

SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2007-1.2.1 Research Infrastructures

DRIVER II

Grant Agreement 212147

“Digital Repository Infrastructure Vision for European Research II”

Enabling Services Enhancement Specification

Deliverable Code: D7.1

D7.1 Enabling Services Enhancement Specification Page 1 of 18

D7.1 Enabling Services Enhancement Specification Page 2 of 18

Document Description

Project

Title: DRIVER, Digital Repository Infrastructure Vision for
European Research II

Start date: 1st December 2007

Call/Instrument: INFRA-2007-1.2.1

Grant Agreement: 212147

Document

Deliverable number: D7.1

Deliverable title: Enabling Services Enhancement Specification

Contractual Date of Delivery: 1st of February 2008

Actual Date of Delivery: 1st of March 2008

Editor(s): CNR

Author(s): Paolo Manghi, Wojtek Sylwestrzak

Reviewer(s): M.Hatzopoulos

Participant(s): Michele Artini, Federico Biagini, Natalia Manola, Marko
Mikulicic, Vassilis Stoumpos

Workpackage: WP7

Workpackage title: Enhancing Infrastructure Sustainability and Research
Integration

Workpackage leader: CNR

Workpackage participants: NKUA, ICM, CNR

Distribution: Public

Nature: Deliverable

Version/Revision: 1.3

Draft/Final: Draft

Total number of pages:

(including cover)

18

File name: D7_1.pdf

D7.1 Enabling Services Enhancement Specification Page 3 of 18

Key words: Security, Discovery, Registration, Subscription and
Notification, Core communication libraries

D7.1 Enabling Services Enhancement Specification Page 4 of 18

Disclaimer
This document contains description of the DRIVER II project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and publication
of this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DRIVER consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

DRIVER is a project funded by the European Union

D7.1 Enabling Services Enhancement Specification Page 5 of 18

Table of Contents

Document Description...2

Disclaimer ...4

Table of Contents ..5

Table of Figures...6

Summary...7

1 Introduction ..8

2 Enabling Services ..9

3 Improving the Services ...11

4 Enriching the Services ...13

5 Aligning the Services...16

6 References...18

D7.1 Enabling Services Enhancement Specification Page 6 of 18

Table of Figures
Figure 1 – DRIVER Infrastructure: the Architecture ..8

Figure 2 – DRIVER Infrastructure: running environment view ...9

D7.1 Enabling Services Enhancement Specification Page 7 of 18

Summary
This document describes the changes to be applied to the Enabling Services of the DRIVER
Testbed in order to enable a sustainable production infrastructure.

D7.1 Enabling Services Enhancement Specification Page 8 of 18

1 Introduction

The DRIVER Project delivered a Testbed infrastructure made of a number of Services
organized into three main layers: Enabling layer, Data layer and Functionality layer (see
Figure 1). The Services were deployed on a number of machines, i.e. DRIVER nodes, in
Europe and provided an effective and running proof of concept. The DRIVER-II Project has
the objective to deliver a running production-quality infrastructure, including all Services
envisaged in DRIVER, plus a set of extra Services, supporting Complex Objects storage and
management.

This document describes the changes to be applied to the Services in the Enabling Layer of
the DRIVER Testbed in order to enable a sustainable production infrastructure (Section 2).
Such changes have mainly to do with:

• Improvement of the Services (Section 3): refining the internal design of the Services
to make them more efficient and stable.

• Enrichment of the Services (Section 4): endowing the Services with additional
features which will improve the kind of “applications” to be built on top of the
infrastructure.

• Architecture alignment (Section 5): establishing common design for the DRIVER
Service detailed architectures and for the DRIVER Nodes internals.

The changes will be here described from the functional point of view; for the architectural
specification details, refer to [1].

Figure 1 – DRIVER Infrastructure: the Architecture

D7.1 Enabling Services Enhancement Specification Page 9 of 18

2 Enabling Services

The DRIVER Enabling Services have been extensively described in the DRIVER Project. Still
some introductory explanation is required in order to be able to understand the content of
this document, which is mainly destined to developers than generic readers.

The Enabling Services are the heart of the DRIVER Infrastructure. They ensure that
DRIVER Services at other layers can safely interact and cooperate to achieve the results
expected by the application scenarios running on top of DRIVER. In Figure 2 the layers are
visible as well as possible different communities running different applications, sharing part
of the services, in the same infrastructure. The services provide the following
functionalities.

