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Abstract
Hierarchical text categorization (HTC) approaches have recently attracted a lot of interest on the part of researchers in human language
technology and machine learning, since they have been shown to bring about equal, if not better, classification accuracy with respect
to their “flat” counterparts while allowing exponential time savings at both learning and classification time. A typical component of
HTC methods is a “local” policy for selecting negative examples: given a category c, its negative training examples are by default
identified with the training examples that are negative for ¢ and positive for the categories sibling to c in the hierarchy. However, this
policy has always been taken for granted and never been subjected to careful scrutiny since first being proposed ten years ago. This
paper proposes a thorough experimental comparison between this policy and three other policies for the selection of negative examples
in HTC contexts, one of which (BESTLOCAL(k)) is being proposed for the first time in this paper. We compare these policies on the
hierarchical versions of two among the most important classes of supervised learning algorithms, boosting and support vector machines,

by performing experiments on two standard TC datasets, REUTERS-21578 and RCV1-v2.

1. Introduction

Given a set of textual documents D and a predefined set
of categories (aka labels, or classes) C = {c1,...,¢m},
multi-label (aka n-of-m) text classification (TC) is the
task of approximating, or estimating, an unknown target
Sfunction ® : D x C — {—1,+1}, that describes how
documents ought to be classified, by means of a function
d:DxC — {—1,+1}, called the classifier”'. Here,
“multi-label” indicates that the same document can belong
to zero, one, or several categories at the same time.
Hierarchical text classification (HTC) refers to a vari-
ant of the TC task, namely, that in which the set C' of
the categories is organized into a hierarchy; this may ei-
ther be a tree or a directed acyclic graph (DAG). HTC
approaches have recently attracted a lot of interest on the
part of researchers in human language technology and ma-
chine learning, since they have been shown to bring about
equal, if not better, classification accuracy with respect to
their “flat” counterparts while allowing exponential time
savings at both learning and classification time.
Multi-label HTC is usually implemented by generating
a binary classifier for each nonroot node in the hierarchy
(be it an internal or a leaf node); the role of this classi-
fier is to decide whether the test document belongs or not
to the category associated with the node. Classification is
then performed in “Pachinko machine” style (Koller and
Sahami, 1997): the test document is first submitted to the
classifiers corresponding to the top-level nodes, and recur-
sively percolates down to (i.e., is submitted to the classi-
fiers corresponding to the nodes in) the lower levels of the
hierarchy only if the classifiers at the higher levels have
deemed that the document belong to their associated cat-
egory. In this way, entire subtrees are pruned from con-
sideration, which allows exponential savings at classifica-
tion time (Chakrabarti et al., 1998; Koller and Sahami,

!Consistently with most mathematical literature we use the
caret symbol (7) to indicate estimation.

1997). This is fundamental when tackling classification
tasks characterised by very high numbers of categories, as
is the case e.g., of the OHSUMED dataset (Hersh et al.,
1994), the WIPO-ALPHA dataset (Fall et al., 2003), and
the YAHOO dataset (Liu et al., 2005), which all contain
tens of thousands of categories.

Exponential savings can also be accomplished at learn-
ing time. One way for achieving this is performing feature
selection “locally” (Koller and Sahami, 1997), i.e., select-
ing, for a classifier corresponding to category c, only the
features that are most useful in discriminating among c
and the categories that are sibling to it in the hierarchy; in
this way the vector space in which the documents are rep-
resented can be much smaller, thus bringing about speed-
ier learning (and classification too).

A second way of speeding up learning in HTC is
adopting a “local” policy for selecting negative examples:
given a category c, its negative training examples are iden-
tified with the training examples that are negative for ¢
and positive for the categories sibling to ¢ in the hierar-
chy. However, this policy (hereafter called the SIBLINGS
policy) has always been taken for granted and never been
subjected to careful scrutiny since first being proposed
in (Wiener et al., 1995).

