
D6.1 OpenAIRE Data Model Specification Page 1 of 48

SEVENTH FRAMEWORK PROGRAMME

CAPACITIES

Research Infrastructures

INFRA-2009-1 Research Infrastructures

OpenAIREplus

Grant Agreement 283595

 “2nd-Generation Open Access Infrastructure for Research in

Europe

OpenAIREplus”

OpenAIRE Data Model Specification

Deliverable Code: D6.1

D6.1 OpenAIRE Data Model Specification Page 2 of 48

Document Description

Project

Title: OpenAIREplus, 2nd Generation Open Access Infrastructure
for Research in Europe

Start date: 1st December 2011

Call/Instrument: INFRA-2011-1.2.2

Grant Agreement: 283595

Document

Deliverable number: D6.1

Deliverable title: OpenAIRE Data Model Specification

Contractual Date of Delivery: 30th of April, 2012

Actual Date of Delivery: 21st of April 2012

Editor(s): Paolo Manghi

Author(s): Paolo Manghi, Marko Mikulicic, Claudio Atzori

Reviewer(s): Natalia Manola, Katerina Iatropulou, Antonis Lempesis,
Jochen Schirrwagen, Mathias Loesch, Mateusz Kobos,
Linda Reijnhoudt, Eko Indarto, Arjan Hogenaar, Wilko
Steinhoff, Lars Nielsen

Participant(s): Nikos Houssos, Keith Jeffery, Brigitte Joerg, Marko Mikulicic

Workpackage: WP6

Workpackage title: OpenAIREplus data model and content management
services

Workpackage leader: CNR

Workpackage participants: NKUA, UNIBI, DTU/DataCite, CERN, UNIWARSAW, EKT-
NHF/EuroCRIS, EBI-EMBL, KNAW-DNAS, STFC-BADC

Distribution: Public

Nature: Deliverable

Version/Revision: 2.0

Draft/Final: Final

Total number of pages:

D6.1 OpenAIRE Data Model Specification Page 3 of 48

(including cover)

File name:

Key words: data model

D6.1 OpenAIRE Data Model Specification Page 4 of 48

Disclaimer

This document contains description of the OpenAIREplus project findings, work and
products. Certain parts of it might be under partner Intellectual Property Right (IPR) rules
so, prior to using its content please contact the consortium head for approval.

In case you believe that this document harms in any way IPR held by you as a person or as
a representative of an entity, please do notify us immediately.

The authors of this document have taken any available measure in order for its content to
be accurate, consistent and lawful. However, neither the project consortium as a whole nor
the individual partners that implicitly or explicitly participated in the creation and publication
of this document hold any sort of responsibility that might occur as a result of using its
content.

This publication has been produced with the assistance of the European Union. The content
of this publication is the sole responsibility of the OPENAIRE consortium and can in no way
be taken to reflect the views of the European Union.

The European Union is established in accordance with the
Treaty on European Union (Maastricht). There are currently
27 Member States of the Union. It is based on the European
Communities and the member states cooperation in the
fields of Common Foreign and Security Policy and Justice
and Home Affairs. The five main institutions of the European
Union are the European Parliament, the Council of Ministers,
the European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

OpenAIREplus is a project funded by the European Union

D6.1 OpenAIRE Data Model Specification Page 5 of 48

Table of Contents

Document Description ... 2	

Disclaimer .. 4	

Table of Contents ... 5	

Table of Figures .. 6	

Summary .. 7	

Log of Changes ... 8	

1	 Scenario .. 10	
1.1	 Data Model: Information Space Entities and Relationships 10	
1.2	 Extending Data Model to Support Data Inference ... 12	
1.3	 Outline .. 13	

2	 Main data model entities .. 14	
2.1	 CERIF Semantic Layer .. 14	
2.2	 Entities description ... 16	
2.3	 Entity-Relationship model ... 23	

3	 Data population .. 30	
3.1	 Information packages .. 31	
3.2	 Population Workflows ... 31	
3.3	 Identity of original entities .. 32	

4	 Data inference .. 35	
4.1	 Inference actions ... 36	

5	 General data management issues .. 40	
5.1	 Administrative entity properties ... 40	
5.2	 Users management .. 40	
5.3	 Visualization issues .. 41	

6	 OpenAIRE Data Sources ... 42	
6.1	 Initial instantiation of the database ... 42	

7	 Managing the Information Space using HBase 46	
7.1	 Mapping information space entities into HBase data model. 46	
7.2	 Full-text Indexing Strategy ... 47	

D6.1 OpenAIRE Data Model Specification Page 6 of 48

Table of Figures

Figure 1 – Entity data flow ... 13	
Figure 2 – E-R model: semantic layer entities .. 16	
Figure 3 – E-R model: main, linked, static and structural entities 24	
Figure 4 - E-R model: Result entities ... 24	
Figure 5 – E-R model: provenance relationships .. 24	
Figure 6 – E-R model: persistent identifiers of main entities .. 25	
Figure 7 – Entity layers: orginal entities .. 30	
Figure 8 – Information Packages: ingestion workflows (AM = Access Method, DS = Data

source typology, PET = Primary Entity Type, F = information package Format): data
sources of the same typology export the same primary entity of the same type through
different “raw” information package format structures. .. 32	

Figure 9 – Assigning unique identifiers to sub-entities: primary entity scope 34	
Figure 10 – Assigning unique identifiers to sub-entities: data source scope 34	
Figure 11 – Extension to data model to cope with inferred entities: explicit relationships

become entities .. 38	
Figure 12 – Database extension: User management in OpenAIRE, tables and relationships

 ... 40	
Figure 13 – Tree numbering for node positioning ... 41	
Figure 14 - Data Flow and services ... 46	

D6.1 OpenAIRE Data Model Specification Page 7 of 48

Summary

 The OpenAIREplus web site will offer functionalities for administrators, anonymous and
registered users to manage an Information Space of publications, together with their
connections with funding projects (from the EC and national agencies) and research
datasets. The aim of this document is to describe the conceived structure and semantics of
this Information Space, i.e., the OpenAIREplus data model, by providing an abstract
definition of its main entities and the relationships between them.

In this definitional process, the interaction with the EuroCRIS initiatives, several scientific
institutes (i.e., KNAW-DANS, EBI-EMBL, BADC) as well as inspiration from DataCite and
LinkedData play an important role in the specification of project data, i.e., how project data
should be described, stored and exported in OpenAIRE, dataset metadata, how datasets
should be described, and in the specification of how such interconnected entities can be
made available and consumable by third-party systems.

The data model will be subject to changes in the future and therefore result in further
versions. Such changes will be described in the following Section, in order to summarize to
the reader the differences form the previous versions.

D6.1 OpenAIRE Data Model Specification Page 8 of 48

Log of Changes

Deliverable
Version Date

Changes

(description, section and pages)

1.2 27.06.12 Ordering of authors: inserted new attributes in linked entity
Person_Results

1.3 18.09.2012 Added property Name Space Prefix to Data Source entities

Added EntityRegistry entity to entity table

Removed Discipline entity (use inly Subject entity instead)

Addition of Identity entity in the E-R diagram and entity
table

Addition of Title and Date entities in the entity table (fixed
direct and inverse relationships)

2.0 04.10.2012 Updated section 7 to shape up the HBase solution we have
developed (Cassandra was removed as an option)

2.0 26.10.2012 Associating licenses and classType classScheme (i.e., article,
pre-prints) to instances rather than results (in order to
support merges of different versions of files for the same
result).

Adding journal attribute to class Publication.

Moving publisher attribute from Publicaiton to Result class.

