User Space Management

Registry Maintains information about the users, groups, and communities.

A.3.3 Information Space Management and Mediation

Repository Stores and disseminates documents that conform to the DoMDL doc-
ument model which can represent structured, multilingual and multimedia
documents. A detailed description is provided in Chapter 3.

A.3. SERVICES AND FUNCTIONALITY 149

Collection Service Mediates between the virtual dynamic organisation of the con-
tent space, built according to the requirements of the DL community of users,
and the concrete organization into basic collections of documents hold by pub-
lishing institutions. A detailed description is provided in Chapter 4.

OAI Harvester Harvests content published by OAI-PMH compliant archives.

A.3.4 DL Management

Library Management Supports the submission, withdrawal, and replacement of
documents through a complete review workflow.

A.3.5 Presentation

OAI Publisher Publishes the content of the OpenDLib DL through the OAI-PMH
protocol.

User Interface Mediates between human actions and all the OpenDLib services.
It is mainly used to interact with access services. As result of their search or
browse operations, users obtain a set of results pages with the list of informa-
tion objects that satisfy their requests. The User Interface provides multiple
and customisable ways to visualise these objects as reported in Section 3.4.

A.3.6 Access

Query Mediator Dispatches queries to Index service instances, according to avail-
ability and replica priorities.

Browse Supports the construction of indexes to browse the entire library content.
The Browse function is parametric with respect to the metadata formats, to
the set of fields to be browsed, and to the set of formats for result sets.

Index Accepts queries and returns information objects matching those queries. The
Index is parametric with respect to the metadata formats, to the set of indexed
fields, to the set of result sets formats and the language of the terms. It offers
different search options: free text or advanced (with fields selected from a
variety of configurable metadata formats); single or cross-language; with or
without relevance feedback.

Finally, it is worth noting that the services interaction is more complex than a
simple client-server communication. A service can act both as a provider and as a
consumer, and sharing relationships exist a priori among a subset of the services.
Communication with and among individual services takes place via the proprietary
OpenDLib Protocol (OLP). The OpenDLib Protocol is an evolution of the Dienst

150 APPENDIX A. OPENDLIB: A DIGITAL LIBRARY SERVICE SYSTEM

protocol [LD95]. It inherits from Dienst the basic rules and conventions, and many
protocol requests.

Bibliography

[ABB+99] Antonella Andreoni, Maria Bruna Baldacci, Stefania Biagioni, Carlo
Carlesi, Donatella Castelli, Pasquale Pagano, and Carol Peters. De-
veloping a European Technical Reference Digital Library. In Proceed-
ings of the third European Conference on Digital Libraries (ECDL’99),
pages 343–362. Springer-Verlag Berlin Heidelberg New York, 1999.

[ABO97] William Y. Arms, Christophe Blanchi, and Edward A. Overly. An
Architecture for Information in Digital Libraries. D-Lib Magazine,
February 1997.

[ACS] Henri Avancini, Leonardo Candela, and Umberto Straccia. Recom-
menders in a Personalized, Collaborative Digital Library Environ-
ment. Journal of Intelligent Information Systems, To Appear.

[AG89] R. Agrawal and N. H. Gehami. Ode (object database and environ-
ment): The language and the data model. In Proceedings of the 1989
ACM SIGMOD International Conference on Management of Data,
pages 36–45, June 1989.

[Arm95] William Y. Arms. Key Concepts in the Architecture of the Digital
Library. D-Lib Magazine, July 1995.

[Arm01] William Y. Arms. Digital Libraries. The MIT Press, September 2001.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Con-
straint Driven Web Service Composition in METEOR-S. In Proceed-
ing of the IEEE SCC 2004, 2004.

[Ban05] Tim Banks. Web Services Resource Framework (WSRF) - Primer.
Committee draft 01, OASIS, December 2005. http://docs.

oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-01.pdf.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic
Handbook: Theory, implementation, and applications. Cambridge
University Press, 2003.

152 BIBLIOGRAPHY

[BdWH+03] I. Burnett, R. Van de Walle, K. Hill, J. Bormans, and F. Pereira.
MPEG-21: Goals and Achievements. IEEE Multimedia, Oct-Dec:60–
70, 2003.