Figure 2 – DRIVER Infrastructure: running environment view

Information Service (resource registration, update and discovery)

Any resource in the system should publish information about its existence, its location and
its current status through its own profile. Services can therefore search among the
resources available to the system, and find those that match their functional needs. For
example, at start-up, each Service needs to interact with the Information Service to register
its own profile. Thus, a Search Service needing to execute a query can search in the
Information Service the Index Service available (registered) and decide which to use to run
the query.

Authentication Service (resource authorization and authentication)

Any resource needs to authenticate before operating within the infrastructure and needs to
have the proper rights to execute some operations. Typical examples include user
authentication, but also Service authentication and secure Service-to-Service
communication, not to occur in malicious attacks.

Manager Service (resource orchestration and monitoring).

D7.1 Enabling Services Enhancement Specification Page 10 of 18

Resources available to the system can be orchestrated to accomplish certain operations in a
workflow; besides, resource behavior can be monitored automatically, in order to prevent
or adjust faulty scenarios. For example, the registration of a new Repository in the system
must be coordinated with the creation of the relative storage space into an MDStore
Service. The action is ruled by the Manager Service, which waits for special events and
reacts accordingly by orchestrating the Services available in the infrastructure.

ResultSet Service (Service APIs and data management)

Services can count on common mechanisms for acquiring or delivering large data sets
called ResultSet resources. ResultSets are containers of xml files, which offer paging and
optimized caching mechanisms for use by both providers and consumers. Indeed, data
providers, i.e. Services that must return a data set (e.g. Index Service on queries, MDStore
Service on record requests etc.), may consider to use a ResultSet Service to create their
output ResultSets rather than implement the ResultSet mechanism on their own. On the
other hand, Service that need to acquire large data sets, do not need to upload the entire
set, but can count on ResultSet references and paging functionalities to optimize data
transfer.

In the DRIVER project, DRIVER service implementation could be based on different
language platforms (Java, Perl and Phyton were used). In particular, services had to
independently implement the modules required to interact with the Enabling Services,
hence to join and run in the infrastructure context.

In the DRIVER-II Project, the Services will be implemented in the same Java platform and
adopt the same CXF-based framework for SOAP and Web Service support. Furthermore,
the Services will be based on a number of Core Common Libraries, meant to offer APIs on
the most common interaction patterns with the Enabling Services. The gained
independence from the Enabling layer enforces the following advantages:

• The time spent to implement a new Service is notably reduced;

• Efficiency, robustness and quality of the interaction with the Enabling layer are
isolated to the same set of libraries, which will therefore maximize these parameters
once for all;

• The Service implementation is not affected by changes in the implementation of the
Enabling Services; the Core libraries will be changed, tested, and sent over for
recompilation purposes to all Service developers.

D7.1 Enabling Services Enhancement Specification Page 11 of 18

3 Improving the Services

In what follows we describe the improvement to be applied to the Services in the Enabling
Layer: Information Service, Manager Service, Authentication and Authorization Service,
ResultSet Service and Hosting Node Manager Service.

3.1.1 Information Service
The Information Service has to be improved in two main directions:

• IS-SN (subscription & notification management): the Service conforms to the W3C
subscription notification standard [8][9]. However, for debugging reasons,
notification messages are currently delivered sequentially rather than being
broadcasted;

• IS-Store (storage scalability): currently the IS-Store component is built on top of
Exist v1.0, which does not perform well under certain concurrency conditions and
over a certain threshold of entries.

IS-SN (subscription & notification management)

The IS-SN is currently designed to send a sequence of notifications to the subscribed
Services. Blackboard notifications correspond to action messages sent by the Manager
Service to the commanded Service via orchestration protocol. According to the protocol
(well described in ScrewDRIVER [1]), such notifications have to be “consumed” by the
receiver, meaning that the receiving Service should answer to the notification with the right
message in its own profile blackboard. Currently, the IS-SN waits for such an answer
before the next blackboard notification is sent out. The approach, almost transactional, is
clearly tailored for debugging and development issues, but “optimistic” in production,
where Services might not answer for some time or adopt different answer techniques; e.g.
waiting for an action to be completed as for the UniBi Index Service.

The solution is that of “breaking” the queue dependencies. This can be done by creating
notifications and sending them out through two different parallel processes running in the
context of the IS-SN. The former will feed a queue of notifications, while the second will try
to consume the queue by exploiting time-out methodologies and raising exceptions when
needed.

IS-Store (storage scalability)

The solution to the potential bottle-neck, caused by the current implementation in
correspondence with the increment of entries and requests, is that of porting to Exist v1.2,
which seems to include more efficient algorithms and features, and re-design a distributed
low-level architecture (hidden to the consuming Services) for the IS-Store.