2.0 7.11.2012 Added the notion of OpenAIREcompatibility to the
DataSource entity

Removed TypeClass and Scheme from Dataset entity: they
will be described as instanceTypeClass and Scheme in the
relative Instance entity

Added contractTypeClass/Scheme to Project entity

Added EC_International Organization flag in Organization
entity, it was missing

DataSource, Instance, Identity entities: attribute
persistentIdentifer renamed as PID

Adding the flag ForMining (administrative fields): the flag
states that the piece of information (be it an object or a
relationship) should not be fed to the index but to the
Information Inference Service only

D6.1 OpenAIRE Data Model Specification Page 9 of 48

D6.1 OpenAIRE Data Model Specification Page 10 of 48

1 Scenario

The OpenAIREplus web site will offer functionalities for administrators, anonymous and
registered users to manage an Information Space of open access and non-open access
publications, together with their connections to funding projects (from the EC and national
agencies) and research datasets. In particular:

• Anonymous users will be able to search and consult the Space;
• Registered users will be able to:

o Give feedbacks to improve the quality of the Space;
o Claim publications or datasets into the Information Space;

• Administrators (data curators) will have full access and rights to such Space to:
o Collect data from data sources;
o Edit properties of publications, datasets, persons, etc in the Information Space;
o Validate/invalidate insertions/deletions/updates suggested by registered users or

by automatic inference processes.

1.1 Data Model: Information Space Entities and Relationships
In our reasoning we generalize the concept of datasets and publications to that of project
result, so as to be able of including further kinds of research outputs. OpenAIRE initially
proposes two kinds of results: datasets (e.g., experimental data, software products) and
publications. But others can be added in the future (e.g., patents). Besides, project
results are always associated to one or more instances of the results, in the sense that
different “physical representations” of the same result may exist. For example, the same
publication may be kept in two different repositories, both exposing the payload file (e.g.,
PDF) at different internet locations (URLs). Morover, an instance of a result is represented
as a combination of one or more web resources relative to the sub-parts of the result and
of the internet data sources from which such resources are made available.1

Similarly, we extend the notion of authors of publications or datasets to that of persons,
to include in the same set people connected to project fundings or organizations. For
example “authorship” relationships between results and persons, which represent the fact
that a given person has (co-)authored a given result while being affiliated with a given
organization.

Organizations include companies, research centers or institutions involved as project
partners or as responsible of operating data sources. Information about organizations will
be initially collected from CORDA and CRIS systems, as being related to projects, or be
ingested by users, for example to complete authorships information in the database.

Of crucial interest to OpenAIREplus is also the identification of the funding programmes
which co-funded the projects that have led to a given result:

1 The purpose of the project result-instance-web resource model is to capture a list of internet
pointers relevant to the project result and not that of capturing the compound object structure which
some results may have. If a project result is a compound object (e.g. ORE aggregation), its
instances will likely be associated to web resources embodying its compound object nature (e.g.,
ORE resource maps).

D6.1 OpenAIRE Data Model Specification Page 11 of 48

• EC FP7 programme projects data will be fetched from the authoritative EC CORDA
database, together with the organizations or persons which are participants of such
projects.

• Data relative to National funding schemes and relative projects will be instead fetched
from CRIS systems, together with other entities which may be typically kept within a
CRIS system (e.g., publications, datasets, projects, organizations, people, etc).

Finally, OpenAIRE entity instances are created out of data collected from various data
sources of different kinds, such as publication repositories, dataset archives, CRIS
systems, etc. Data sources export information packages (e.g., XML records, HTTP
responses, RDF data) which may contain information on one or more of such entities and
possibly relationships between them. It is important, once each piece of information is
extracted from such packages and inserted into the information space as an entity, for such
pieces to be linked to the originating data source. This is to give visibility to the data
source, but also to enable the reconstruction of very the same piece of information if
problems arise. Inititially, information relative to repositories will be collected by the
OpenDOAR data source, which will act as main entity registry for (literature) repositories in
Europe, but other data sources may join OpenAIRE in the future. The same centralized
directory is instead not available for dataset archives and CRIS systems, whose
managers/administrators will have to provide to OpenAIREplus while registering their data
sources.

Entity instances, relative to persons, projects, organizations, results, and data sources will
be instantiated from information packages collected, inferred, feed-backed, claimed from
two main collection workflows: automated fetching from registered data sources and
expert-provided information.

• OpenAIREplus compliant data sources: these include all data providers willing to
authoritatively provide content to OpenAIRE,

o CRIS systems: CERIF compatible data sources;
o Repositories: institutional and thematic;
o Dataset Archives: intended here as dataset providers from several subject

areas;
o Data Source Aggregators: intended here as systems federating several data

sources of the same kind (e.g., repository federations);
o Entity Registries: intended here as external data sources whose purpose is to

provide a unique identity and reference for given entities (e.g., OpenDOAR for
repositories, ORCID for persons)

• OpenAIREplus expert-validated entity pool: entities may reach the information space
through human-driven workflows, which deliver entities into an expert-validated entity
pool. Such a pool acts like a special data source, from which experts of various kinds
(e.g., authors of results, project coordinators, data curators) can inject authoritative
information into the OpenAIRE information space:

o Authors (or others on their behalf) can “claim publications” into OpenAIREplus
through the portal by:

§ Providing CrossREF DOIs and enriching them with project and license
information;

D6.1 OpenAIRE Data Model Specification Page 12 of 48

§ Searching publication metadata through external information spaces
(e.g., BASE search engine) and selecting/enriching (project and license
information) the ones they claim to be related to a project;

o Registered users can provide end-user feedbacks through the portal, to suggest
data corrections or enrichments trough “editing” actions to be validated by
OpenAIRE data curators;

o EC project coordinators can confirm relationships between publications and EC
projects automatically inferred by dedicated services;

o Data curators can validate guesses made by end-users through feedbacks or
validate inference actions (see below) to make them persistent;

o Data curators can perform edit actions, such as entity addition, removal, or
updates.

Such data sources remove, delete, update in the OpenAIRE information space information
about one or more of the entities, as well as relationships between them. For example,
some archives provide dataset metadata which also includes links to publications relevant
for the dataset or vice versa. Such cross-entity and cross-sources data integration brings in
data inference issues, which have mainly to do with information absence, duplication, and
versioning (intended as replicas of the same entity). For example, many relationships
(instances of) may not be available from data sources or may not be considered at all as
valuable (e.g., not of interest to the specific research domain). Moreover, the same
publication metadata may be collected from several resources, including repositories or
CRIS systems. These issues will push into the data model a number of entities, properties,
and relationships whose aim is to deliver to data curators the tools to maintain a clean,
uniform, and consistent information space.

1.2 Extending Data Model to Support Data Inference
As planned in the DoW the OpenAIRE infrastructure will feature a number of services
capable of curating the information space by disambiguating and enriching its entities,
namely:
• Duplicate inference: different records representing the same entity (e.g., Result,

Persons, Organizations, Projects) may be merged to disambiguate the information
space.

• Relationship inference: new relationships between entities (e.g., citations, similarity
semantics) may be inferred and added to the information space.

• Attribute inference: attribute values, such as titles or author names, will be inferred
from the original full-text or digital files.

The OpenAIRE data model will therefore require to be extended in order to capture the
entity information needed to cope with the distinction between original entities, which
are either collected from data sources or provided by experts, and inferred entities,
which can be instead re-calculated any time starting from the former set of entities and
therfore have a “lower level of trust”. As shown in Figure 1, end-users and application
access an information space which consists of the pool of original entities as collected from
data sources and provided by experts, deduplicated and enriched by the data inference
process through a layer of inferred information. We shall see that in some cases, inferred
entities may become original entities, when an expert validates them and inserts them into

D6.1 OpenAIRE Data Model Specification Page 13 of 48

the expert-validated entity pool. In this case, such entities enter the information space as
original entities and therefore become input to the data inference process.

Figure 1 – Entity data flow

1.3 Outline
In the following, Section 2 provides a detailed description of the main entities that come
into play by providing the relative Entity Relationship model. Section 3 describes the
workflow of data population that is how data is collected from data sources and and
ingested into the information space according to the data model. Section 3 describes the
issues encountered when introducing the concept of inferred entities into the data model
and presents the entailed model changes. Finally, Section 5 describes the changes to be
applied to the data model in order to cope with data management, from the an
administrative perspective.