[Bel99] Nicholas J. Belkin. Understanding and Supporting Multiple Infor-
mation Seeking Behaviors in a Single Interface Framework. In Pro-
ceeding of the Eighth DELOS Workshop: User Interfaces in Digital
Libraries, pages 11–18. European Research Consortium for Informat-
ics and Mathematics, 1999.

[Ber02] Donna Bergmark. Collection Synthesis. In Proceeding of the second
ACM/IEEE-CS Joint Conference on Digital Libraries, pages 253–262.
ACM Press, 2002.

[BFH03] F. Berman, G. Fox, and A. Hey. Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons, April 2003.

[BHdS03] Jeroen Bekaert, Patrick Hochstenbach, and Herbert Van de Sompel.
Using MPEG-21 DIDL to Represent Complex Digital Objects in the
Los Alamos National Laboratory Digital Library. D-Lib Magazine,
9(11), November 2003.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard. Web Services Architec-
ture. Technical report, W3C, February 2004. W3C Working Group
Note.

[Bla02] David C. Blair. The challenge of commercial document retrieval,
Part II: a strategy for document searching based on identifiable doc-
ument partitions. Information Processing and Management, 38:293–
304, 2002.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web.
Scientific America, 284(5):34–43, 2001.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture. John Wiley & Sons, 1996.

[Bor99] Christine L. Borgman. What are digital libraries? Competing visions.
Information Processing and Management, 35(3):227–243, 1999.

[BRI] BRICKS. Building resources for Integrated Cultural Knowledge Ser-
vices. http://www.brickscommunity.org. IST-2003-507457.

[Bus45] Vannevar Bush. As We May Think. The Atlantic Monthly, 176(1):101–
108, July 1945.

BIBLIOGRAPHY 153

[BYRN99] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Infor-
mation Retrieval. ACM Press / Addison-Wesley, 1999.

[Cal00] Jamie Callan. Advances in Information Retrieval, chapter 5 Dis-
tributed Information Retrieval, pages 127–150. Kluwer Academic
Publishers, Hingham, MA, USA, 2000.

[CC01] Jamie Callan and Margaret Connell. Query-based sampling of text
databases. ACM Transactions on Information Systems (TOIS),
19(2):97–130, 2001.

[CCP03a] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. A Ser-
vice for Supporting Virtual Views of Large Heterogeneous Digital Li-
braries. In Traugott Koch and Ingeborg Sølvberg, editors, 7th Eu-
ropean Conference on Research and Advanced Technology for Digital
Libraries, ECDL 2003, Lecture Notes in Computer Science, pages
362–373, Trondheim, Norway, August 2003. Springer-Verlag.

[CCP03b] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. The
Cyclades Collection Service. Technical Report 2003-TR-68, Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, 2003.

[CCP04] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Enhanc-
ing the OpenDLib Search Service. In Rachel Heery and Liz Lyon,
editors, 8th European Conference on Research and Advanced Tech-
nology for Digital Libraries, ECDL 2004, Lecture Notes in Computer
Science, pages 353–365, Bath, UK, September 2004. Springer-Verlag.

[CCP06a] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Dig-
ital Library Reference Model. Project Report 2006-PR-02, Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, January
2006.

[CCP06b] Leonardo Candela, Donatella Castelli, and Pasquale Pagano. Digital
Library System Reference Architecture. Project Report 2006-PR-01,
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR,
January 2006.

[CCPS05a] Leonardo Candela, Donatella Castelli, Pasquale Pagano, and Manuele
Simi. From Heterogeneous Information Spaces to Virtual Documents.
In Edward A. Fox, Erich J. Neuhold, Pimrumpai Premsmit, and Vilas
Wuwongse, editors, Digital Libraries: Implementing Strategies and
Sharing Experiences, 8th International Conference on Asian Digital
Libraries, ICADL 2005, Lecture Notes in Computer Science, pages
11–22, Bangkok, Thailand, December 2005. Springer.

154 BIBLIOGRAPHY

[CCPS05b] Leonardo Candela, Donatella Castelli, Pasquale Pagano, and Manuele
Simi. Moving Digital Library Service Systems to the Grid. In Can
Türker, Maristella Agosti, and Hans-Jörg Schek, editors, Peer-to-
Peer, Grid, and Service-Orientation in Digital Library Architectures,
number 3664 in Lecture Notes in Computer Science, pages 236–259.
Springer Verlag, 2005.

