
D6.1 Software Release Plan Page 1 of 22

SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2007-1.2.1 Research Infrastructures

DRIVER II

Grant Agreement 212147

“Digital Repository Infrastructure Vision for European Research II”

Software Release Plan

Deliverable Code: D6.1

D6.1 Software Release Plan Page 2 of 22

Document Description

Project

Title: DRIVER, Digital Repository Infrastructure Vision for
European Research II

Start date: 1st December 2007

Call/Instrument: INFRA-2007-1.2.1

Grant Agreement: 212147

Document

Deliverable number: D6.1

Deliverable title: Software Release Plan

Contractual Date of Delivery: 31st of January 2008

Actual Date of Delivery: 17th of March 2008

Editor(s): CNR

Author(s): Paolo Manghi

Reviewer(s): Natalia Manola

Participant(s): Marko Mikulicic

Workpackage: WP6

Workpackage title: Service Integration Management

Workpackage leader: ICM

Workpackage participants: NKUA, CNR, ICM, UGENT

Distribution: Public

Nature: Report

Version/Revision: 1.7

Draft/Final: Final

Total number of pages:

(including cover)

File name:

Key words: Services, Software, Release, Planning

D6.1 Software Release Plan Page 3 of 22

Disclaimer

This document contains description of the DRIVER II project findings, work and products.
Certain parts of it might be under partner Intellectual Property Right (IPR) rules so, prior to
using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and publication
of this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of DRIVER consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
25 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

DRIVER is a project funded by the European Union

D6.1 Software Release Plan Page 4 of 22

Table of Contents

Document Description..2

Disclaimer... 3

Table of Contents ... 4

Table of Figures.. 5

Summary .. 6

1 Introduction ... 7

1.1 Purpose of this document ..7

1.2 Document Outline ...7

2 Production plan .. 8

2.1 DRIVER Core Libraries...8

2.2 Infrastructure logic ...8

2.3 D-NET v1.0 ..9

2.4 D-NET v2.0 .. 14

3 Logistic ...16

3.1 Candidate releases management.. 16

3.2 Development tools .. 17

3.3 DRIVER Node architecture and Service configuration 18

3.4 D-NET v1.0 development plan.. 19

References..22

D6.1 Software Release Plan Page 5 of 22

Table of Figures

Table 1 – Enabling Layer Execution plan .. 20

Table 2 – Data Layer Execution plan.. 21

Table 3 – Functionality Layer Execution plan .. 21

D6.1 Software Release Plan Page 6 of 22

Summary

The aim of this deliverable is to present the software design and production steps leading
to the D-NET v1.0 release of the DRIVER Infrastructure.

D6.1 Software Release Plan Page 7 of 22

1 Introduction

1.1 Purpose of this document

This purpose of this document is to present the plan to be carried on in order to achieve
the production releases of the DRIVER Infrastructure software D-NET v1.0 and D-NET v2.0.
The plan is based on the DoW [2] and is driven by the specification documents relative to
the various Services Error! Reference source not found..

D-NET v1.0 is expected at month 6, namely May 2008, while D-NET v2.0 at month 21,
namely August 2009. The current deliverable is then to be updated at month 13, namely
December 2008, in order to provide the plan for the second release.

1.2 Document Outline

Section 2 introduces all the overall design and development plan, by presenting the main
changes expected in the Services and in the architecture logic. Next, it specifies the
challenges to be faces for each Service, presented by Service layers.

Finally, Section 3 specifies the software delivery practice to be adopted for D-NET v1.0,
envisaging two candidate infrastructure release steps before issuing the final production
infrastructure.

D6.1 Software Release Plan Page 8 of 22

2 Production plan

DRIVER-II features two main software/infrastructure milestones, D-NET v1.0 at month 6
(M6.1) and D-NET v2.0 at month 21 (M6.2). Next the production plan for D-NET v1.0 is
envisaged, while the road to D-NET v2.0 will be determined after month 6, once D-NET
v1.0 will be released.

The most notable changes are:

• The migration from Perl implementation of the Services to a Java implementation:
the change was mainly due to performance issues, compatibility issues, and
packaging/deployment issues. Indeed, Perl revealed a number of problems in
dealing with SOAP and threads, and Web Services and SOAP are not fully
interoperable across different languages. Besides, adopting the same language
platform permits common packaging and deployment methodologies and eases the
diffusion of software.