The data model will be subject to changes in the future and therefore result in further
versions.

D6.1 OpenAIRE Data Model Specification Page 14 of 48

2 Main data model entities

This section provides a detailed description of the OpenAIREplus data model. Since the
data model marries the notion of “semantic layer” as proposed by the CERIF model,1 we
shall first describe its abstraction mechanisms and then provide the details of OpenAIRE
entities, their properties and their relationships.

2.1 CERIF Semantic Layer
According to this notion, (i) “horizontal” classification of entities (e.g., by vocabularies of
terms) is not modeled through properties associated to given controlled vocabularies and
(ii) semantic relationships between entities are not modeled by adding dedicated
relationships. In both cases, CERIF introduces a flexible modeling mechanism which allows
injecting classification semantics into “semantics-agnostic” entities and relationships. The
mechanism is obtained by introducing two entities Schemes and Classes such that (see
Figure 2):

Class A Class represents one term of a classification, e.g., vocabulary, taxonomy. As such
it is characterized by the following properties: a Code, which represents the persistent
identifier associated to the term (e.g., real-world classifications, such as ISO vocabularies
for countries, have a standard identification code for terms), a name, an acronym, a
description, a StartDate, and an EndDate. A Class is characterized by the following
relationships with other entities:

(i) scheme: the set of Schemes to which the Class belongs to (typically a Class
describes a term which belongs to one Scheme, but there are cases where the
same term can be shared across several Schemes);

(ii) related Classes (inverse of relationships Class1 and Class2 from Classes_Classes
entities): the Classes related with the Class through the relationships entities
Classes_Classes; the semantics of these associations is specified in the
Classes_Classes entities (e.g., “partOf”, “parent”, “child”);

Scheme A Scheme identifies the existence of a classification scheme, which is modeled as
a set of interrelated Class entities. A Scheme is characterized by the following properties: a
Code, which represents the persistent identifier associated to the Scheme (e.g., real-world
schemes, such as taxonomies, may be have a standard identification code), a name, an
acronym, a description, a StartDate, and an EndDate. A Scheme is characterized by the
following relationships:

(i) related Classes (inverse of the relationship schemes of Class entities): the Classes
associated to the Scheme;

(ii) entryPoints: the Classes at the first level of the Scheme.

Class_Class Such entities represent associations between different terms (Classes), they
are characterized by the following properties: a StartDate and an EndDate. They are
characterized by the following relationships:

1 CERIF data model: http://www.eurocris.org/Index.php?page=CERIFreleases&t=1

D6.1 OpenAIRE Data Model Specification Page 15 of 48

(iii) Class1 and Class2: which identify the two Class entities to be associated;
(iv) semanticsClass and semanticsScheme: which respectively specify the semantics of

this association through a given classification scheme.

Scheme_Scheme Such entities represent associations between different Schemes, they
are characterized by the following properties: a StartDate and an EndDate. They are
characterized by the following relationships:

(i) Scheme1 and Scheme2: which identify the two Scheme entities to be associated;
(ii) semanticsClass and semanticsScheme: which respectively specify the semantics of

this association through a given classification scheme.

The mechanism allows the adoption of new classification schemes of arbitrary complexity:
flat structures, such as vocabularies of terms for country (ISO 3166-1), tree structures,
such as the EC FP7 funding scheme (http://cordis.europa.eu/fp7) or the WoRMS taxonomy
of marine species (http://www.marinespecies.org), and graph structures such as the gene
ontology (http://www.geneontology.org).

Table 1 – Properties and relationships for Class, Scheme, Classes_Classes, and Schemes_Schemes entities

Class
• code
• name
• acronym (optional)
• description (optional)
• startDate
• endDate
è class1-1

 (0 or N Class_Class)
è class2-1

 (0 or N Class_Class)
è schemes

 (1 or N Scheme)

Notes:

For simplicity, inverse relationships with other entities
are not reported

Scheme
• code
• name
• acronym
• description
• startDate
• endDate
è entryPoints

(0 or N Class)
è schemes-1

(1 or N Class)
è scheme1-1

 (0 or N Scheme_Scheme)
è scheme2-1

 (0 or N Scheme_Scheme)

Notes:

For simplicity, inverse relationships with other entities
are not reported

Class_Class
• startDate
• endDate
è semanticsClass

 (1 Class)
è semanticsScheme

 (1 Scheme)
è class1

 (1 Class)
è class2

 (1 Class)

Scheme_Scheme
• startDate
• endDate
è semanticsClass

 (1 Class)
è semanticsScheme

 (1 Scheme)
è scheme1

 (1 Scheme)
è scheme2

 (1 Scheme)

D6.1 OpenAIRE Data Model Specification Page 16 of 48

Figure 2 – E-R model: semantic layer entities

The OpenAIREplus data model introduces semantic-agnostic relationships between
publications-results, publications-publications, datasets-datasets, publications-datasets, and
organizations-projects. Their intended semantics will be injected thanks to a Class entity of
a Scheme entity. Similarly, whenever entities need to be classified based in a property
value (e.g., nationality of a person), property and values are modeled by an association to
a Class (e.g., nationalityClass) and one to the relative Scheme (e.g., nationalityScheme).
The benefit of the approach is that applications can be written in such a way they cope
with the dynamic addition, removal, or deletion of Classes and Schemes. This is indeed the
case in OpenAIREplus, where the intended entities and relationships will be subject to
changes based on the results of Joint Research Activities.

2.2 Entities description
The entities in the data model can be grouped in the following way:

• Main entities: the entities whose information is continuously and incrementally fed
to the information space; namely Result (Publication and Dataset), Person,
Organization, DataSource (Repository, Dataset Archive, CRIS, Aggregator, Entity
Registry), Projects;

• Structural entities: the entities added to the model to represent complex information
about an entity; namely Instances, WebResources, Titles, Dates, Identities, and
Subjects;

• Static entities: entities whose content is inserted in the information space at some
point in time; namely Funding, Class, and Scheme;

• Linked entities (CERIF notation): relationship entities, used to connect in a
semantic-agnostic way two or more main entities; namely, those denoted by an
Entity1_Entity2 notation.

2.2.1 Main Entities
Main entities are characterized by a provenance relationship collectedFrom, which indicates
the DataSource entity (if it exists) from which entity information was collected. The
conceptual representation of the schema is illustrated in Figure 3, where main entities,
static entities and linked entities are represented, in Figure 4, where Result entities and
their sourroundings are represented, and in Figure 5, which groups all entities involved in
the collectedFrom relationship.

Result A Result is here intended as the (metadata) description/representation of a
scientific output (possibly) resulting out of one or more projects. A result is characterized
by the following properties: a date of acceptance, a publisher (optional), a description
(optional), and an embargo end date (empty if the licenseClass does not imply an
embargo). A Result is characterized by the following relationships with other entities:

D6.1 OpenAIRE Data Model Specification Page 17 of 48

(i) PIDS (optional): which is the list of unique and persistent identifiers used to identify
the result together with the relative identification agency, e.g., EPIC, CrossRef,
DataCite;

(ii) Titles (mandatory): the Titles of the Result, represented as Class entities of a
Scheme entity, e.g., original, alternative, subtitle, etc.

(iii) Creators (mandatory): the creators of the Result, which are Person entities
connected to the result through relative Person_Result entities;

(iv) Instances (mandatory): the Instances of the Result, which represent the locations
(DataSource entities) where the Result files (web resources entities, e.g., DOIs) can
be found;

(v) languageClass and languageScheme (optional): the language used in the
description or body of the Result, specified according to a given classification of
languages, respectively described as a Class entity and a Scheme entity;

(vi) collectedFrom (mandatory): the DataSource entity from which the information
relative to the Result entity was collected;

(vii) relevantDates (optional): a list of dates relevant to the Result;
(viii) fundingProjects (optional): the Projects which co-funded the research underlying

the Result;
(ix) subjects (optional): the scientific disciplines (represented as Class entities of a

Scheme entity) covered by the Result;

Note that the difference betweem collectedFrom and hostedBy is introduced to encode the
peculiar notion of Aggregation data sources, whose entities are obtained by federating a
set of DataSource entities. In OpenAIRE aggregators are DataSources from which entities
are “collected”, while the DataSources they aggregate “host” instead such entities. As such,
Aggregators differ from the data sources they aggregate, but play an equally important role
in delivering the entities to OpenAIRE, and should therefore be given visibility. In the case
of other DataSources, e.g., repositories, collectedFrom and hostedBy refer to the same
DataSource.