[CCPS05c] Donatella Castelli, Leonardo Candela, Pasquale Pagano, and Manuele
Simi. DILIGENT: A DL Infrastructure for Supporting Joint Research.
In IEEE Computer Society, editor, 2nd IEEE-CS International Sym-
posium Global Data Interoperability - Challenges and Technologies,
pages 56–69, 2005.

[CDISS05] Birte Christensen-Dalsgaard, Yannis Ioannidis, Heiko Schuldt, and
Dagobert Soergel. Recommendations and Observations for a Euro-
pean Digital Library (EDL). Technical report, DELOS Network of
Excellence on Digital Libraries, December 2005.

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching Dis-
tributed Collections with Inference Networks . In E. A. Fox, P. Ing-
wersen, and R. Fidel, editors, Proceedings of the 18th Annual Inter-
national ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 21–28, Seattle, Washington, 1995. ACM
Press.

[CLE] CLEF. Cross Language Evaluation Forum. http://www.

clef-campaign.org/.

[CMP02] Donatella Castelli, Carlo Meghini, and Pasquale Pagano. Foundations
of a Multidimensional Query Language for Digital Libraries. In Maris-
tella Agosti and Costantino Thanos, editors, 6th European Conference
on Research and Advanced Technology for Digital Libraries, ECDL
2002, Lecture Notes in Computer Science, pages 251–265, Rome, Italy,
September 2002. Springer-Verlag.

[Con02] Consultative Committee for Space Data Systems. Reference Model
for an Open Archival Information System. Technical Report CCSDS
650.0-B-1, National Aeronautics and Space Administration, January
2002. Blue Book.

[CP02] Donatella Castelli and Pasquale Pagano. OpenDLib: A Digital Li-
brary Service System. In Maristella Agosti and Costantino Thanos,
editors, 6th European Conference on Research and Advanced Technol-
ogy for Digital Libraries, ECDL 2002, Lecture Notes in Computer Sci-
ence, pages 292–308, Rome, Italy, September 2002. Springer-Verlag.

BIBLIOGRAPHY 155

[CP03] Donatella Castelli and Pasquale Pagano. A System for Building Ex-
pandable Digital Libraries. In ACM/IEEE 2003 Joint Conference on
Digital Libraries (JCDL 2003), pages 335–345. Springer-Verlag, 2003.

[CS04] Leonardo Candela and Umberto Straccia. The Personalized, Collab-
orative Digital Library Environment CYCLADES and its Collections
Management. In Jamie Callan, Fabio Crestani, and Mark Sander-
son, editors, Multimedia Distributed Information Retrieval, number
2924 in Lecture Notes in Computer Science, pages 156–172. Springer
Verlag, 2004.

[CYC] CYCLADES. An Open Collaborative Virtual Archive Environment.
http://www.ercim.org/cyclades. IST-2000-25456.

[dBGI04] Alberto del Bimbo, Stefan Gradmann, and Yannis Ioannidis. Toward
a Long Term Agenda for Digital Library Research. Brainstorming
Workshop Report - Corvara - Italy, DELOS Network of Excellence on
Digital Library, July 2004.

[dBPLF04] Jos de Bruijn, Axel Polleres, Ruben Lara, and Dieter Fensel. OWL
Flight. Technical report, Working Draft D20.3 v0.1, 2004.

[DC] Dublin Core Metadata Initiative. http://dublincore.org.

[DDC] Dewey Decimal Classification. http://www.oclc.org/dewey.

[DEL] DELOS. Network of Excellence on Digital Libraries. http://www.

delos.info. G038-507618.

[Deu89] L. P. Deutsch. Design Reuse and Frameworks in the Smalltalk-80 Sys-
tem. In T. J. Biggerstaff and A. J. Perlis, editors, Software Reusability,
pages 57–71. ACM press, New York, 1989.

[DIL] DILIGENT. A DIgital Library Infrastructure on Grid ENabled Tech-
nology. http://www.diligentproject.org/. IST-2003-004260.

[DL96] J. Davis and Carl Lagoze. The Networked Computer Science Tech-
nical Report Library. Technical Report TR94-1595, Department of
Computer Science, Cornell University, July 1996.

[DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos,
and Alon Halevy. Learning to match ontologies on the Semantic Web.
The VLDB Journal, 12(4):303–319, 2003.