This paper proposes a thorough experimental com-
parison between this policy and three other policies for
the selection of negative examples in HTC, one of which
(BEsTLOCAL(k)) is being proposed for the first time in
this paper. We provide an intuitive basis for these policies
and test them on the hierarchical versions of two among
the most important classes of supervised learning algo-
rithms, boosting and support vector machines, by perform-
ing experiments on two standard TC datasets: (a hierarchi-
cal version of) a small dataset consisting of approximately
11,000 documents (REUTERS-21578), and a very large
dataset of more than 800,000 documents (RCV1-v2).

The paper is organized as follows. In Section 2. we
outline the basic scheme for learning hierarchical text clas-



sifiers that, in our experiments, we will instantiate with
boosting and SVMs as base learners. Section 3. describes
in detail the four policies for the selection of negative
training examples, while Section 4. describes the compar-
ative experiments we have run. Section 5. concludes.

2. A pattern for multi-label HTC

In this section we describe the basic pattern to which we
will conform in building a hierarchical classifier as a hier-
archy of standard binary classifiers. Let us first fix some
notation. Let H = (I, L) be a tree-structured set of cate-
gories, where [ = ({i1, Tr™(i1)), ..., (in, TrT(i,))) and
L = (I, Tr*(l1)), ..., Iy, Tr+ (L)) are the sets of
categories of H corresponding to the internal nodes (here-
after: internal categories) and the leaf nodes (leaf cate-
gories) of H, respectively, together with their sets of pos-
itive training examples, and r € I is the root category of
H?. For each category ¢; € H we will use the following
abbreviations:

Symbol Meaning

TrT(c;) | the set of positive training documents of c¢;

Tr~(c;) | the set of negative training documents of c;
T(ej) the parent category of c;
1(¢j) the set of children categories of ¢;
Mej) the set of ancestor categories of ¢;
U(ej) the set of descendant categories of c¢;
—(cj) the set of sibling categories of ¢;

Table 1: Notational conventions.

We also assume that documents can belong to zero, one,
or several leaf categories in L, and that the set of positive
examples of an internal category ; is always given by the
union of the positive examples of its descendant leaf cat-
egories. In other words, an internal category can contain
no documents that do not belong to at least one of its de-
scendant leaf categories. This is a common constraint in
many HTC applications, but the assumption is not restric-
tive anyway>. When it comes to training examples, it thus

2Throughout this paper we will always refer to tree-shaped
hierarchies; however, all our arguments straightforwardly apply
to DAG-shaped hierarchies (see Footnote 4).

3In fact, without loss of generality, given a hierarchically
structured set of categories H in which internal categories can
indeed contain documents that do not belong to any of their de-
scendant leaf categories, we can map H into an “extended” set
of categories H' by appending to every internal node c; of H an
additional child (leaf) node ¢}, and by moving into ¢} all docu-
ments originally contained in c¢;. This mapping, originally pro-
posed in (Cheng et al., 2001), produces a hierarchy H’ seman-
tically equivalent to H in which all documents are indeed con-
tained in leaf categories only. Note that many real-world clas-
sification schemes (e.g. the ACM Classification Scheme) are of
this latter type, since their internal nodes usually have a special
child category (called “General”, or “Other”) which contains all
documents belonging to the node but to none of its descendant
leaves.

procedure TREELEARNER (H , 7, np, learner)
begin
if not (r is a leaf category) then
foreach child in |(r) do
Tr~ (child) = getNegatives(H, r, child,
np);
train(child, learner);
TREELEARNER(H, child, np, learner);,
end

else
do nothing;
end
end

Figure 1: The TREELEARNER scheme; H, r, np, and
learner indicate the hierarchy, its root, the chosen policy
for the selection of negative training examples, and the
chosen learner, respectively.

follows that

Trt(cj) = U Trt(1)

led(cy)

We assume that all training examples belong to at least one
leaf category I; € L; the training set 7'r thus coincides
with Ulj GLTT+ (lj)

Figure 1 describes the basic scheme (called TREE-
LEARNER) to which we conform in building a hierarchi-
cal classifier. A base learner that generates binary classi-
fiers is passed as a parameter to TREELEARNER; in Sec-
tion 4.2. we will alternatively instantiate the pattern by a
boosting-based learner or by an SVM-based learner, thus
generating the TREEBOOST and TREESVM hierarchical
learners. Also the policy for the selection of negative ex-
amples is passed as a parameter to TREELEARNER; this
will allow us to compare experimentally the four different
policies mentioned in the introduction.