The IS-Store should “hide” a master physical store plus a number of synchronized replicas.
The master store is the one in charge of contacting the IS-SN, while all stores can be used
for discovery and access.

The approach can be further improved by devising another layer of access to IS-Store,
capable of satisfying special discovery needs of Services. The layer should maintain a “hot-
cache” of results to some discovery queries, frequently posed by Services. The idea is again
that of decreasing the load from the physical stores, but also to speed up the answers to
the consuming Services.

D7.1 Enabling Services Enhancement Specification Page 12 of 18

3.1.2 Manager Service
The Manager Service needs no special improvements, but enrichments as discussed below.
Its re-implementation in Java will also make it more stable and efficient.

3.1.3 Authentication and Authorization Service
The Authentication and Authorization Service needs to implement a higher level of
distribution, in order do manage the potentially large amount of Service and User
authentication and authorization requests.

3.1.4 ResultSet Service
The ResultSet Service needs to be re-designed in order to be more efficient and more
scalable. Its re-implementation in Java should be enough to overcome the current
limitations, which are mainly due to the inconsistencies of threads management in the Perl
environment.

3.1.5 Hosting Node Manager Service
The Service has to be re-implemented in Java, in order for all sites to have a common
Hosting Node Manager technology. Currently the Service does not require improvements,
but enrichments as indicated below.

D7.1 Enabling Services Enhancement Specification Page 13 of 18

4 Enriching the Services

In what follows we describe the enrichments to be applied to the Services in the Enabling
Layer: Information Service, Manager Service, Authentication and Authorization Service,
ResultSet Service and Hosting Node Manager Service.

4.1.1 Information Service
In realizing the DRIVER Testbed, the process of Services and “applications” development
revealed some flaws which are to be solved in DRIVER-II. In particular, the Information
Service has to be enriched in terms of the underlying logic of the resources it will handle.
The following changes must be applied at the Repository resource level and at the DRIVER
resource meta-level.

Repository Resources

Repository management should be modified in order to favor the generalization of the
“harvesting” pattern and integrate it with the ResultSet pattern. Currently, in the IS,
Repositories are described as special Service Resources answering to the OAI-PMH protocol
interface; Aggregator Services are in charge of harvesting one Repository Service
accordingly. This scenario reveals a number of flaws and inconsistencies:

1. Aggregator Services hard-code the notion of OAI-PMH harvesting, channeling
records from Repositories to MDStore Data Structures; this means that other
Services, for different purposes, cannot OAI-PMH harvest Repositories straightaway,
but need to pass through the corresponding MDStore DS or internally re-implement
OAI-PMH harvesting. For example, the Validator Service hard-codes the same OAI-
PMH harvesting process, because it needs to evaluate the records directly from the
Repositories, before these have been even visible and assigned to an Aggregator
Service.

2. The harvesting process is limited to OAI-PMH protocol, while others are to be made
available in the future.

3. Repositories are indeed Data Structures more than Services: DRIVER Services
return ResultSets and are actively registering and updating their profile to the IS.

Repository management logic in D-NET will draw a scenario where:
1. Repository Management Services are in charge of importing into DRIVER data

coming from Repository Data Structures. The Service is to be called with a
Repository DS and the OAI-PMH call to be called; it will return a ResultSet with the
relative results. Note that Repository Management Services can provide consuming
Services with extra methods, enriching the OAI-PMH protocol. An example, which
might turn out very useful in the DRIVER aggregation process, is that of a method
returning OAI-Items from a Repository. The form of the result would be a set of
Object Records, as well described in ScrewDRIVER wiki [1].

2. Aggregator Services are separated from Repository Management Services. They do
not handle Harvesting Instances anymore, but Transformation Data Structures.
Such DSs describe the input metadata formats of the transformation, the output
metadata format, and the set of rules in between. See ScrewDRIVER for further
details [1].

3. Repository DS can enter different statuses, as defined by the Repository workflow in
[7]. According to the workflow a Repository has first to be registered, then be
approved by an Aggregator Manager, and finally be harvested to integrate its

D7.1 Enabling Services Enhancement Specification Page 14 of 18

content into the DRIVER Information Space. The quality of its content is then
measured by means of the Validator Service, which will assign a rank to the
Repository. Searches based on the DRIVER repository rank might be possible.