[DSB+04] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen,
Jim Hendler, Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-
Schneider, and Lynn Andrea Stein. OWL web ontology language:

156 BIBLIOGRAPHY

Reference. Technical report, W3C Recommendation, 2004. http:

//www.w3.org/TR/owl-ref/.

[Dub] Dublin Core Metadata Initiative. Dublin Core Metadata element
set, version 1.1: Reference description. http://dublincore.org/

documents/dces/.

[EGEa] EGEE. Enabling Grids for E-sciencE. http://public.eu-egee.

org/. INFSO 508833.

[EGEb] EGEE. gLite: Lightweight Middleware for Grid Computing. http:

//glite.web.cern.ch/glite/.

[EGM97] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive Data-
log. ACM Transaction on Database Systems, 22(3):364–418, Septem-
ber 1997.

[FAFL95] Edward A. Fox, Robert M. Akscyn, Richard Furuta, and John J.
Leggett. Digital Libraries. Communications of the ACM, 38(4):23–
28, April 1995.

[FFS+01] D. Faensen, L. Faultstich, H. Schweppe, A. Hinze, and A. Steidinger.
Hermes: a notification service for digital libraries. In JCDL ’01:
Proceedings of the 1st ACM/IEEE-CS joint conference on Digital li-
braries, pages 373–380, New York, NY, USA, 2001. ACM Press.

[FHM+01] Norbert Fuhr, Preben Hansen, Michael Mabe, Andras Micsik, and In-
geborg Sølvberg. Digital Libraries: A Generic Classification and Eval-
uation Scheme. In ECDL ’01: Proceedings of the 5th European Con-
ference on Research and Advanced Technology for Digital Libraries,
pages 187–199, London, UK, 2001. Springer-Verlag.

[FK04] Ian Foster and Carl Kesselman. The Grid: Blueprint for a Future
Computing Infrastructure. Morgan-Kaufmann, 2004.

[FKC03] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-based Access
Control. Computer Security Series. Artech House, 2003.

[FKNT02] Ian Foster, Carl Kesselman, Jeffrey Nick, and Steve Tuecke. The
Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration. Open Grid Service Infrastructure WG,
Global Grid Forum, June 2002.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organization. The International
Journal of High Performance Computing Applications, 15(3):200–222,
2001.

BIBLIOGRAPHY 157

[FM98] Edward A. Fox and Gary Marchionini. Toward a Worldwide Digital
Library. Communications of the ACM, 41(4):29–32, April 1998.

[FPC+99] James C. French, Allison L. Powell, Jamie Callan, Charles L. Viles,
Travis Emmitt, Kevin J. Prey, and Yun Mou. Comparing the perfor-
mance of database selection algorithms. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 238–245. ACM Press, 1999.

[Fri03] Amy Friedlander. Knowledge Lost in Information. Technical report,
University of Pittsburg, June 2003. Report of the NSF Workshop on
Research Directions for Digital Libraries.

[Gac03] A. Gachet. Software Frameworks for Developing Decision Support
Systems - A New Component in the Classification of DSS Develop-
ment Tools. Journal of Decision Systems, 12(3/4):271–281, 2003.

[GF02] M. A. Gonçalves and E. A. Fox. 5SL - A Language for Declara-
tively Specification and Generation of Digital Libraries. In Proceed-
ings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries
(JCDL’02), pages 263–272, Portland, Oregon, July 2002.

[GFW04] M. A. Gonçalves, E. A. Fox, and L. T. Watson. Toward a digital
library theory: A formal digital library ontology. In Proceedings of
the ACM SIGIR Workshop on Mathematical/Formal Methods in In-
formation Retrieval, Sheffield, England, 2004.

[GFWK04] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp. Streams,
Structures, Spaces, Scenarios, Societies (5S): A Formal Model for Dig-
ital Libraries. ACM Transactions on Information Systems (TOIS),
22(2):270–312, 2004.

[GGMM02] Gary Geisler, Sarah Giersch, David McArthur, and Marty McClel-
land. Creating Virtual Collections in Digital Libraries: Benefits and
Implementation Issues. In Proceedings of the second ACM/IEEE-CS
Joint Conference on Digital Libraries, pages 210–218. ACM Press,
2002.