Dataset A Dataset is a Result further characterized by the following optional properties
(ref. DataCite initiative v2.2): resource type, size, format, version, last metadata update,
and metadata version number. A Dataset is characterized by the following relationships:

(i) the set of Datasets it is related with (inverse of relationships dataset1 and dataset2
of Dataset_Dataset entities): the semantics of such relationships is injected in
Dataset_Dataset entities through a semanticsClass and semanticsScheme
relationships);

(ii) the set of publications it is related with (inverse of relationships dataset of
Publication_Dataset entities): the semantics of such relationships is injected in
Publication_Dataset entities through a semanticsClass and semanticssScheme
relationships);

(iii) resourceTypeClass and resourceTypeScheme: the type of the Dataset according to
a given classification of Dataset types, respectively described as a Class entity
and a Scheme entity; The resourcetypeScheme “DataCite_resource” defines the

D6.1 OpenAIRE Data Model Specification Page 18 of 48

following typeClass values: Collection, Dataset, Event, Film, Image,
InteractiveResource, Model, PhysicalObject, Service, Software, Sound, Text.

Publication A Publication is a Result further characterized by the following properties:
journal. A Publication is characterized by the following relationships:

(i) the set of publications it is related with (inverse of relationships publication1 and
publication2 of publication_publication entities): the semantics of such
relationships is injected in publications_publications entities through a
semanticsClass and semanticsScheme relationships);

(ii) the set of datasets it is related with (inverse of relationships Publication of
Publication_Dataset entities): the semantics of such relationships is injected in
Publication_Dataset entities through a semanticsClass and semanticssScheme
relationships)

Person A Person is characterized by the following properties: firstName, secondNames,
infixName, fax, email, phone, title, and gender. A Person is also characterized by the
following relationships:

(i) PIDS (optional): which is the list of unique and persistent identifiers used to identify
the person together with the relative identification agency, e.g., ORCID;

(ii) creations (optional): the creations of the Persons, which are Results entities
connected to the result through relative Person_Result entities;

(iii) the participations of the Person to Projects (optional): inverse of contactPerson
relationships of Participants entities;

(iv) nationalityClass and nationalitycheme: the nationality of the Persons according to a
given classification of nationalities, respectively described as a Class entity and
a Scheme entity.

(v) collectedFrom: the DataSource entity from which the information relative to the
Person entity was collected;

Project A Project is characterized by the following properties: an persistent identifier
(which is the unique and persistent identifier used to identify the project by its funding
agency, e.g., grant agreement number for the EC), a title, an acronym, a web site (e.g., in
the case of EC projects the project page at CORDIS), a start_date, an end_date, a duration
(derived by start and end dates), a project call identifier, and a list of keywords. It also
features a special flag EC_SC39, indicating whether or not an EC project is subjected to
clause 39. A Project is also characterized by the following relationships:

(i) PIDS (optional): which is the list of unique and persistent identifiers used to identify
the project across several institutions, together with the relative identification
agency;

(ii) participants: which is the set of Participants participating to the Project;
(iii) the set of Results whose research was co-funded by the Project (inverse of the

relationship fundingProjects of the Result entities);
(iv) fundedBy: the set of Fundings entities indicating which grants co-funded the

Project;
(v) collectedFrom: the DataSource entity from which the information relative to the

Project entity was collected;

D6.1 OpenAIRE Data Model Specification Page 19 of 48

(vi) contractTypeClass and contractTypeScheme: the contract type of the Project
according to a given classification of contracts, respectively described as a Class
entity and a Scheme entity.

Organization An Organization is characterized by the following properties: an original
identifier (persistent identifier, if any, made available by the source providing organization
information), a legal short name, a legal name, an URL of its web site, and an URL of the
logo (if available). An organization is further characterized by a number of flags, which are
always present in the case of Organization information provided by the EC: legal body,
legal person, non profit, research organization, higher education, international organization
with Eur interests, international organization, enterprise, SME validated flag, and NUTS
code (Nomenclature of Territorial Units for Statistics). An Organization is characterized by
the following relationships:

(i) PIDS (optional): which is the list of unique and persistent identifiers used to identify
the organization across several identification agencies;

(ii) the set of Persons which have created a Result while affiliated with the Organization
(the inverse of the relationship creatorAffiliation of Person_Result);

(iii) dataSources: the DataSource entities under the responsibility of the Organization;
(iv) the participations of the Organization to Projects (inverse of respOrganization

relationships of Organization_Project entities);
(v) countryClass and countryScheme: the country of the Organization according to a

given classification of countries, respectively described as a Class entity and a
Scheme entity;

(vi) collectedFrom: the DataSource entity from which the information relative to the
Organization entity was collected.

DataSource A DataSource is characterized by a persistent identifier (if available, as
released by the agency or organization providing DataSource information, e.g., OpenDOAR
for repositories), a name space prefix (used to generate unique identifiers for entities
generated/provided by the data source in a intelligible manner), an official name, anEnglish
name (if available), a URL of its web site, an URL of the logo, a description, a contact email
(if available), and and access information package, which contains API information useful
to access the data source. It is characterized by the following relationships:

(i) the set of Result Instances it is hosting (inverse of the relationship hostedBy of
Instance entities);

(ii) the set of Result Instances which were collected from it (inverse of the relationship
collectedFrom of Instance entities)

(iii) OpenAIREcompatibilityClass and OpenAIREcompatibilityScheme: the degree of
compatibility to the OpenAIRE guidelines for content providers of the data
source, according to a given classification of compatibility types

(iv) the set of Organizations responsible for the DataSource (inverse of the relationship
respOrganization of the Organization entities)

(v) collectedFrom: the DataSource entity from which the information relative to the
DataSource entity was collected.

D6.1 OpenAIRE Data Model Specification Page 20 of 48

Repository A Repository is a DataSource characterized by the further properties inherited
from OpenDOAR description: numberOfItems, numberOfItemsDate, subjects, policies,
languages, and contentTypes.

CRIS system/Data Archive Both entities are DataSources.

Aggregator An Aggregator is a DataSource characterized by the following relationships:

(i) typeClass and typeScheme: the type of Aggregator according to a given
classification of Aggregator types (i.e., the kind of data sources they aggregate,
such as repositories, dataset archives, etc), respectively described as a Class
entity and a Scheme entity.

Entity Registry An Entity Registry is a DataSource characterized by the following
relationships:

(i) typeClass and typeScheme: the type of Entity Registry according to a given
classification of Registry types (i.e., the kind of entities they contain),
respectively described as a Class entity and a Scheme entity.

2.2.2 Structural entities
Title A Title is a title of a Result charachterized by a Name and a type provided by a
titleTypeScheme and a titleTypeClass properties. The title TypeScheme “DataCite_title”
defines the following typeClass values: Alternative Title, Subtitle, Translated Title. A Title is
characterized by the relationships titles-1, which refers to the Result to which it belongs.

Date A Date is a date different from the “date of acceptance” for Results. It is
characterized by a property Date and a type provided by a dateTypeScheme and a
dateTypeClass properties. The typeScheme “DataCite_date” defines the following
dateTypeClass values: Available, Copyrighted, Created, EndDate, Issued, Start Date,
Submitted, Updated, Valid. A Date is characterized by the relationships otherDates-1, which
refers to the Result to which it belongs.