The scheme is defined as a recursive procedure which,
for each nonroot (internal or leaf) category c;, generates a
binary classifier from 77" (¢;) and the chosen T~ (¢;).

3. Choosing negative examples in
hierarchical text categorization

In this work we have tested four different strategies for se-
lecting negative training examples for a given category.
In the following we give a description of the strategies
used and we try to explain the key ideas behind each pol-
icy. Moreover, for each proposed method, we give de-
tails about its computational cost by describing the cost
of selecting negative documents for each category and the
impact that the number of selected examples has on the
learning phase.

3.1. The SIBLINGS policy

According to the SIBLINGS policy the set of negative
training documents for category c; is chosen among the
training documents that are not positive for ¢; and may
be assumed to be most correlated to c; on topological



grounds alone. That is, it is composed of all the train-
ing documents which are not positive for ¢; and positive
for the categories sibling of ¢;: i.e.%,

Tr=(cj) =

U Tr*(c)

ce—(cj)

[ Tr(e;) (D

There are two main intuitions behind this policy.

The first intuition is that, if the classifier associated
to T (¢j) has generated no false positives, the classifier
associated to c; will only be asked to classify documents
that belong to ¢; and/or one or more among its siblings.
If this is the case, it is clear that including in Tr (c;)
documents that are neither positive for ¢; nor for any of
its siblings would distract the classifier from focusing on
the only distinction that matters in this context, i.e., that
between c¢; and its siblings.

The second intuition is that this is the policy that most
closely conforms to the divide et impera view of HTC
at the base of the TREELEARNER scheme, in which the
multi-label problem of classifying documents into a hier-
archy H = (I, L) is decomposed into several flat classifi-
cation problems, one for each i; € I, in which the set of
categories concerned is | (7).

The SIBLINGS policy, originally proposed in (Wiener
et al., 1995), was subsequently adopted in, e.g., (Chiang
and Chen, 2001; Dumais and Chen, 2000; Esuli et al.,
2006b; Liu et al., 2005; Ng et al., 1997; Ruiz and Srini-
vasan, 2002; Sun and Lim, 2001; Weigend et al., 1999),
and quickly became the standard choice for HTC contexts.

3.2. The ALL policy

According to the ALL policy the set 77~ (c;) of negative
training documents for category c; is simply the entire
training set minus the positive training documents of c;,
ie.,
Tr=(c;) =Tr/Tr*(c;) (2)

In a sense, ALL is a “brute force” policy that disregards
the hierarchical structure of the set of categories, treat-
ing the HTC problem as a flat classification problem in
which no particular selection criterion is used. This pol-
icy was used in what can be considered the very first HTC
paper (Wiener et al., 1995), but was soon superseded by
the SIBLINGS policy. However, is still a frequently used
policy whenever the HTC classification problem is not de-
composed into recursively smaller flat classification prob-
lems (as in, e.g., (Kiritchenko et al., 2006)).

Again, there are two main intuitions behind the ALL
policy.

The first intuition is that it is generally the case that the
classifier associated to T (c;) may indeed generate some

“Note that, if the hierarchy is tree-shaped, each category c;
has a single set of siblings, but if the hierarchy is DAG-shaped
c; has in general several such sets, since it has several parent
categories. In the DAG case the set of categories sibling of c;
to be considered in the SIBLINGS policy is simply the union of
the various sets of siblings of c; as deriving from the multiple
parents of c;. Note that the three other policies we discuss in this
paper do not use the hierarchical structure of the category set,
hence they work for tree- and DAG-shaped hierarchies alike.

false positives, typically corresponding to documents that
belong neither to ¢; nor to any of its siblings, but to some
other category in H. In this case, if the classifier for ¢;
had been trained (according to the SIBLINGS policy) only
with training examples belonging to T (c;), it might be
unequipped to correctly recognize (i.e., reject) documents
that are very different from the ones it has been tested on.