• The definition of a common core of libraries for the interaction with the
infrastructure enabling layer (enabling layer client). All Services are now
implementing their own special libraries to be able to participate to the
infrastructure life-cycle (registration/deregistration and discovery of the services).
Providing a common core of libraries will ease Service developers in their activities
as well as the diffusions of possible modifications to the enabling layer.

• Improvement of the infrastructure logic: the addition of new Data Structures and
Services empowering and simplifying the definition of applications as set of
interacting resources. Multiple independent “applications”, each made of a specific
selection of potentially shared resources, will be supported.

2.1 DRIVER Core Libraries

CNR will produce a number of libraries to be used in the implementation of all Services in
order to interact with the enabling layer Services. The libraries will deal with:

• IS-Registry client: Service registration, deregistration, and resource profile updates;

• IS-Lookup client (resource discovery): find a resource profile and get the respective
Service stub;

• IS-SN client: subscribing a topic to the IS-SN.

On DRIVER nodes all Services will have to deal with automatic discovery of Services
through the IS (this leads to simple configuration files).

2.2 Infrastructure logic

The logic of the Infrastructure, i.e. the way resources should interact to support special
community applications, will be modified to support the notions of:

• Regions: set of resources defining the interaction boundaries of such resources. A
resource is activated in the context of a region and can only interact with the
resources in the same region at that moment in time. For example, an UI belongs to
one region; a query execution can only be demanded to the Search Services
available in the same region of the User Interface at search-time.

• Groups: set of resources bound together by particular application-oriented
properties. Groups do not define any interaction boundaries between the resources
they contain; a group is used to support actions on sets of resources. For example,

D6.1 Software Release Plan Page 9 of 22

an Index Service should be designed to run a query on a group of Index DSs, rather
than on an explicit list of such DSs. The overall organization of the system can be
notably simplified by this simple and natural notion.

• API contracts: a Service implements an API whose contract establishes its method’s
signatures and semantics. WSDL and Java Stub of the Services are available from
the support site.

• Sub-Services: Services implementing only a part of an API contract. The existence
of sub-Services must be declared as an explicit dependency in the IS. Examples are:
the embedded ResultSet of the ICM Index obeys only to a sub-part of the ResultSet
Service contract, that of ResultSet access. As such, is a sub-ResultSet.

• Moving from Repository Services to Repository Data Structures. Indeed,
Repositories are not DRIVER Services, but rather Data Structures to be managed by
a special Service, called Repository Management Service. The Service operates as a
generic OAI-PMH Repository harvester, returning result sets of the harvesting
results. It therefore operates independently of the Aggregation Service, which will
deal with input/output ResultSets, and can be reused for other purposes by other
Services.

2.3 D-NET v1.0

The software in D-NET 1.0 is the outcome of refining and stabilizing the DRIVER Testbed
software delivered in the DRIVER project. The aim is to release installable software
packages, capable of supporting a running and stable production infrastructure, and also
deploy such software on a number of production machines. In this section we detail the
expected Service modifications by infrastructure layer and schedule the respective delivery
dates. In particular, the following Service software is to be released:

• Enabling Layer

o Information Service (CNR)

o Manager Service (CNR)

o Authentication and Authorization Service (ICM)

o ResultSet Service (CNR)

• Data Layer

o MDStore Service (UniBi)

o Index Service (UniBi)

o Browse Service (CNR)

o Aggregator Service (UniBi)

o Collection Service (CNR)

o Publisher Service (CNR)

o Search Service (NKUA)

o Validator Service (NKUA)

o Repository Management Service (UniBi)

• Functionality Layer

o User Interface Service (NKUA)

o User Profile Service (NKUA)

o Community Service (NKUA)

o Recommendation Service (NKUA)

D6.1 Software Release Plan Page 10 of 22

o Text Engine Service (CNR)

It must be remarked that not all such Services will be completed in D-NET v1.0 and some of their functionality
may be missing, still without compromising the delivery of a production infrastructure. The plan is articulated in

Alphav1: Freezing
Date

31st of March

Type Alphav2-Beta:
Freezing Date
30th of April

Type RC: Freezing Date
15th of May

Type

Core

Communication

Libraries

- - 15/04/2008 15/04/2008 IN-I

CNR,

NKUA

- - Automatic registration

component

IN-I - -

CNR,

NKUA

- - IS-lookup client: no

cache in D-NET v1.0,

support for transparent

ResultSet iteration (see

NKUA code)