[Gla06] H. M. Gladney. Principles for Digital Preservation. Communications
of the ACM, 49(2):111–116, February 2006.

[Glo] Globus Alliance. The Globus Alliance Website. http://www.globus.
org/.

158 BIBLIOGRAPHY

[Gon04] Marcos André Gonçalves. Streams, Structures, Spaces, Scenarios, and
Societies (5S): A Formal Digital Library Framework and Its Applica-
tions. PhD thesis, Virginia Polytechnic Institute and State University,
November 2004.

[HCOC02] Zan Huang, Wingyan Chung, Thian-Huat Ong, and Hsinchun Chen.
A graph-based recommender system for digital library. In JCDL ’02:
Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital
libraries, pages 65–73, New York, NY, USA, 2002. ACM Press.

[IFL] IFLA Study Group on the Functional Requirements for Bibliographic
Records. Functional Requirements for Bibliographic Records: Final
Report. http://www.ifla.org/VII/s13/frbr/frbr.htm.

[IMA+05] Yannis Ioannidis, David Maier, Serge Abiteboul, Peter Buneman, Su-
san Davidson, Edward Fox, Alon Halevy, Craig Knoblock, Fausto Ra-
bitti, Hans Schek, and Gerhard Weikum. Digital library information-
technology infrastructures. International Journal on Digital Libraries,
5(4):266 – 274, August 2005.

[Ioa05] Yannis Ioannidis. Digital libraries at a crossroads. International Jour-
nal on Digital Libraries, 5(4):255–265, August 2005.

[JF88] R. E. Johnson and B. Foote. Designing reusable classes. Journal of
object-oriented programming, 1(2):22–35, 1988.

[JF02] Greg Janée and James Frew. The ADEPT digital library architec-
ture. In Proceeding of the second ACM/IEEE-CS Joint Conference
on Digital Libraries, pages 342–350. ACM Press, 2002.

[JW04] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web,
Volume One. Technical report, W3C, December 2004.

[KC96] Terry Kuny and Gary Cleveland. The Digital Library: Myths and
Challenges. In 62nd IFLA General Conference, August 25-31 1996.

[KGF03] R. Kelapure, M. A. Gonçalves, and E. A. Fox. Scenario-based Gen-
eration of Digital Library Services. In Traugott Koch and Ingeborg
Sølvberg, editors, 7th European Conference on Research and Advanced
Technology for Digital Libraries, ECDL 2003, Lecture Notes in Com-
puter Science, Trondheim, Norway, August 2003. Springer-Verlag.

[LD95] C. Lagoze and J. R. Davis. Dienst - An Architecture for Distributed
Document Libraries. Communication of the ACM, 38(4):47, 1995.

BIBLIOGRAPHY 159

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In
PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 233–
246, New York, NY, USA, 2002. ACM Press.

[Les99] Michael Lesk. Expanding Digital Library Research: Media, Genre,
Place and Subjects. In Proceedings of the International Symposium
on Digital Library 1999: ISDL’99, pages 51–57, Tsukuba, Ibaraki,
Japan, September 28-29 1999.

[LF98] Carl Lagoze and David Fielding. Defining Collections in Distributed
Digital Libraries. D-Lib Magazine, November 1998.

[Lic65] J. C. R. Licklider. Libraries of the Future. MIT Press, 1965.

[LKPJ05] C. Lagoze, D. B. Krafft, S. Payette, and S. Jesuroga. What Is a Digital
Library Anyway? D-Lib Magazine, 11(11), November 2005.

[LN05] Greg Lomow and Eric Newcomer. Understanding SOA with Web Ser-
vices. Independent Technology Guides. Addison Wesley Professional,
2005.

[LOM] IEEE Standard for Learning Object Metadata. http://ltsc.ieee.

org/wg12/par1484-12-1.html.

[LPSW05] C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora: An Architec-
ture for Complex Objects and their Relationships. Journal of Digital
Libraries, Special Issue on Complex Objects, 2005.

[LV01] Carl Lagoze and Herbert Van de Sompel. The open archives initiative:
building a low-barrier interoperability framework. In Proceedings of
the first ACM/IEEE-CS Joint Conference on Digital Libraries, pages
54–62. ACM Press, 2001.

[MAR05] MARC Standards Web Page. http://www.loc.gov/marc/, Septem-
ber 2005.