The second intuition is that “the more training data, the
better”, i.e., that using additional (albeit negative) training
examples may only bring about equally or more accurate
classifiers, provided efficiency is not an issue.

3.3. The BESTGLOBAL policy

The third policy we discuss, dubbed BESTGLOBAL, has
similarities to SIBLINGS in that it tries to substantially
limit the size of Tr~ (c;), and has similarities to ALL in
that it disregards the hierarchical structure of the category
set, thus basing the selection process on non-topological
considerations. While it has never been used to date in a
hierarchical context, BESTGLOBAL simply coincides with
the “query zoning” selection strategy proposed in (Singhal
et al., 1997) for flat classification, and subsequently used
in (Schapire et al., 1998).

In order to implement BESTGLOBAL one first com-
putes the centroid of Tr(c;), i.e., the document ((c;)
whose vectorial representation is obtained by?

(lef) = > 4y 3)

B +(c.
|TT (CJ)| dpeTrt(c;)

The T'r~(c;) set is then defined as the set of the 3; docu-
ments in 7'r /Tr* (¢;) that minimize the distance from this
centroid, according to some measure ¢ of vector distance;
ie.,

Bj

Tr~(cj) = arg min

0 i), dn,
dn €Tr/Tr+(cj) (C(CJ>7 )

z
where arg mjn f indicates the bottom-ranked z elements

of A according to function f. The rationale behind this
policy is that the documents thus selected may be viewed
as “near-positives” for c;, i.e., documents that tend to lie
Jjust outside the region where the positive examples lie. As
such, they tend to be the most informative negative train-
ing documents since they allow a learner to fine-tune the
choice of a classifier, i.e., of a surface that separates the
above region from that of the negative examples. In this,
the notion of a near-positive training example is akin to
the notion of support vector in kernel machines.

Note that also the SIBLINGS policy may be viewed
as a policy for the selection of near-positives. The dif-
ference with BESTGLOBAL is that SIBLINGS makes this
choice based on topological considerations alone, i.e., by
making the assumption that the negative documents of ¢;
that are most similar to the positive documents of ¢; are
likely to be the positive documents of c;’s siblings. BEST-
GLOBAL instead equates similarity with closeness in the

5Tn order to simplify the notation, in this paper we will indi-
cate by the same symbol d; a document or its vectorial represen-
tation; the intended meaning will be clear from the context.



vector space in which the documents are represented. SIB-
LINGS is thus a policy specific to a hierarchical setting,
while BESTGLOBAL is not.

3.4. The BESTLOCAL(K) policy

We here propose a fourth selection policy (dubbed
BESTLOCAL(k)), that essentially consists in a variant of
BESTGLOBAL aimed at improving the selection of nega-
tive training examples for categories that are not linearly
separable.

The disadvantage of the BESTGLOBAL policy is that
the centroid of T'r(c¢;) may be too coarse a representa-
tion of the region of the negative examples of c;. If ¢;
is linearly separable the centroid is an optimal such rep-
resentation; if ¢; is not (i.e., if the separating surface in
the vector space has a complex form), the BESTGLOBAL
policy will select some negative examples that are in fact
far away from the separating surface, and will miss some
negative examples that are instead close to it.

A solution to this problem might be that of selecting
the (3; negative training examples whose distance from
any element of 77 (¢;) is minimum. In other words, if we
define the closest c;-positive training neighbour of docu-
ment d,, to be

x(d,) =arg min

5(d,,, d
dp €T (c;) (dn dp)

our policy selects the (; negative training documents d,
closest to x(d,), i.e.
Bj

arg min

d(x(dn),dn
dn€Tr/Tr+(cj) (X( ) )

We call this policy BESTLOCAL(1). This policy avoids
selecting examples that, while close to the centroid of
Tr*(cj), are too far from the separating surface, and
missing examples that, while far from the centroid of
Tr*(c;), are very close to the separating surface.