IN-I - -

CNR,

NKUA

- - Service locator (stub

finder)

IN-I - -

CNR,

NKUA

- - IS-Registry client IN-I - -

CNR,

NKUA

- - IS-SN client IN-I - -

ICM,

NKUA

- - - - AAS Client IN-O

CNR, ICM - - - - Node Secure communication layer:

regions

OUT

All - - Alignment of all Java

Services: packaging,

common libraries,

automatic registration

IN-O

Hosting Node

Manager Service

- - 30/04/2008 15/05/2008

CNR,

NKUA

- - HNM in Java: simple

profile update

IN-I - -

CNR - - Munin-SmokePing Integration IN-O

Information

Service

31/03/2008 30/04/2008 15/05/2008

CNR Profiles for Groups of

Services and

Repository Service

with status

IN

- - - -

- - Service profi le changes:

1) separate date of

creation and date of

update

2) Service status in

profi le IN-I Service profi les wi th status IN

CNR Refinement of IS-SN

in Perl

IN
- - - -

- - - -Information Space Views integration: wai ting for Groups?OUT

- - - - Java implementation IN-I

CNR, ICM - - - - Region profiles and management OUT

CNR - - IS-Store: Java + Exist

1.2

IN-I IS-Store: Java + Exist 1.2 + service

profile status

IN-I

Manager Service 31/03/2008 30/04/2008 15/05/2008

CNR Managing multiple

indices and stores

IN
- - - -

- - - -Control panels and moni toring tools: re-workedIN

CNR - Java implementation IN - -

Authentication

and

Authorization

Service

- - - - 15/05/2008

ICM - - - - Service-2-Service secure

communication

IN-O

ResultSet Service - - - - 15/05/2008

CNR - - - - Java implementation IN-O

Service Partner

Enabling Layer

, after an in-depth analysis of the results expected from D-NET v1.0.

D6.1 Software Release Plan Page 11 of 22

2.3.1 Enabling layer

As mentioned above, all Services in the Enabling Layer will be re-implemented in Java,
except from the Authentication and Authorization Service, which is Java based already.

Information Service

The Information Service (IS) consists of four components:

• IS-Store

• IS-SN

• IS-Lookup

• IS-Registry

The IS-SN will have to support parallel notification queues. This is to be achieve by
implementing two extra queue management “agents”, as specified in the Enabling Layer
Specification [4].

The Service in the need of heavy re-design is the IS-Store, which should enforce:

• distribution/replication of storage space in order to increase robustness and
scalability of the Infrastructure (see [4] for further details);

• porting to XML query engine Exist v1.2.

Manager Service

The Manager Service consists of two main components:

• MS-RO: resource orchestration deals with the orchestration activities required for
the maintenance of the Information Space

o Repository registration and validation: the action fires the creation of the
MDStore DSs needed to store the metadata formats available from the
Repository, the creation of the replicas of such MDStores, and the
Harvesting Instance DS needed to manage the Repository Service; such
notions will be replaced by the notions of Transformation Data Structure ad
Repository Data Structure, respectively, as mentioned above.

o Storing data in a DMF store: creating the relative Index DS, if it does not
exist, and its replicas; then feeding them with the content of the DMF
MDStore which fired the event;

• MS-RM: resource monitoring has to do with,

o Consistency check/corrective operations, controls deal with:

� Index Data Structures that do not target any MDstore;

� Missing MDStore and Index DSs replicas

o Robustness check/corrective operations, now dealing with the evaluation of
the performances of DRIVER Hosting Nodes. Performance estimation is
carried on by administrators interacting with the administration User
Interface, using the tools provided by Munin Project [3]. Checking the
various performance parameters on a given period of time, administrators
can take load balancing decisions, such as installing new Services, e.g.
ResultSet Services and Index Services, or moving them from one DRIVER
Hosting Node to another.

Authentication and Authorization Service

D6.1 Software Release Plan Page 12 of 22

At the current stage, the Authentication and Authorization Service (AAS) is used only for
Users access policies. The AAS will:

• support secure Service-to-Service communications;

• verify the consistency of region-imposed constraints, implicitly determined by the
context of the requesting Service.

ResultSet Service

The ResultSet Service will be rewritten in Java.