Generic Resources

A number of resource logic notions have to be encoded in Resource Profiles and with new
types of Resources:

• Regions: set of resources defining the interaction boundaries of such resources. A
resource is activated in the context of a region and can only interact with the
resources in the same region at that moment in time. For example, an UI belongs to
one region; a query execution can only be demanded to the Search Services
available in the same region of the User Interface at search-time.

• Groups: set of resources bound together by particular application-oriented
properties. Groups do not define any interaction boundaries between the resources
they contain. For example, the Manager Service deals with scenarios where some
orchestration actions need to be sent to the same group of services; e.g. for
maintaining Index DS or MDStore DS replicas. By means of groups we can maintain
persistently groups of Service resources and write code that copes with groups, no
matter what the content is. Other application scenario may apply; for example
groups could be used to organize users into subgroups and write functionalities that
operate bulk operations on groups of users.

• API contracts: a Service implements an API whose contract establishes its method’s
signatures and semantics. WSDL and Java Stub of the Services are available from
the support site.

• Sub-Services: Services implementing only a part of an API contract. The existence
of sub-Services must be declared as an explicit dependency in the IS. Examples are:
the embedded ResultSet of the ICM Index obeys only to a sub-part of the ResultSet
Service contract, that of ResultSet access. As such, is a sub-ResultSet.

• Service status: service profiles should contain XML tags describing their current
status (pending, suspended, active etc), which is currently implemented by storing
the profiles in separate IS-Store file collections. This requirement naturally calls for
the extension of the “group of properties” notion adopted for Repository profiles to
all Resource profiles.

The Information Service will have to be aware of the notion of region and return resources
discovery results based on the region from which they were invoked. More specifically
Services willing to find resources will be returned an answer that depends on the region
from which they are acting. For example, the User Interface Service will act in a context
that depends on the logged User’s region context (for simplicity we may assume that all
users are running in the same region as the user interface service). A User firing a query is
implicitly asking the UI Service to send the query to one Search Service available in the
same region. In turn, the Search Service will discover which Index Data Structures in the
same region are available and capable of solving the query.

4.1.2 Manager Service
The Manager Service needs to work based on a special region of resources. The
infrastructure will feature one or more Manager Services per region, in charge of applying
the specific orchestration required within the region.

D7.1 Enabling Services Enhancement Specification Page 15 of 18

4.1.3 Authentication and Authorization Service
The Service needs to be aware of the notion of region of resources and check for the
correctness of Service-to-Service communication. To this aim, Services should always
perform actions within a specific region context and therefore interact with others based on
the boundaries of such context. Two problems arise here:

1. Region contexts should be part of each Service call to the Information Service and
to any other Service;

2. SOAP security protocols implementations offer a complete and tested framework
but are known to be cumbersome and have considerable impact on performance;
special solutions, exploiting the shape of SOAP envelope messages, are to be
studied.

4.1.4 ResultSet Service
No new features need to be added to the ResultSet Service.

4.1.5 Hosting Node Manager Service
In its current implementation the Service is limited to the update of its own profile to the IS
with information about the performance measures on the local resources. This information
is to be used by the Manager Service to undertake corrective actions, and improve the
overall quality of service, or warn administrators of potentially dangerous behaviors.

The next version of the Service will offer monitoring functionalities, by playing the role of
Munin and SmokePing client and serving one of the available Munin and Smokeping servers
available. Servers of both kinds gather information about clusters of DRIVER Nodes and
send specific alerts to the Manager Services. Alerts are fired by updating in the profile of
the Manager Service XML elements corresponding to special harming events.

Other implementations may be considered, following the similar Subscription&Notification
pattern and other strategies. For example, a Manager Service dedicated to the
management of all regions, rather than to a specific region.

How to form node clusters is to be decided. They could be based on DRIVER regions,
proximity, distribution measures etc.

D7.1 Enabling Services Enhancement Specification Page 16 of 18

5 Aligning the Services

Although not clearly indicated in the DoW [2], the design of a common DRIVER Node
architecture as well as the definition of Core Common Libraries, i.e. common software tools
for DRIVER Service construction, is naturally included in this specification.

5.1.1 DRIVER Node Architecture
The whole architecture will be Java-based. The choice does not hinder external
technologies, built within different platforms, to be integrated into DRIVER. On the other
hand it enables a helpful and uniform way of designing, developing and deploying DRIVER
Services. D-NET v1.0 will deliver common Service classes to be implemented, a set of
common libraries implementing core functionalities, and the definition of a common
DRIVER Node architecture.

In particular a DRIVER Node consists of Java Servlet container (for example, Apache
Tomcat) running a Hosting Node Manager Service (HNM). The Service communicates
information about the node status to the infrastructure Information Service; such
information regards network measures as well as local performance measures.