A generalization of this policy is obtained by select-
ing the (3; negative training examples d,, for which the
sum of the distances from d,, and its closest k elements of
Tr*(c;) is minimum. In other words, if we define the k
closest c;-positive training neighbours of document d,, to
be

k
k .
d,) = ar min
X" (dn) gd,}GTTJr(cj)

6(dn, dyp)

our policy selects the 3; negative training documents d,,
for whom the sum of the distances between d,, and each
of the x*(d,,) is minimum, i.e.

Bj

arg min E
dn€T7/Tr+(c;
n T/ r (cj)dpexk(dn)

5(dp7 dn)

We call this policy BESTLOCAL(k). This policy trades
the specificity (i.e, the ability to individuate docu-
ments extremely close to the separating surface) of
BESTLOCAL(1) for the robustness (i.e., the ability to
avoid outliers) of BESTGLOBAL, and may be seen as an
attempt to “smooth” BESTLOCAL(1) by insisting that, in
order to be selected, a negative example must be close not
to just one but to several elements of 77" (c;).

Similarly to what happens for the BESTGLOBAL
policy, also the negative examples selected by
BESTLOCAL(k) allow a learner to fine-tune the choice
of a surface that separates the positive region from the
negative region, and in this case too these examples play a
role akin to the support vector in kernel machines. In this
case the k parameter is used to trade the fit of the model
for its simplicity, i.e., its generalization capability: lower
numbers of k£ bring about complex separating surfaces
that may tend to overfit the training data, while higher
values of k bring about simple separating surfaces that fit
the model less but tend to be more robust.

4. Experiments
4.1. The datasets

The first dataset we have used in our experiments is the
“REUTERS-21578, Distribution 1.0” corpus, one of the
most widely used datasets in TC research®. In origin,
the REUTERS-21578 category set is not hierarchically
structured, and is thus not suitable “as is” for HTC ex-
periments; we have thus used a hierarchical version of
it generated in (Toutanova et al., 2001) by the applica-
tion of hierarchical agglomerative clustering on the 90
REUTERS-21578 categories that have at least one posi-
tive training example and one positive test example. The
original REUTERS-21578 categories are thus “leaf” cat-
egories in the resulting hierarchy, and are clustered into
four “macro-categories” (see Table 2) whose parent cate-
gory is the root of the tree. Conforming to the experiments
of (Toutanova et al., 2001), we have used (according to the
ModApte split) the 7,770 training examples and 3,299 test
examples that are labelled by at least one of the selected
leaf categories; the average number of leaf categories per
document is 1.23, ranging from a minimum of 1 to a max-
imum of 15. The average number of positive examples per
leaf category is 106.50, ranging from a minimum of 1 to a
maximum of 2,877.

The second dataset we have used is REUTERS COR-
PUS VOLUME 1 version 2 (RCV1-v2)’, a more recent
text categorization dataset made available by Reuters and
consisting of 804,414 news stories produced by Reuters
from 20 Aug 1996 to 19 Aug 1997; all news stories are
in English, and have 109 distinct terms per document on
average (Rose et al., 2002). In our experiments we have
used the “LYRL2004” split defined in (Lewis et al., 2004),
in which the (chronologically) first 23,149 documents are
used for training and the other 781,265 are used for test-
ing. Out of the 103 “Topic” categories, in our experiments
we have restricted our attention to the 101 categories with
at least one positive training example. The RCV1-v2 hi-
erarchy is four levels deep (including the root, to which
we conventionally assign level 0); there are four internal
nodes at level 1, and the leaves are all at the levels 2 and
3. The average number of leaf categories per document

SREUTERS-21578 is freely available for experimenta-
tion purposes from http://www.daviddlewis.com/—
resources/testcollections/ reuters21578/

"Freely available from http://trec.nist.gov/-
data/reuters/reuters.html.