2.3.1.1 Steps to D-NET 1.0

The re-implementation of the Services in Java will be carried on keeping in mind the
modifications required to enhance resource management in the Infrastructure. Such
changes are concerned with the notions of region, group, sub-service and API contract
mentioned above. All such aspects should be introduced in a step-by-step, non-invasive
way, in order not to block Service refinement at the different partner sites and favor the
shortest possible change-integration period.

In particular, the delicate aspect of secure Service-to-Service communication will have to
be faced by avoiding the usage of heavy SOAP embedded security protocols and still
preserving as much as possible the non-proprietary nature of the DRIVER architecture.

Time-wise, the first version of the Enabling Layer will respect the alpha and beta candidate
release deadlines pointed out above.

2.3.2 Data layer

MDStore Service

The MDStore needs to improve its stability in the presence of large files and needs
optimization in the file indexing process.

Index Services

Two implementations of the Index Service are available, one from ICM (Java-based, based
on Yadda index technology developed at ICM Labs) and one from UniBi (Per-based, built on
top of Lucene).

Both implementations need “search refinement” to be better specified and implemented.

UniBi requires instead a re-development in Java language. The need of such
implementation and its delivery in D-NET 1.0 or D-NET 2.0 is to be evaluated based on the
human and time resources available to the partner.

Browsing Service

The Browsing Service needs to be re-developed in Java. Its current implementation
supports one-level browsing and is delivered by CNR.

A further version of the Browsing Service, to be developed at UniBi, should support drill-in
functionality. The need of such implementation and its delivery in D-NET 1.0 or D-NET 2.0
is to be evaluated based on the human and time resources available to the partner.

Aggregator Service

D6.1 Software Release Plan Page 13 of 22

The current implementation of the Aggregator Service obeys to the specification of version
1.0.1 available at: http://technical.wiki.driver.research-
infrastructures.eu/index.php/Aggregator_Service. Aggregator manager users are capable of
defining through a User Interface the mappings (transformations) from Dublin Core to DMF
records. In D-NET v1.0 the Aggregator Service should extend its import boundaries to
Repositories that are not necessarily OAI-PMH compliant; e.g. FTP based.

The next version of the Service v1.2.0 to be released in D-NET v2.0 will instead:

• Accept special input ResultSets, where each entry consists of an Object Record
(http://technical.wiki.driver.research-infrastructures.eu/index.php/Object_Records),
i.e. a record containing a number of different records.

• No longer be based on the notion of Harvesting Instance DSs, but on the notion of
Transformation Data Structures. Such DSs describe the input metadata formats of
the transformation, the output metadata format, and the set of rules in between.

• Enable the definition of a set of rules combining fields from all the input records in
each entry so as to generate one output record.

• Harvesting will be delegated to Repository Management Services (see below).

Thus, to the aim of D-NET v1.0, the Aggregator Service should at least:

• Delegate OAI-PMH harvesting to Repository Management Services.

• Work with an input Object Record ResultSet and an output metadata record
ResultSets for DMF.

• Replace Harvesting Instance DSs with simplified Transformation DSs, conceived to
contain generic mapping rules, but initially limited to representation of mappings
from DC to DMF. This is to say that in D-NET v1.0 we might not target the generic
mappings from format to format.

Collection Service

The Collection Service has to be re-implemented in Java.

Publisher Service

The Publisher Service needs to be re-implemented in Java. It offers an OAI-PMH interface
(http://oai.driver.research-infrastructures.eu/oai) to the DRIVER Information Space, plus a
method to access any harvested or DRIVER generated record by its unique DRIVER
identifier. The Service resolves DRIVER absolute identifiers to fetch and deliver the records
to the calling Services.

Search Service

The Search Service will integrate the notion of Information Space Views (ISV) and Index
Map Data Structures. The former, as explained in ScrewDRIVER wiki [1], are configured by
administrator to specify how the records in the same Information Space should be
organized by the available indexes. The result of distributing the MDStores, i.e. the records
they contain, over the different Indices according to the ISV specification returns a number
of pairs Index-MDStore whose status is maintained in the Index Map Data Structure.

Validator Service

The Service performs a quality check of the functionalities of OAI-PMH Repositories and of
the content they offer. It can be configured to test different aspects of the OAI-PMH

D6.1 Software Release Plan Page 14 of 22

protocol default as well as special rules specifying the expected content of the harvested
records; e.g. what range of values are expected for a certain metadata field, the XML
structure of the records. In the context of the DRIVER Information Space Application it is
used to check whether the Repositories registered to DRIVER are compliant to the DRIVER
Guidelines for Content Providers.