DRIVER Services

DRIVER Services implement a special DRIVER class Service (but may also not) and run on a
DRIVER Node as Servlet Container WebApps. Each Service is packaged as a WAR file,
containing the Service classes, resources (property files, spring bean definitions) and
dependencies (including the DRIVER Core Libraries, see Section 2.1). Finally, stub classes
files are to be placed in a special directory in the WebApps (details can be found at:
http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development on
ScrewDRIVER [1]).

Such scenario is the one that requires minimal modifications to the existing Java DRIVER
Services, while leaving the door open to future, more elegant, solutions. One of this would
be that of having all Services running inside the same WebApp, with the Hosting Node
Manager Service responsible for their life-cycle and their communications with the outside
world. In such scenario Services would we packaged in a DRIVER Archive (DAR) and could
be deployed on-the-fly as well as switched-off or restarted automatically by the
infrastructure (through the HNM) on demand. Not only, incoming and outgoing
communications could be filtered and optimized by the HNM: e.g. Services running on the
same node could communicate without HTTP/SOAP protocols. Note that, due to the IOC
development strategy currently adopted by the DRIVER Java developers, such changes turn
out to be quite natural.

Property files

We shall consider two main phases with respect to the alignment of the Services:
development and production. The difference between these emerges in the property file of
Services, which in development phase may contain references to all Services it needs to
refer, while in production it should only contain an indirect reference to the Information
Service (probably a constant domain and a reference to a DNS; this way the Services will
not even need a special Information Service address) and discover other services
dynamically.

http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development

D7.1 Enabling Services Enhancement Specification Page 17 of 18

During development the property-based configuration of all Services should follow the
same nomenclature in order to simplify the operation of deployment of the Services. The
structure and organization of these files can be found at:
http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development,
on ScrewDRIVER [1].

5.1.1 Core Common Libraries
DRIVER Services will have to be “aligned”, i.e. build according to the same technology, best
practices and methodologies. In particular, they will be Java based, based on the same
SOAP support (Apache CXF is the candidate), adhere to the same Service configuration and
packaging rules and, where possible, share the same Java libraries. Such libraries, namely
Core Common Libraries, deal with functionalities common to all Services for the interaction
with the enabling layer Services. The libraries will deal with:

• IS-Registry client: resource registration, deregistration, and resource profile
updates;

• IS-Lookup client (resource discovery): finding resource profiles whose properties
match given criteria

• Service locator: getting Service stubs;
• IS-SN client: subscribing a topic to the IS-SN.
• AAS client: security management
• Automatic IS registration

Dynamic Resource Discovery
On DRIVER nodes all Services will have to deal with dynamic discovery of Services through
the IS. The implication of this requirement is that the configuration files of the Services will
only consist of one IP reference to the IS. The approach can be further improved. Since
changing the IS reference implies an intervention in the configuration file of all Services
referring to the IS, the IS reference can be indirect, i.e. a domain and a DNS address.

http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development

D7.1 Enabling Services Enhancement Specification Page 18 of 18

6 References

[1] ScrewDRIVER Wiki, http://technical.wiki.driver.research-infrastructures.eu
[2] DRIVER Annex I - “Description of Work”, Proposal no. 212147.
[3] Munin Project. http://munin.projects.linpro.no
[4] D6.1 Software Release Plan
[5] D6.2 Supporting Tools and Databases
[6] D7.2 Overall Research Design Report
[7] D5.1 Information Space Report
[8] Web Services Base Notification 1.3 by OASIS. http://docs.oasis-open.org/wsn/wsn-

ws_base_notification-1.3-spec-os.pdf
[9] Web Services Topics 1.3 by OASIS. http://docs.oasis-open.org/wsn/wsn-ws_topics-

1.3-spec-os.pdf

http://technical.wiki.driver.research-infrastructures.eu/
http://munin.projects.linpro.no/
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

	1 Introduction
	2 Enabling Services
	3 Improving the Services
	3.1.1 Information Service
	3.1.2 Manager Service
	3.1.3 Authentication and Authorization Service
	3.1.4 ResultSet Service
	3.1.5 Hosting Node Manager Service

	4 Enriching the Services
	4.1.1 Information Service
	4.1.2 Manager Service
	4.1.3 Authentication and Authorization Service
	4.1.4 ResultSet Service
	4.1.5 Hosting Node Manager Service

	5 Aligning the Services
	5.1.1 DRIVER Node Architecture
	5.1.1 Core Common Libraries

	6 References