Identity An Identity is a combination of a PID (persistent identifier) used to uniquely refer
to the individual together with the relative identifier scheme (issuer) provided by a
issuerTypeScheme and a issuerTypeClass properties.; e.g., ORCID, ISNI. An Identity is
characterized by the relationships PIDS-1, which refers to the Person, the Organization or
the Project to which is assigned (see Figure 6).

Instance An Instance represents the combination of the Web Resources (i.e., URLs
relative to files or file locations, such as “splash pages”) associated with a Result and the
DataSource where such Web Resources are hosted. An Instance also contains the
persistent identifier of the Result, if available. As such, an Instance is characterized by the
following relationships:

(i) the Result of which it is an Instance (the inverse of the relationship instances of
Result entities);

(ii) webResources: the set of WebResources associated to the Instance;
(iii) instanceTypeClass and instanceTypeScheme: the type of the Result according to a

given classification of Result types, respectively described as a Class entity and
a Scheme entity.

D6.1 OpenAIRE Data Model Specification Page 21 of 48

(iv) licenseClass and licenseScheme (mandatory): the license of the Result according to
a given classification of Dataset licenses, respectively described as a Class
entity and a Scheme entity; the Classes should include “Unknown”.

Web Resource A WebResource is characterized by its unique URL and by its relationship
with the associated Instance (inverse of the relationship webResources of Instance
entities).

Subject Subjects are scientific disciplines associated to one Result, together with a given
semantics. As such they are characterized by the following relationships:

(i) the Result associated to the subject (the inverse of the relationship subject of
Results entities);

(ii) semanticsClass and semanticsScheme: the semantics of the Subject according to a
given classification of Subjects, respectively described as a Class entity and a
Scheme entity.

2.2.3 Static entities
Funding A Funding entity represents funds that can be granted to Projects. As such it is
characterized by the following properties: name, description, keywords, and a persistent
identifier (if available). Moreover, by the following relationships:

(iii) the Projects granted the funding (inverse of relationship of Project in
Projects_Funding entities);

(iv) semanticsClass and semanticsScheme: the semantics of the Fundings (e.g., in FP7:
Supporting and Coordination Actions, I3, STREP) according to a given
classification of Fundings semantics (e.g., EC-FP7 contract schemes),
respectively described as a Class entity and a Scheme entity.

2.2.4 Linked entities
Publication_Publication Publication_Publication entities represent relationships between
Publication entities, together with the duration and the semantics of the relationship. As
such it is characterized by the properties start date and end date and by the following
relationships:

(i) Publication1 and Publication2: the two interrelated Publication entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Publications, respectively
described as a Class entity and a Scheme entity.

Funding_Funding Funding_Funding entities represent relationships between Funding
entities, together with the duration and the semantics of the relationship. As such it is
characterized by the properties start date and end date and by the following relationships:

(i) Funding1 and Funding2: the two interrelated Publication entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Fundings, respectively
described as a Class entity and a Scheme entity.

D6.1 OpenAIRE Data Model Specification Page 22 of 48

Project_Funding Project_Funding entities represent relationships between Projects and
Fundings entities, together with the duration and the semantics of the relationship. As such
it is characterized by the properties start date and end date and by the following
relationships:

(i) Project and Funding: the two interrelated entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Funding and Projects,
respectively described as a Class entity and a Scheme entity.

Organizations_Funding Organization_Funding entities represent relationships between
Organizations and Fundings entities, together with the duration and the semantics of the
relationship. For example, the EC is the organization behind FP7 funding (Class = funding
organization). As such it is characterized by the properties start date and end date and by
the following relationships:

(i) Organization and Funding: the two interrelated entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Funding and Organization,
respectively described as a Class entity and a Scheme entity.

Organization_Project Organizations_Projects entities represent relationships between
Publication and Organization entities, together with the semantics of the relationship.
Examples of such semantics, as suggested by CERIF vocabularies, are: subcontractors,
principal investigating, exploitation, coordinators, participant. Example is a formal
beneficiary of fundings within a Project. It is characterized by an Original Identifier (e.g.,
for EC projects it is the participant number, a progressive integer 1,2,3,4, etc., where 1 is
assigned to the project coordinator), a start date and an end date. A Participant is
characterized by the following relationships:

(i) the Project involved in the Organization_Project entity;
(ii) respOrganization involved in the Organization_Project entity;
(iii) contactPerson: the Person recorded as contact point for the responsible

Organization;
(iv) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Organizations and Projects,
respectively described as a Class entity and a Scheme entity.

Dataset_Dataset Dataset_Dataset entities represent relationships between Dataset
entities, together with the duration and the semantics of the relationship. As such it is
characterized by the properties start date and end date and by the following relationships:

(i) dataset1 and dataset2: the two interrelated Dataset entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Datasets, respectively
described as a Class entity and a Scheme entity.

Publication_Dataset Publication_Dataset entities represent relationships between a
Publication and a Dataset, together with the duration and the semantics of the relationship.
As such it is characterized by the properties start date and end date and by the following
relationships:

D6.1 OpenAIRE Data Model Specification Page 23 of 48

(i) Publication and Dataset: the two interrelated Publication and Dataset entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Publications and Datasets,
respectively described as a Class entity and a Scheme entity.

Person_Result Person_Result entities represent relationships between a Person and a
Result, together with the duration, the semantics of the relationship and the ranking (i.e.,
order of importance) of the relationship (e.g., to model author ordering). As such it is
characterized by the properties start date, end date, ranking, and by the following
relationships: Person and Result: the two interrelated Person and Result entities;

(i) semanticsClass and semanticsScheme: the semantics of the relationship according
to a given classification of relationships between Persons and Results,
respectively described as a Class entity and a Scheme entity;

(ii) personAffiliation: the Organization to which the Person creator of the Result was
affiliated to at the time of Result creation.

Result_Project Result_Project entities represent relationships between a Result and a
Project, together with the duration and the semantics of the relationship. As such it is
characterized by the properties start date and end date and by the following relationships:

(iii) Result and Project: the two interrelated Result and Project entities;
(iv) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Results and Projects,
respectively described as a Class entity and a Scheme entity.

Result_Organization Result_Organization entities represent relationships between a
Result and a Project, together with the duration and the semantics of the relationship. As
such it is characterized by the properties start date and end date and by the following
relationships:

(i) Result and Organization: the two interrelated Result and Organization entities;
(ii) semanticsClass and semanticsScheme: the semantics of the relationship according

to a given classification of relationships between Results and Organizations,
respectively described as a Class entity and a Scheme entity.

2.3 Entity-Relationship model
Table 2 reports the attributes and the named associations for the classes in the E-R schema
in Figure 3.

D6.1 OpenAIRE Data Model Specification Page 24 of 48

Figure 3 – E-R model: main, linked, static and structural entities

Figure 4 - E-R model: Result entities

Figure 5 – E-R model: provenance relationships

D6.1 OpenAIRE Data Model Specification Page 25 of 48

Figure 6 – E-R model: persistent identifiers of main entities

Table 2 – E-R Schema: class properties

Result
• publisher (optional)
• dateOfAcceptance
• description

è PIDS

(0 or N Identity)
è titles

(1 or N Title)
è creators

(0 or N Person_Result)
è result-1

(0 or N Result_Organization)
è instances

(0 or N Instance)
è subjects

(0 or N Subject)
è collectedFrom

(0 or 1 Data Source)
è languageClass

(1 Class)
è languageScheme

(1 Scheme)
è relevantDates

(0 or N Date)

Person
• firstName
• secondNames
• fax
• email
• phone
• creations

(0 or N Person_Result)
• contactPerson-1

(0 or N Project_Organization)
• nationalityClass

(0 or 1 Class)
• nationalityScheme

(0 or 1 Scheme)
è collectedFrom

(0 or 1 DataSource)
è PIDS

(0 or N Identity)