[MBH+04] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDer-
nott, Sheila McIIraith, Srini Narayanan, Massimo Paolucci, Bijan Par-
sia, Terry Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara.
OWL-S: Semantic Markup for Web Services. http://www.daml.org/
services/owl-s, 2004.

[MLM+06] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter Brown,
and Rebekah Metz. Reference Model for Service Oriented Architecture
1.0. Technical report, OASIS, February 2006. Public Review Draft
1.0.

160 BIBLIOGRAPHY

[MM04] Frank Manola and Eric Miller. RDF primer. Technical report, W3C
Recommendation, 2004. http://www.w3.org/TR/rdf-primer/.

[MS04] E. Michael Maximilien and Munindar P. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE Internet Com-
puting, 8(5):84–93, September-October 2004.

[MT00] Nemad Medvidovic and Richard N. Taylor. A Classification and
Comparison Framework for Software Architecture Description Lan-
guages. IEEE Transaction on Software Engineering, 28(1):70–93, Jan-
uary 2000.

[NF01] Henrik Nottelmann and Norbert Fuhr. Learning probabilistic datalog
rules for information classification and transformation. In CIKM ’01:
Proceedings of the tenth international conference on Information and
knowledge management, pages 387–394, New York, NY, USA, 2001.
ACM Press.

[NG84] Joseph D. Novak and D. Bob Gowin. Learning How to Learn. Cam-
bridge University Press, 1984.

[NM02] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and
automated composition of web services. In WWW ’02: Proceedings of
the 11th international conference on World Wide Web, pages 77–88,
New York, NY, USA, 2002. ACM Press.

[NS05] Henrik Nottelmann and Umberto Straccia. sPLMap: A probabilis-
tic approach to schema matching. In David E. Losada and Juan
M. Fernndez Luna, editors, 27th European Conference on Informa-
tion Retrieval Research (ECIR 2005), 2005.

[OAI] The OAI Protocol for Metadata Harvesting. http://www.

openarchives.org/OAI/openarchivesprotocol.html.

[Ope] OpenDLib. A Digital Library Service System. http://www.

opendlib.com/.

[PBB+04] M. Pistore, F. Bardon, P. Bertoli, D. Shaparau, and P. Traverso.
Planning and Monitoring Web Service Composition. In Workshop on
Planning and Scheduling for Web and Grid Services in conjunction
with ICAPS 2004, 2004.

[PCWGM98] Andreas Paepcke, Chen-Chuan K. Chang, Terry Winograd, and
Héctor Garćıa-Molina. Interoperability for digital libraries worldwide.
Communications of the ACM, 41(4):33–42, 1998.

BIBLIOGRAPHY 161

[PRE05] PREMIS. Data Dictionary for Preservation Metadata. Final Report
of the PREMIS Working Group, OCLC and RLG, May 2005.

[PSH] Peter F. Patel-Schneider and Ian Horrocks. A Comparison of
Two Modelling Paradigms. http://www.cs.man.ac.uk/∼horrocks/
Publications/download/2005/HoPa05a.pdf.

[PT02] Sandra Payette and Staples Thornton. The Mellon Fedora Project:
Digital Library Architecture Meets XML and Web Services. In Maris-
tella Agosti and Costantino Thanos, editors, Research and Advanced
Technology for Digital Libraries, 6th European Conference, ECDL
2002, Rome, Italy, September 2002, Proceedings, Lecture Notes in
Computer Science, pages 406–421. Springer-Verlag, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to au-
tomatic schema matching. The VLDB Journal, 10(4):334–350, 2001.

[RS02] Maria Elena Renda and Umberto Straccia. A personalized collabora-
tive digital library environment. In 5th International Conference on
Asian Digital Libraries (ICADL2002), number 2555 in Lecture Notes
in Computer Science, pages 262–274. Springer-Verlag, 2002.

[SAG+01] Hussein Suleman, Anthony Atkins, Marcos André Gonçalvess,
Robert K. France, Edward A. Fox, Vinod Chachra, Murray Crowder,
and Jeff Young. Networked Digital Library of Theses and Disserta-
tions: Bridging the Gaps for Global Access. D-Lib Magazine, 7(9),
September 2001.