Macrocategory Member categories
barley, carcass, castor-oil, cocoa, coconut, coconut-oil, coffee, copra-cake, corn cotton, cotton-oil, grain,
commodities groundnut, groundnut-oil, hog, 1-cattle, lin-oil, livestock, lumber, meal-feed, oat, oilseed, orange, palm-
oil, palmkernel, pet-chem, potato, rape-oil, rapeseed, rice, rubber, rye, ship, sorghum, soy-meal, soy-oil,
soybean, sugar, sun-meal, sun-oil, sunseed, tea, veg-oil, wheat
financial acq, bop, cpi, cpu, dfl, dIr, dmk, earn, gnp, housing, income, instal-debt, interest, ipi, jobs, lei, money-fx,
money-supply, nkr, nzdlr, rand, reserves, retail, trade, wpi, yen
metals alum, copper, gold, iron-steel, lead, nickel, palladium, platinum, silver, strategic-metal, tin, zinc
energy crude, fuel, gas, heat, jet, naphtha, nat-gas, propane

Table 2: REUTERS-21578 macro-categories and their member categories (from (Toutanova et al., 2001)).

is 3.18, ranging from a minimum of 1 to a maximum of
14. The average number of positive training examples per
leaf category is 729.67, ranging from a minimum of 1 to a
maximum of 10,786 documents.

4.2. [Experimental settings and evaluation measures

As the base learner for the TREELEARNER procedure we
have decided to use an SVM-based learner and a boosting-
based learner, since kernel machines and boosting are cur-
rently two among the classes of supervised learning de-
vices that tend to obtain the best performance in a vari-
ety of learning tasks and, at the same time, have strong
justifications from computational learning theory. The
first learner is the SVM implementation embodied in the
svm_light package (Joachims, 1998)%, which we have
run with a linear kernel and its parameters set at their de-
fault values. In the experiments this configuration will be
referred to as TREESVM. The other learning algorithm
we have used is MP-Boost (Esuli et al., 2006a), a learner
based on boosting technology, which we have obtained
from the authors. In all the experiments the algorithm has
been run with a number of iterations fixed to 1,000. In the
rest of the article this configuration will be referred to as
TREEBOOST’.

In all the experiments discussed in this section, punctu-
ation has been removed, all letters have been converted to
lowercase, numbers have been removed, stop words have
been removed using the stop list provided in (Lewis, 1992,
pages 117-118), and stemming has been performed by
means of Porter’s stemmer. All remaining terms that oc-
cur at least once in 7'r have thus been used as dimensions
of our vectorial representations of documents. No feature
selection has been performed.

The vectors provided as input to TREESVM have been
obtained by the “ltc” variant (Salton and Buckley, 1988))
of the well-known ¢ fidf class of weighting functions, i.e.

tfidf (tx,d;) =tf(ty, d;) - log ##L??lk> @

where #7,.(t;.) denotes the number of documents in T in

8Freely downloadable from
http://svmlight. joachims.org/

Note that our TREEBOOST is different from the TREE-
BooOsT.MH algorithm of (Esuli et al., 2006b); in fact, while
we use MP-Boost as base learner, TREEBOOST.MH uses AD-
ABOOST.MH (Schapire and Singer, 2000).

which ¢ occurs at least once and

N 1+ log #(tk,d;) if #(tx,d;) >0
tf(tr, dj) = {0 otherwise

where #(tx,d;) denotes the number of times t; occurs
in d;. Weights obtained by Equation 4 are normalized
through cosine normalization, i.e.

vy = i) )

VT tfidf (. d,)?

The vectors provided as input to TREEBOOST are instead
binary; this is a constraint imposed by the use of MP-
Boost as base learner.

As a measure of effectiveness that combines the con-
tributions of precision () and recall (p) we have used the
well-known F function, defined as

2np 2TP
7+p 2IP+FP+FN

b = (6

which corresponds to the harmonic mean of precision and
recall; here T'P stands for true positives, F'P for false pos-
itives, and F'N for false negatives. Note that F} is unde-
fined when TP = FFP = FFN = 0; in this case we take
I to equal 1.0, since the classifier has correctly classified
all documents as negative examples.