Constraints:
• This.nationalityClass must be

associated to
This.nationalityScheme	

Dataset
(isA Result)
• device (optional)
è dataset1-1

(0 or N Dataset_Dataset)
è dataset2-1

(0 or N Dataset_Dataset)
è dataset-1

(0 or N Publication_Dataset)
è typeClass

(1 Class)
è typeScheme

(1 Scheme)

Constraints:
• This.typeClass must be

associated to
This.typeScheme	

Publication
(isA Result)
• journal (optional)
• embargoEndDate (optional)
è publication1-1

(0 or N Publication_Publication)
è publication2-1

(0 or N Publication_Publication)
è publication-1

(0 or N Publication_Dataset)

Constraints:
• This.typeClass must be

associated to This.typeScheme

Project
• code
• webSiteURL (optional)
• acronym
• title
• start_date
• end_date
• call_identifier (optional)
• keywords (optional)
• duration (derived: from

start_date and end_date)
• EC_SC39 (optional)
• organizations

(1 or N Project_Organization)

Organization
• legal short name
• legal name
• webSiteURL
• logoURL (optional)
• EC_LegalBody (boolean)

(optional)
• EC_LegalPerson (boolean)

(optional)
• EC_NonProfit (boolean)

(optional)
• EC_ResearchOrganization

(boolean) (optional)
• EC_HigherEducation

(boolean) (optional)

D6.1 OpenAIRE Data Model Specification Page 26 of 48

• This.licenseClass must be
associated to This.licenseScheme

	

è funds
(0 or N Project_Funding)

è collectedFrom
(0 or 1 DataSource)

è projectPIDS
(0 or N Identity)

è contractTypeClass
(0 or 1 Class)

è contractTypeScheme
(0 or 1 Scheme)

Notes
For EC projects OriginalIdentifier
contains the grant agreement
number.

Constraints:
This. contractTypeClass must be
associated to This.
contractTypeScheme

• EC_InternationalOrganization
EurInterests (boolean)
(optional)

• EC_InternationalOrganization
(boolean) (optional)

• EC_Enterprise (boolean)
(optional)

• EC_SMEValidated (boolean)
(optional)

• EC_NUTScode (optional)

è organization-1
(0 or N Result_Organization)

è personAffiliation-1
(0 or N Person_Result)

è dataSources
(0 or N Data Sources)

è funder-1
(0 or N
Organization_Funding)

è involvedOrg-1
or N Project_Organization)

è countryClass
(0 or 1 Class)

è countryScheme
(0 or 1 Scheme)

è collectedFrom
(0 or 1 DataSource)

è organizationPIDS
(0 or N Identity)

Constraints:
This.countryClass must be
associated to This.countryScheme

Data Source
• PID
• nameSpacePrefix (unique)
• officialName
• englishName (optional)
• webSiteURL
• logoURL
• contactEmail
• accessInfoPackage
è OpenAIREcompatibilityClass

(1 Class)
è OpenAIREcompatibilityScheme

(1 Scheme)
è hostedBy-1

(0 or N Instance)
è collectedFrom-1

(0 or N Instances)
è dataSources-1

(0 or N Organizations)
è collectedFrom-1

(0 or N Person, DataSource,
Organization, Project, Instance)

Instance
• PID
è instances-1

(1 Results)
è hostedBy

(1 Data Source)
è licenseClass

(1 Class)
è licenseScheme

(1 Scheme)
è instanceTypeClass

(1 Class)
è instanceTypeScheme

(1 Scheme)

	

Web Resource
• Web Resource URL
è webResources-1

 (1 Instances)

D6.1 OpenAIRE Data Model Specification Page 27 of 48

Repository
(isA DataSource)
• OD_description (optional)
• OD_numberOfItems (optional)
• OD_numberOfItemsDate

(optional)
• OD_subjects (optional)
• OD_policies (optional)
• OD_languages (optional)
• OD_contentTypes (optional)

EntityRegistry
(isA DataSource)

DataArchive
(isA DataSource)

CRIS
(isA DataSource)

	

Aggregator
(isA DataSource)
è typeClass

(1 Class)
è typeScheme

(1 Scheme)

Constraints:
• This.typeClass must be

associated to This.typesScheme

Subject
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)
è subjects-1

(1 Result)

Funding
• persistentIdentifier
• name
• description
• keywords
• funding1-1

(0 or N Funding_Funding)
• funding2-1

(0 or N Funding_Funding)
• funders

(0 or N
Organization_Funding)

• funding-1
(0 or N Project_Funding)

Person_Result
• startDate
• endDate
• ranking
è creators-1

(1 Person)
è creations-1

(1 Result)
è creatorAffiliation

(0 or 1 Organizations)
è personRoleClass

(1 Class)
è personRoleScheme

(1 Scheme)

Constraints:
• This.roleClass must be

associated to This.roleScheme

Publication_Publication
• startDate
• endDate
è publication1

(1 Publication)
è publication2

(1 Publication)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:
• This.semanticsClass must be

associated to
This.semanticsScheme

Organization_Project
• participantNumber (optional)
• startDate
• endDate
è participants-1

(1 Projects)
è contactPerson

(0 or 1 Persons)
è respOrganization

1. Organizations)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Notes
• For EC projects,

OriginalIdentifier is the
participant number (1 for
project coordinators)

• For other projects, unless
they support the concept of

D6.1 OpenAIRE Data Model Specification Page 28 of 48

participant, the
OriginalIdentifier is empty.

Dataset_Dataset
• startDate
• endDate
è dataset1

(1 Dataset)
è dataset2

(1 DataSet)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:
• This.semanticsClass must be

associated to
This.semanticsScheme

Publication_Dataset
• startDate
• endDate
è publication

(1 Publication)
è dataset

(1 DataSet)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:
• This.semanticsClass must be

associated to
This.semanticsScheme

Funding_Funding
• startDate
• endDate
è funding1

(1 Funding)
è funding2

(1 Funding)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:
• This.semanticsClass must be

associated to
This.semanticsScheme

Organization_Funding
• startDate
• endDate
è funder

(1 Organization)
è funders-1

(1 Funding)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:

This.semanticsClass must be
associated to This.semanticsScheme

Project_Funding
• startDate
• endDate
è funding

(1 Funding)
è funds-1

(1 Projects)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:

This.semanticsClass must be
associated to
This.semanticsScheme

Project_Organization
• startDate
• endDate
è involvedOrg

(1 Organization)
è organizations-1

(1 Project)
è contactPerson

(1 Person)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:

This.semanticsClass must be
associated to
This.semanticsScheme

Result_Project
• startDate
• endDate
è project

(1 Project)
è result

(1 Result)
è semanticsClass

(1 Class)
è semanticsScheme

(1 Scheme)

Constraints:
• This.semanticsClass must be

associated to
This.semanticsScheme	

Title
• name
è titleTypeClass

(1 Class)
è titleTypeScheme

(1 Scheme)
è titles-1

(1 Result)

Date
• date
è dateTypeClass

(1 Class)
è dateTypeScheme

(1 Scheme)
è relevantDates-1

(1 Result)

Identity
• PID
è issuerTypeClass

(1 Class)
è issuerTypeScheme

D6.1 OpenAIRE Data Model Specification Page 29 of 48

(1 Scheme)
è projectPIDS-1

(1 Projects)
è personPIDS-1

(1 Person)
è organizationPIDS-1

(1 Organization)

D6.1 OpenAIRE Data Model Specification Page 30 of 48

3 Data population

As shown in Figure 1 the OpenAIREplus infrastructure collects entity information from an
expert-validated entity pool and from data sources of different typologies, such as
repositories, CRISs, dataset archives, aggregators, entity registries. All these contain
information relative to different interrelated entities of the OpenAIRE data model. In
particular, as shown by Error! Reference source not found., data sources of the same
typology may deliver metadata records which contain information relative to different
entities. For example, an OpenAIRE compliant repository delivers information packages
(i.e., metadata records) which contain information about the publication result, the persons
who created such result, the projects funding such result, and the instances relative to the
result; while a DRIVER compliant repository does not contain information about project
entities.