The Service will have to update the Repository Data Structure profiles with information
about their current status of validation.

Repository Management Service

The Service operates as a generic Repository harvester, returning result sets of the OAI-
PMH harvesting results for a certain Repository DS. It therefore operates independently of
the Aggregation Service, which will deal with input/output ResultSets, and can be reused
for other purposes by other Services.

If new kinds of data sources, accessible through different protocols, will have to be
introduced in DRIVER a corresponding Service-Data Structure pattern will have to be
created. For example: FTP Site Service and FTP Site Data Structures.

2.3.2.1 Steps to D-NET 1.0

The majority of the Services are responsibility of UniBi. The MStore Service should be re-
implemented, the Aggregator Service re-designed and re-implemented, while the
Repository Management Service should be designed and implemented. These activities are
quite committing and may not all be accomplished for D-NET 1.0. In order of priority:

1. MDStore Service: java;

2. Migrating to Repository Data Structures: new profiles and integration with Validator
Service results;

3. Designing and implementing the Repository Management Service;

4. Designing and implementing the new Aggregator Service according to the strategy
above.

5. Full-text indexing capabilities should be enforced. This can be done by
implementing special index management policies at aggregation time, but still tools
for document extraction and document preservation must be devised. At the same
time full-text search will have to be added to the User Interface.

2.3.3 Functionality layer

User Interface Service

The UI is now customized to DMF, which means that it cannot be automatically adapted to
a different format: advanced searches and display of search results are bound to DMF
record structure. D-NET 1.0 will deliver an automatically configurable interface, useful to
automatically serve DRIVER to all communities willing to use it, independently from the
metadata format they adopt.

Community Service

Nothing to be signaled.

Recommendation Service

D6.1 Software Release Plan Page 15 of 22

The Recommendation Service can send users, either via email or by display on login to
DRIVER, “announcements” relative to the registration and validation of new Repositories
into DRIVER. Other more sophisticated recommendations are still under development and
will not be released in V1.1.0. At such stage, for example, users will be notified of the
harvesting of documents from their favorite Repositories

Text-management Service

In order to build full-text Index Services, text-related operations should be performed; e.g.
keywords have to be extracted from the text of a document, in order to enable full-text
searches. Text management tools are made available through a specific Service, to be used
by Aggregator Service instance, but also available to other Services which might join the
infrastructure in the future. The Service needs to be re-designed in Java.

Repository Workflow Interface

Repository Managers, Aggregator Manager and Country Correspondents should have
access to an UI through which Repositories can be registered, edited in their properties and
properly validated before being introduced into the DRIVER Information Space. The
validation status of a Repository determines its position in the workflow, which ends in
harvesting, aggregation and indexing of its content. The specification of such a process can
be found in the technical wiki [1].

2.3.3.1 Steps to D-NET 1.0

Full priority is to be given at the User Interface, which should be fully operative and generic
for D-NET v1.0.

The Repository workflow should be fully supported by the relative User Interface.

2.4 D-NET v2.0

The DoW [2] draws the attention on two main activities: the enhancement of the Services
of the DRIVER Testbed and the realization of new Services, to serve Complex Objects
based applications. D-NET v1.0 accomplishes part of the first task, including the policies
and rules needed to maintain a running infrastructure alive. D-NET v2.0 will determine the
completion of both the activities. In particular, the following extra Services are expected:

• Enabling Layer

o Information Service: fully scalable version with low-level distributed IS-Store
(CNR)

o Manager Service: supporting automatic robustness methodologies (CNR)

o Authentication and Authorization Service: distributed version coping with
efficient Service-to-Service secure communication (ICM)

• Data Layer

o Content Services: typed complex object Repository (CNR)

o Access Services: evaluating references to external objects, when references are
used within complex objects, i.e. enabling access to “external object surrogates”
(CNR)

o Advanced Harvesting Service: harvesting complex objects into Content Services
typed containers (UniBi)

o Advanced Aggregator Service: transforming complex objects into complex
objects (UniBi)