We compute both microaveraged F; (denoted by F}")
and macroaveraged Fy (FM). F}' is obtained by (i) com-
puting the category-specific values T'P;, (ii) obtaining T'P
as the sum of the T'P;’s (same for F'P and F'IN), and then
(iii) applying Equation 6. F}M is obtained by first comput-
ing the F7 values specific to the individual categories, and
then averaging them across the ¢;’s. Of course, only leaf
categories are considered in the evaluation.

4.3. Results

While the number 3; = |Tr~ (¢;)| of negative training ex-
amples chosen for each category c; is not under user con-
trol for the ALL and SIBLINGS policies, it can be set by the
user for BESTGLOBAL and BESTLOCAL(k). In order to
allow a fair comparison between SIBLINGS (as argued in
the introduction, the main focus of our comparative study)
and BESTGLOBAL / BESTLOCAL(k), for these two latter
policies we always choose the same number 3; of nega-
tive training examples as selected by the SIBLINGS pol-
icy. Of course, different 3; are thus chosen for different
categories.
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Figure 2: Influence of parameter k£ on the effectiveness of
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Figure 3: Influence of parameter % on the effectiveness of
the BESTLOCAL(k) policy on RCV1-v2.

4.3.1. Effectiveness

Before comparing the four policies we need to analyze
more in detail the BESTLOCAL(k) policy and how it de-
pends on the k parameter. In Figures 2 and 3 we show how
BESTLOCAL(k) behaves as a function of kK on REUTERS-
21578 and RCV1-v2. We have tested all integer values
of k up to 20 by five-fold cross-validation on the train-
ing set.  As evident from these plots, BESTLOCAL(k)
proves fairly insensitive to the value of &, both for micro-
and macroaveraged F and on both datasets. Only on the
RCV1-v2 dataset macroaveraged F; seems to decrease
slightly as the value of k increases. These results suggest
setting k to a low value; we have thus fixed it to 1 for all
our experiments.

Table 3 shows the results obtained with the four poli-
cies discussed, on REUTERS-21578 and on RCV1-v2,
with TREEBOOST and with TREESVM; Table 4 summa-
rizes these results by averaging across datasets and learn-
ers. The most important observation we can make from
Table 3 is that ALL is always the winner in terms of preci-
sion and SIBLINGS is always the winner in terms of recall.

T A R 7 R

TREEBOOST
ALL 840 | 823 | .831 || .835 | .525 | .547
SIBLINGS 810 | .842 | .826 || .747 | .538 | .540

BESTGLOBAL 818 | .824 | .821 804 | .532 | .545
BEsSTLOCAL(1) || .830 | .828 | .829 | .812 | .528 | .547

TREESVM
ALL 912 | 805 | .855 || 961 | .376 | .433
SIBLINGS .898 | .825 | .860 || .951 | .402 | .458

BESTGLOBAL 906 | .810 | .855 || .960 | .379 | .436
BESTLOCAL(1) || .902 | .811 | .854 || .959 | .379 | 434

R R AR R
TREEBOOST

ALL 854 | 685 | .760 || .690 | .389 | 471

SIBLINGS J71 | 726 | 748 || 569 | .469 | .492

BESTGLOBAL 77 1699 | 736 || .594 | 408 | .455
BESTLOCAL(1) || .794 | 707 | .748 || .597 | 427 | 474

TREESVM
ALL 945 | 627 | 754 || .892 | 229 | .387
SIBLINGS .881 | .694 | .776 || .807 | .410 | .479

BESTGLOBAL 902 | .664 | .765 || .835 | 332 | 411
BESTLOCAL(1) || .925 | .658 | .769 || .865 | .336 | .422

Table 3: Results on REUTERS-21578 (top) and RCV1-
V2 (bottom).

oy P P .74 pM 7
ALL 894 | 705 | .785 || .837 | .377 | .446
SIBLINGS 878 | 728 | .792 || .822 | .397 | 457

BESTGLOBAL .886 | 716 | .788 || .830 | .387 | .452
BESTLOCAL(1) || .886 | .716 | .788 || .830 | .387 | .452

Table 4: Results averaged across two datasets (REUTERS-
21578 and RCV1-v2) and two hierarchical learners
(TREEBOOST and TREESVM).