In the following we shall call original entities the entities collected from data sources,
hence from “authoritative” providers of data, onto the Information Space. The layer of
original entities includes entities and relationships between them as collected from the
different data sources (i.e., mapped from their original structure noto the one of the
OpenAIRE data model). The layer is “stateless”, in the sense that entities have
“reproducible” identifiers derived by combining identifiers of the entities in the original data
sources with a data source identifier assigned by OpenAIRE. In other words, if the same
entity or relationships is collected more than once from the same data source, it will be
transparently overridden.

Figure 7 – Entity layers: orginal entities

With respect to data population, hence with the process of collecting data from data
sources and map them onto the information space, this section we will introduce the
notions of:

• Information packages and population workflows: entity ingestion from data
sources into the information space;

• How to assign a stateless (and permanent) identifiers to the entities when
they enter the information space;

D6.1 OpenAIRE Data Model Specification Page 31 of 48

For each of these aspects, we shall provide and explanation of the problem, an extension
of the data model to handle the problem, and, where necessary, a solution to the problem
using the updated model.

3.1 Information packages
In OpenAIRE entities are collected from external data sources in the form of “information
packages”. This notion aims at generalizing the OpenAIRE scenario of bibliographic
metadata records import from repository data sources to other data source typologies and
other types of (primary) entities. In particular, we shall call information package a file in
some interpretable format (e.g. XML), which contains identifier and information (e.g.,
properties) relative to one entity, called primary entity, of a given entity type. An
information package may contain information (but not necessarily the identifier) relative to
other entities (of likely different entity types), called sub-entities, which must be directly or
indirectly associated with the package primary entity. Figure 7 shows an example of an
information package whose primary entity is 1: for example, an information package from
OpenDOAR is relative to a repository data source and can be identified by the relative
OpenDOAR identifier. Its sub-entities are those from 2 to 6: for example, an OpenDOAR
package also contains information about the organization responsible for the repository
data source.

3.2 Population Workflows
Original entities are collected from information packages originating from various data
sources. We call population workflow the process that takes the information package from
a data source, extracts its primary entity and its related entities, and stores them into the
OpenAIRE information space. A workflow is therefore dependent on:

• The data source typology (including the expert-validate entity pool);

• The access method, namely (i) protocol required to get the data (e.g., OAI-PMH,
JDBC, FTP) and (ii) relative access configuration (e.g., entry point, parameters,
etc.);

• The primary entity type of the information packages;

• The XML structure of the information packages at hand, which depends on the
primary entity type.

Note that data sources of the same typology may deliver information packages relative to
different primary entity types (in general we can assume they will do it from different
access points). For example, CRIS systems may expose through OAI-PMH both publication
or project primary entities.

Information package structure (OpenAIREplus guidelines) The OpenAIREplus
infrastructure will includes services capable of handling automated collection of entities
from data sources according to given population workflows. To this aim, the OpenAIRE
guidelines will describe which XML information packages structure should be expected for
each population workflow triple

<datasource typology, access method, primary entity type> → XML information package structure

available to the system. WP6 will develop services to automatically process the information
packages and insert the relative entities onto the information space.

Information package heterogeneity and harmoniztion Unfortunately, the “raw”
information packages exported by data sources will likely not match the information

D6.1 OpenAIRE Data Model Specification Page 32 of 48

package structures to be identified in the previous step. For example, CRIS systems
generally support OAI-PMH harvesting of information, but may export information packages
relative to the same entities (e.g., projects, publications) in different XML formats. To this
aim, WP6 will update its transformation services in order to map the specific structures
exposed by a data source through a given workflow so that they match the expected
information package structure.

Figure 8 – Information Packages: ingestion workflows (AM = Access Method, DS = Data source typology, PET =

Primary Entity Type, F = information package Format): data sources of the same typology export the same
primary entity of the same type through different “raw” information package format structures.

3.3 Identity of original entities
Original entities reach the information space from different workflows. Once they enter the
information space they must be assigned a unique “stateless” identifier. The data sources
of such entities are not under the OpenAIRE infrastructure control and may in any moment
decide to delete, update, or add new entities or relationships between them. Hence, it is
particularly important to make sure such identifiers are generated from the incoming
information packages in a stateless and stable way that is “if the same entity enters the
information space at different times, it will be assigned the same identifier”.

To this aim, the OpenAIRE infrastructure constructs indentifiers for primary entities and
sub-entities in an information package by combining three levels of scope: data sources,
relative primary entities, and sub-entities of such primary entities. More specifically:

• Infrastructure scope: all data sources are registered and assigned a unique identifier
in OpenAIRE;

• Data source scope: information packages from the same data source contain one
primary entity with an identifier which is unique in the context of the data source;

• Primary entity scope: information packages may contain a number of sub-entities
relative to the primary entity; unlike primary entities, sub-entities may not
necessarily come with an identifier (data source scope)1 and can be generally

1 Absence of identifiers may be due to the fact they do not have an identifier on the original data
source, e.g., authors of publications in bibliographic metadata records, or to the structure of the
information package export format, which focuses on the main entity only.

D6.1 OpenAIRE Data Model Specification Page 33 of 48

uniquely identified in the scope of the primary entity based on their properties. The
process of identification of such “unique information” is very much dependent on
the given information package structure.

Primary entity identifiers The process of generation of stateless identifiers for primary
entities is based on a data source scope strategy. Independently of the workflows, the type
of entity, and the data source kind, primary entity identifiers are always obtained by
concatenating the name space prefix of the data source with the primary entity identifier
(using and underscore):

nameSpacePrefix_mainEntityID

Although one may consider an infrastructure scope strategy, where the assumption is that
all primary entities identifers are persistent identifiers, therefore unique across several data
sources, in OpenAIRE this is not generally the case, hence we adopt a common and safe
strategy of identifier generation.

Sub-entity identifiers Assigning identifiers to sub-entities can be performed following
different strategies, some more “optimistic” and some more “pessimistic” about the ability
of inferring unambiguous “unique information” for sub-entities from their properties in the
information package. For example, one may assume that:

• Infrastructure scope strategy: sub-entities with the same “unique information” are
collapsed in the same entity across different data sources (infrastructure scope).
Entity splitting will identify and solve possible entity “overloads” in a second stage.

uniqueInformation

• Data source scope strategy: Sub-entities with the same “unique information” are
collapsed in the same entity but only within the same data source scope. Entity
splitting will identify and solve possible entity “overloads” in a second stage.

nameSpacePrefix_uniqueInformation

• Primary entity scope strategy: Sub-entities with the same “unique information” are
collapsed in the same entity but only within the same primary entity scope (see
Figure 9). De-duplication of entities will solve redundancy in a second stage.

nameSpacePrefix_mainEntityID_uniqueInformation

Assigning identifiers to sub-entities follows different strategies depending on the specific
workflow, hence the relative information packages structure.

D6.1 OpenAIRE Data Model Specification Page 34 of 48

Figure 9 – Assigning unique identifiers to sub-entities: primary entity scope

Figure 10 – Assigning unique identifiers to sub-entities: data source scope

D6.1 OpenAIRE Data Model Specification Page 35 of 48

4 Data inference

As highlighted in Section 1, the process of mapping information packages onto original
entities is not enough to ensure a high quality information space. Indeed, the autonomy
of the data sources brings in three main issues:

• A certain degree of information duplication: information about the same real-world
entities will be collected from several data sources;

• A certain degree of entity disconnection: data sources deliver entities and relationships
between them, which are generally limited to the boundaries of the data source; cross-
data source relationships are generally missing;

• A certain degree of inaccuracy: data sources may deliver only a portion of the entity
information required by the OpenAIREplus information space.