[SC02] Luo Si and Jamie Callan. Using Sampled Data and Regression to
Merge Search Engine Results. In Proceedings of the 25th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, pages 19–26. ACM Press, 2002.

[TBS03a] Robert Tansley, Mick Bass, and MacKenzie Smith. DSpace as an
Open Archival Information System: Current Status and Future Direc-
tions. In Traugott Koch and Ingeborg Sølvberg, editors, Research and
Advanced Technology for Digital Libraries, 7th European Conference,
ECDL 2003, Trondheim, Norway, August 17-22, 2003, Proceedings,
Lecture Notes in Computer Science, pages 446–460. Springer-Verlag,
2003.

[TBS+03b] Robert Tansley, Mick Bass, David Stuve, Margret Branschofsky,
Daniel Chudnov, Greg McClellan, and MacKenzie Smith. The DSpace
Institutional Digital Repository System: current functionality. In
Proceedings of the third ACM/IEEE-CS joint conference on Digital
libraries, pages 87–97. IEEE Computer Society, 2003.

162 BIBLIOGRAPHY

[TCS01] Yannis Tzitzikas, Panos Constantopoulos, and Nicolas Spyratos. Me-
diators over Ontology-Based Information Sources. In WISE (1), pages
31–40, 2001.

[The02] The Library of Congress. Metadata Encoding and Transmission Stan-
dard. http://www.loc.gov/standards/mets/, February 2002.

[TKP04] Giannis Tsakonas, Sarantos Kapidakis, and Christos Papatheodorou.
Evaluation of User Interaction in Digital Libraries. In Maristella
Agosti and Norbert Fuhr, editors, Revised Notes of the DELOS WP7
Workshop on the Evaluation of Digital Libraries, Padua, Italy, Novem-
ber 2004.

[Tzi02] Yannis Tzitzikas. Collaborative Ontology-based Information Indexing
and Retrieval. PhD thesis, Department of Computer Science, Univer-
sity of Crete, September 2002.

[Ull88] Jeffrey D. Ullmann. Principles of Database and Knowledge-Base Sys-
tems. Computer Science Press, 1988.

[WB02] Ian H. Witten and David Bainbridge. How to Build a Digital Library.
Elsevier, 2002.

[WBB01] Ian H. Witten, David Bainbridge, and Stefan J. Boddie. Power to the
People: End-user Building of Digital Library Collections. In Proceed-
ings of the first ACM/IEEE-CS joint conference on Digital libraries,
pages 94–103. ACM Press, 2001.

[Wie95] G. Wiederhold. Digital libraries, value, and productivity. Communi-
cation of the ACM, 38(4):85–96, 1995.

[WSY+02] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen.
Optimal crawling strategies for web search engines. In WWW ’02:
Proceedings of the 11th international conference on World Wide Web,
pages 136–147, New York, NY, USA, 2002. ACM Press.

[WWC92] G. Wiederhold, P. Wegner, and S. Ceri. Toward Megaprogramming.
Communication of the ACM, 38(11):89–99, November 1992.

[XCLN98] Jian Xu, Yinyan Cao, Ee-Peng Lim, and Wee-Keong Ng. Database
selection techniques for routing bibliographic queries. In Proceedings
of the third ACM conference on Digital Libraries, pages 264–274. ACM
Press, 1998.

[YL97] Budi Yuwono and Dik Lun Lee. Server Ranking for Distributed Text
Retrieval Systems on the Internet. In Database Systems for Advanced
Applications, pages 41–50, 1997.

BIBLIOGRAPHY 163

[Z3903] ANSI/NISO Z39.50 Information retrieval: Application Service Defi-
nition & Protocol Specification. NISO Press, National Information
Standards Organization, 2003.

[ZCF+97] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass,
V. S. Subrahmanian, and Roberto Zicari. Advanced Database Systems.
Data Management Systems Series. Morgan Kaufmann, 1997.

[ZGS+03] Q. Zhu, M. A. Gonçalves, R. Shen, L. Cassell, and E. A. Fox. Vi-
sual Semantic Modeling of Digital Libraries. In Traugott Koch and
Ingeborg Sølvberg, editors, 7th European Conference on Research and
AdvancedTechnology for Digital Libraries, ECDL 2003, Lecture Notes
in Computer Sciences, pages 325–337, Trondheim, Norway, August
2003. Springer-Verlag.