When it comes to balancing precision and recall into F},
however, the situation is more uncertain, with SIBLINGS
and ALL winning out as best performers in approximately
the same number of cases. However, Table 4 shows that,
in the average, (i) SIBLINGS performs better than ALL,
and (ii) BESTGLOBAL and BESTLOCAL(k), while never
the best performers, always perform fairly well, actually
better than ALL on average.

However, the key observation to be made is that the
differences in effectiveness (both for F}' and for F{M)
among the four methods are pretty small anyway: more
precisely, they are very small on REUTERS-21578 and
slightly more marked in RCV 1-V2, in particular for F{¥.

4.3.2. Efficiency

In the absence of a clear winner in terms of effectiveness,
efficiency considerations should also be considered. The
computational cost that the different policies bring about
depends on (i) the number of negative examples that are
fed to the training phase, and (ii) the cost of selecting these
negative examples.



In terms of issue (i), ALL is clearly more expensive
than SIBLINGS. While the average number of negative
training examples per category (averaged across all cat-
egories, internal and leaf) generated by the ALL pol-
icy was 7583.6 on REUTERS-21578 and 22419.3 on
RCV1-v2, the SIBLINGS policy generated 2435.7 on
REUTERS-21578 and 4383.8 on RCV1-v2 (i.e., 68%
less on REUTERS-21578 and 80% less on RCV1-v2).
Since the computational cost of training is, for most su-
pervised learning algorithms, at least linear in the number
of training examples (it is certainly so for the two base
learners we have used in our experiments: see (Joachims,
2006; Esuli et al., 2006a)) this translates in a consider-
able advantage for SIBLINGS at training time. Concerning
BESTGLOBAL and BESTLOCAL(k) nothing can be said
concerning this aspect, since the number of negative train-
ing examples that are selected is chosen by the user. How-
ever, BESTGLOBAL and BESTLOCAL(k) are akin in spirit
to SIBLINGS, in that their very aim is the reduction of the
number of negative training examples to be selected; we
may thus consider them on a par with SIBLINGS.

In terms of issue (ii), however, ALL and STBLINGS are
the clear winners, since they do not require any extra time
for individuating the negative training examples. For this
BESTGLOBAL and BESTLOCAL(k) instead require con-
siderable additional time. If we indicate with a; and (3;
the numbers of positive and (selected) negative training
examples for ¢;, BESTGLOBAL requires, for each cate-
gory, O(a;) sums of vectors for computing the centroid
and O(; log 3;) vector similarity computations for rank-
ing the set of negative training examples. BESTLOCAL(k)
is even more expensive, requiring O(«;3;) vector sim-
ilarity computations for obtaining the x(d,,) values and
O(B;log B;) comparisons for finally choosing the nega-
tive training examples.

All in all, it is clear that, on grounds of efficiency
alone, SIBLINGS wins on the other three policies. Since
it is also one of the two most effective policies, this means
it should indeed be the policy of choice in HTC applica-
tions.

5. Conclusion

We have presented an extensive experimental comparison
among four different policies for selecting negative exam-
ples in hierarchical text classification. Our aim was to test
the conjecture according to which the best policy for selec-
tive negative examples for a category c; is the SIBLINGS
policy, namely, that of selecting the examples that are neg-
ative for c; and positive for the categories that are sibling
to ¢; in the category hierarchy. This conjecture, although
widespread, had never been subjected to careful scrutiny.
Our experiments, conducted by using hierarchical ver-
sions of two major learning algorithms on two popular text
categorization datasets, have shown that, although no pol-
icy systematically outperforms all others, the SIBLINGS
policy outperforms the others on average. Since SIB-
LINGS is, as we have argued, the policy which carries
the smallest computational cost, we can conclude that is
should indeed be the policy of choice in HTC applications.
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