D6.1 Software Release Plan Page 16 of 22

o Publisher Service: exporting complex objects through ORE interfaces (CNR)

o Search Service: dealing with Content Services complex object data model
(NKUA)

o Reference Inference Service: automatic inference of references between sets of
publications (ICM)

• Functionality Layer

o Advanced User Interface Services: user interfaces to create, delete, modify and
search complex objects in Content Services (NKUA)

o Active Information Discovery Service: user interfaces to create, delete, modify
and search Enhanced Publications represented as complex objects in Content
Services (NKUA)

o Advanced User Profile Service: including extra user profiling functionalities
(NKUA)

o Advanced Community Service: including extra community-oriened functionalities
(NKUA)

o Advanced Recommendation Service: adapting to complex objects nature (NKUA)

D6.1 Software Release Plan Page 17 of 22

3 Logistic

3.1 Candidate releases management

The delivery of the D-Net 1.0 software release is to be preceded by two pre-releases (one
alpha and one beta), a first release candidate (rc1) and optionally a second release
candidate.

The source code and binaries of each release (including pre-releases) shall be correctly
packaged and stored on the official release package repository, but only the release
candidate and D-Net 1.0 release code shall be available for public download from the
repository.

Once an pre-release is issued, the current public visible Testbed infrastructure (known as
production infrastructure) will be upgraded with the respective pre-release code base.

The release candidate code base instead will not be applied over the current public
production infrastructure, but a new set of machines will be dedicated for it's deployment.
The new production deployment will start with the release candidate software release and
will be subsequently updated until it becomes the new public production infrastructure
running the final D-Net 1.0 release code base.

Here is a more detailed view of each release step:

• The alpha release is to be issued at the end of March 2008. The release will contain
the latest stable version of the services, namely that shown for the review. Some of
the functionalities may be missing, but the resulting infrastructure will be stable for
demos and Information Space maintenance. Note: alpha v1 coincides with the final
production of the DRIVER Testbed, developed by the DRIVER Project.

• The beta release is to be issued at the end of April 2008. The release will contain
the latest stable version of the services, independently from their current status of
development, available for all partners to develop in stable environments. The idea
is to start deploying the services and initiate testing with relevant and significant
data. If some component is stable enough it may be used to update the current
production infrastructure.

• The first release candidate 1 (rc1) is to be issued the 15th of May 2008. The release
will contain the last stable version of the Services, for those Services that reached
stability, deployed on new production machines according to a specific plan and
available for download and installation to the public. Except for unexpected blocking
emergencies, such Services should only be maintained up and running. In such
context we expect to harvest, store and migrate the real Information Space data.
This release will become full production when all components prove to be stable
and behave correctly, and all relevant data will be available.

• If the first candidate release does not prove to be stable enough and mayor
updates are needed to fix the outstanding issues, a second release candidate 2
(rc2) should be released before the the final D-Net 1.0 release.

The features planned for each release stage are shown in tables Table 1, Table 2 and Table
3.

D6.1 Software Release Plan Page 18 of 22

Each (pre-)release is divided into several steps:

1. The source code of all the components which participate in each (pre-)release
enters in the feature freeze state. During the feature freeze stage developers are
not allowed to apply changes which introduce new features or otherwise disrupt the
interaction of software components in a sensible way.

2. The software is packaged (sources, binaries and configuration). The packaging shall
be tested and eventually the build/packaging system shall be updated to correct
eventual issues found during this stage.

3. The packaged software shall be deployed on the production infrastructure. In case
of pre-releases, the existing production infrastructure shall be updated. The
production deployment is already organized in such a way that an incremental
software update is possible (as documented on the wiki [1]).

4. Once the code proved to behave correctly in the production infrastructure (whether
the upgraded production of pre-releases or the new production infrastructure of the
release candidate) the the code is enters in the code freeze state. During the code
freeze stage developers are not allowed to apply any change to the code. The
complete source code is branched in a release branch.

5. Code is checked out from the release branch and officially packaged and uploaded
to the official package repository. Each package shall be digitally signed

6. The production infrastructure shall be upgraded with the official packages.

Moreover, in the delivery date of a release:

• We should analyze which functionality among those expected by the release plan
has been fully developed and tested per Service.

• We should analyze which functionality could instead not be developed or not tested,
the reasons which led to the failure and provide solutions to avoid that the next
release is affected by the same problems.

• New Service software packages (fully or partially completed) which were not part of
the given release will be internally released for the partners to work on a running
infrastructure;

• The plan of the next (pre-)release will be modified according to the tasks still to be
accomplished.

The underlying principle is that “something will go wrong” and we must cope with it
without blocking the overall development process.

3.2 Development tools

The development and testing stages will be supported through the following tools:

• Tasks and bugs assignment: moving from Savane to Trac;

• Software versioning: SVN;

• Testing: ICM testing suite.

• Continuous integration: Hudson, LuntBuild or CruiseControl

D6.1 Software Release Plan Page 19 of 22

Policies and rules to be followed under development are presented in 3.3 and 3.3.

3.3 DRIVER Node architecture and Service configuration

The whole architecture will be Java-based. The choice does not hinder external
technologies, built within different platforms, to be integrated into DRIVER. On the other
hand it enables a helpful and uniform way of designing, developing and deploying DRIVER
Services. D-NET v1.0 will deliver common Service classes to be implemented, a set of
common libraries implementing core functionalities, and the definition of a common
DRIVER Node architecture.

In particular a DRIVER Node consists of Java Servlet container (for example, Apache
Tomcat) running a Hosting Node Manager Service (HNM). The Service communicates
information about the node status to the infrastructure Information Service; such
information regards network measures as well as local performance measures.

DRIVER Services

DRIVER Services implement a special DRIVER class Service (but may also not) and run on a
DRIVER Node as Servlet Container WebApps. Each Service is packaged as a WAR file,
containing the Service classes, resources (property files, spring bean definitions) and
dependencies (including the DRIVER Core Libraries, see Section 2.1). Finally, stub classes
files are to be placed in a special directory in the WebApps (details can be found at:
http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development on
ScrewDRIVER 3.3).

Such scenario is the one that requires minimal modifications to the existing Java DRIVER
Services, while leaving the door open to future, more elegant, solutions. One of this would
be that of having all Services running inside the same WebApp, with the Hosting Node
Manager Service responsible for their life-cycle and their communications with the outside
world. In such scenario Services would we packaged in a DRIVER Archive (DAR) and could
be deployed on-the-fly as well as switched-off or restarted automatically by the
infrastructure (through the HNM) on demand. Not only, incoming and outgoing
communications could be filtered and optimized by the HNM: e.g. Services running on the
same node could communicate without HTTP/SOAP protocols. Note that, due to the IOC
development strategy currently adopted by the DRIVER Java developers, such changes turn
out to be quite natural.

Property files

We shall consider two main phases with respect to the alignment of the Services:
development and production. The difference between these emerges in the property file of
Services, which in development phase may contain references to all Services it needs to
refer, while in production it should only contain an indirect reference to the Information
Service (probably a constant domain and a reference to a DNS; this way the Services will
not even need a special Information Service address) and discover other services
dynamically.

During development the property-based configuration of all Services should follow the
same nomenclature in order to simplify the operation of deployment of the Services. The

D6.1 Software Release Plan Page 20 of 22

structure and organization of these files can be found at:
http://technical.wiki.driver.research-infrastructures.eu/index.php/Software_Development,
on ScrewDRIVER 3.3.

3.4 D-NET v1.0 development plan

The plan defines the precise delivery dates, establishing also what Services will be released
in the D-NET v1.0. Three main releases are expected before the production: alpha, beta
and release candidate.

Legenda for Table 1, Table 2, Table 3

IN surely part of D-NET v1.0 and to be used by others
IN-I
(Independent) surely part of D-NET v1.0, not to be necessarily used by others

OUT it was considered for D-NET v1.0, but left out for D-NET 2.0

IN-O
(Ongoing)

ongoing development activity, the result is not required by others in
D-NET v1.and there is no certainty that it will be delivered, but it will
in D-NET v2.0

D6.1 Software Release Plan Page 21 of 22

Alphav1: Freezing

Date

31st of March

Type Alphav2-Beta:

Freezing Date

30th of April

Type RC: Freezing Date

15th of May

Type

Core

Communication

Libraries

- - 15/04/2008 15/04/2008 IN-I

CNR,

NKUA

- - Automatic registration

component

IN-I - -

CNR,

NKUA

- - IS-lookup client: no cache

in D-NET v1.0, support for

transparent ResultSet

iteration (see NKUA code)

IN-I - -

CNR,

NKUA

- - Service locator (stub

finder)

IN-I - -

CNR,

NKUA

- - IS-Registry client IN-I - -

CNR,

NKUA

- - IS-SN client IN-I - -

ICM,

NKUA

- - - - AAS Client IN-O

CNR, ICM - - - - Node Secure communication layer:

regions

OUT

All - - Alignment of all Java

Services: packaging,

common libraries,

automatic registration

IN-O

Hosting Node

Manager Service

- - 30/04/2008 15/05/2008

CNR,

NKUA

- - HNM in Java: simple

profile update

IN-I - -

CNR - - Munin-SmokePing Integration IN-O

Information

Service

31/03/2008 30/04/2008 15/05/2008

CNR Profiles for Groups of

Services and

Repository Service with

status

IN

- - - -

- -

Service profile changes:

1) separate date of creation

and date of update

2) Service status in profile IN-I Service profiles with status IN

CNR Refinement of IS-SN in

Perl

IN
- - - -

- - - -Information Space Views integration: waiting for Groups?OUT

- - - - Java implementation IN-I

CNR, ICM - - - - Region profiles and management OUT

CNR - - IS-Store: Java + Exist 1.2 IN-I IS-Store: Java + Exist 1.2 + service

profile status

IN-I

Manager Service 31/03/2008 30/04/2008 15/05/2008

CNR Managing multiple

indices and stores

IN
- - - -

- - - - Control panels and monitoring tools: re-worked IN

CNR - Java implementation IN - -

Authentication

and Authorization

Service

- - - - 15/05/2008

ICM - - - - Service-2-Service secure communication IN-O

ResultSet Service - - - - 15/05/2008

CNR - - - - Java implementation IN-O

Service Partner

Enabling Layer

Table 1 – Enabling Layer Execution plan

D6.1 Software Release Plan Page 22 of 22

Alpha v1: Freezing

Date

31st of March

Type Alpha v2 -Beta:

Freezing Date

30th of April

Type RC: Freezing Date

15th of May

Type

MDStore Service - - - - 15/05/2008

UniBi - - - - Java implementation - large file storage IN-O

Index Service - - 30/04/2008 15/05/2008

UniBi - - Full-text solution IN-O

UniBi - - Search refinement IN-O

UniBi Sequential scan

optimization (e.g. queries

for browsing purposes,

Index DS behaving as

MDStore DS, horizontal

replicas)

IN-O

ICM, UniBi - - - - ICM code passed to UniBi IN-O

Browse Service - - 30/04/2008 15/05/2008

CNR - - One level Browse: Java

implementation

IN

UniBi - - Multi-dimensional browse OUT

Aggregator

Service

UniBi - - - - 15/05/2008

- - - - Java v1.1.0 IN-O

Collection Service CNR - - - - 15/05/2008

- - - - Java implementation IN-O

Publisher Service CNR - - - - 15/05/2008

- - - - Java implementation IN-O

Search Service NKUA 31/03/2008 - - - -

NKUA,

CNR

- - Integrating Information

Space Views: one per

Index Service at the

moment

IN - -

Validator Service NKUA - - - - 15/05/2008

- - - - Service IN

Repository

Management

Service

UniBi - - - - 15/05/2008

- - - - Service OUT

Service Partner

Data Layer

Table 2 – Data Layer Execution plan

Alpha v1: Freezing

Date

31st of March

Type Alphav2-Beta:

Freezing Date

30th of April

Type RC: Freezing Date

15th of May

Type

User Interface

Service

NKUA - - - - 15/05/2008

- - - - Generic interface IN-O

User Profile

Service

NKUA - - - - 15/05/2008

- - - - New features OUT

Community

Service

NKUA - - - - 15/05/2008

- - - - New features OUT

Recommendation

Service

NKUA - - - - 15/05/2008

- - - - New features OUT

Text Engine

Service

CNR - - - - 15/05/2008 -

- - - - Java implementation IN-O

Service Partner

Functionality layer

Table 3 – Functionality Layer Execution plan

D6.1 Software Release Plan Page 23 of 22

References

[1] ScrewDRIVER Wiki, http://technical.wiki.driver.research-infrastructures.eu

[2] DRIVER Annex I - “Description of Work”, Proposal no. 212147.

[3] Munin Project. http://munin.projects.linpro.no

[4] D7.1 Enabling Services Enhancement Specification

[5] D6.2 Supporting Tools and Databases

[6] D7.2 Overall Research Design Report