To tackle such issues, original entities serve as input to a data inference process, which
yields a layer of inferred entities resulting from resolving entity inaccuracy and
disconnection thorugh a mix of human intervention and information inference services.
Inferred entities logically “override” original entities in the information space to provide an
enhanced view of the information space, namely the layer of visible entities, which will
be effectively accessible to end-users and applications. The data inference process, which
leads from original entities to the new set of inferred entities, consists of four main phases,
at the end of which the set of inferred entities is actually transferred into the information
space and used to give life to a new set of visible entities. The phases are executed over a
clone of the OpenAIRE information space, containing a copy of the current set of original
entities. The phases are:

1. De-duplication of original entities: the phase returns a first set of inferred entities
which delivers a set of disambiguated visible entities;

2. Data inference actions over the set of visible entities: the phase returns a second
set of inferred entities, which enriches the first set and therefore further updates
the set of visible entities; this second set enriches the information space of new
entities but may introduce further duplicates;

3. De-duplication of the set of visible entities: the phase returns a third and final set of
inferred entities which delivers a set of disambiguated visible entities;

4. Transfer the final set of inferred entities into the information space: the set of
inferred entities is moved from the information space clone into the production
informarion space in order to re-calculate the set of visible entities.

The whole data inference process is always executed over original entities and can be re-
executed anytime to generate a new visible entity layer. As such, there is no need to keep
in the information space a history of inference actions, since both original entity and
inferred entity layers are intended to be always “refreshed” by executing a data population
operation or a data inference operation. Still, the information space data model needs to
be extended to enable the distinction between original and inferred entities and the
identification of visible entities as a logical overlap of the former two.

In this section we shall first introduce the data inference actions which can be executed in
OpenAIRE and comment on how such actions are to be encoded in the OpenAIRE data
model.

D6.1 OpenAIRE Data Model Specification Page 36 of 48

4.1 Inference actions
OpenAIREplus original entities can be subject to the following data inference actions,
performed by data mining and inference services and by humans:

• Merging of entities;

• Adding new inferred entities (relationship between main entities);

• Updating of properties of an original entity;

• Removing original entities.

Such actions may be caused by different data inference workflows, which may or may not
involve humans. Examples in the first OpenAIRE service settings are:

• End-user feedbacks, when approved by data curators;

• Data curator edit activities;

• Automatic inference algorithms: (i) similarity relationships between result entities, (ii)
information extraction from full-text of publications, which may infer title, authors,
organizations, and emails of publication entities, (iii) citation management, which may
lead to the introduction of publication results not available to the information space, (iv)
subject classification, which may lead to the introduction of new entities, etc.

• End-user claim/vaidation actions through the OpenAIRE portal, e.g., project
coordinators validating publication-project relationships.

• Deduplication services identifying a set of entities of the same type which all
correspond to the one and the same real-world entity.

In the following we shall focus on how to modify the OpenAIRE data model in order to
represent the outcome of data inference actions on the information space and to resolve
data inference conflicts that may arise between original and inferred entities. For each of
these aspects, we shall provide and explanation of the problem, an extension of the data
model to handle the problem, and, where necessary, a solution to the problem using the
updated model.

4.1.1 Trust and Inference Provenance of Entities
Inference actions, hence the entities they bring onto the information space, may have
different levels of trust, depending on their service or agent which generated them,
namely entity inference provenance. Main entities and linked entities in the model are
therefore enriched with three properties:

• addedByInference: a flag which is set to TRUE when the entity is created as a
consequence of an inference action, including de-duplication. Set to FALSE for
original entities.

• deletedByInference: a flag which is set to TRUE when some inference process
establishes that the entity should be removed from the visible entities.

• Trust: a 0 to 1 value that establishes the level of credibility of the information. By
definition, original entities are assigned a OE level of trust, while entities from the
expert-valided entity pool a value EVE > OE. Inferred entities are assigned a value
IE < OE which depends on the quality and reliability of the automatic inference
mechanisms or of the humans bringing the information.

D6.1 OpenAIRE Data Model Specification Page 37 of 48

• Inference Provenance: a value from a controlled dictionary which encodes the
algorithm/process/service which brought the inferred entity in the information
space, e.g., “de-duplication”, or deleted, i.e., made invisible, an original entity from
the information space. In the case of original entities the property is initially set to
NULL.

4.1.2 Merging of entities
The de-duplication service operates over the set of original entities of the same main type
(i.e., Person, Organization, Result, DataSource, Project) and identifies groups of entities
which are redundantly describing the same entity. For each group, the service identifies a
representative entity, which by default is the one with the higher level of trust among the
duplicates (if more entities have the same level of trust, the one with the shorter identifier
is selected). The remaining duplicate entities (merged entities) will not be visible to end-
users and will point to the representative entity. However, in the case merged entities bear
values for properties which are unavailable (empty values) for the representative entity,
such values will be used for indexing and visualization purposes (“shadow entity” strategy).
Hence, the ordering of the entities plays an important role in establishing their usage within
the information space.

The second de-duplication phase occurs after a number of inference actions which may
introduce further duplication. In this context, if a group of duplicates includes a
representative entity, then all entities merged into the latter are included in the new group
and a new representative entity is elected.

Merging introduces further issues, which regard the strategy to be adopted to cope with
linked entities, static entities, and structural entities associated with entities that were
merged and should therefore be excluded from the set of visible entities. In other words, in
order to offer a coherent view of the space, all entities “sourrounding” merged entities
must be altered in order not to be associated with with the representative entity. For
example, merging two Publication p1 and p2 into p1 implies that Project, Authors,
Instance, and Subject entities of p2 will be linked to p1 (avoiding duplicated associations in
the case p1 already points to the same entities). Note that Title and Date structural entities
are considere part of a single Result and will not be linked to the representative entity.

To this aim the data model needs to represent the possibility of adding a new relationship
with a status Inferred, which encodes such re-linking, withouth losing the original
relationship (in order to “clean” the inferred information and return to the original layer of
entities). As shown in Figure 11, this requires a major change, since explicit relationships
between entities, such as collectedFrom, become explicit relationship entities (in green
in the Figure) which include properties capable of capturing such status. Specifically, the
model will include:

for each main entity type:

• A relationship mergedWith, which points from one entity to the group-
representative entity;

for all explicit relationships (not modelled through linked entities):

• Properties Inferred, deletedByInference, Trust, and Inference Provenance

D6.1 OpenAIRE Data Model Specification Page 38 of 48

Figure 11 – Extension to data model to cope with inferred entities: explicit relationships become entities

When merging a set of entities e1,…,eK into a representative entity ej two main strategies
are adopted, which regard explicit relationship entities and linked entities. As an example
we shall consider Result entities.

Explicit relationship entities Result entities are surrounded by the following explicit
relationship entities: Instances, CollectedFrom, and Subjects.

Instances entities associate Results with a set of Instance entities (and in turn a set of
WebResource entities). In this case, all Instance entities of merged entities are to be
connected to the representative entity, so that all files of all Results are visible. To this aim,
for each Result in r2,…,rK all instances relationships are set the flag deletedByInference to
TRUE. All such relationships are cloned, i.e., the same values for all properties, but with the
flag inferred set to TRUE, deletedByInference set to FALSE, InferenceProvenance set to
“de-duplication”, Trust set to a given value, and as target Result entity the representative
entity.

The same strategy is adopted for the other explicit realtionship entitites surrounding Result
entities, namely CollectedFrom and Subjects. Existing explicit relationship entities for
merged entities are made logically invisible (set the flag deletedByInference to TRUE) and
clone relationship entities are created which point to the representative entity and have the
flag inferred set to TRUE. In the case the source entity of the relationships to be cloned is
already linked with the representative entity, the relationship is not created (e.g., merged
entities and representative entity share a subset of Subject entities).

Linked entities Result entities are surrounded by the following linked entities:

• Relationship projects to Result_Project linked entities

• Relationship creators to Person_Result linked entities

• (If Publication entity) relationship pub1 and pub2 to Publication_Publication linked
entities

• (If Publication entity) relationship publication-1 Publication_Dataset linked entities

• (If Dataset entity) relationship dataset1 and dataset2 to Dataset _ Dataset linked
entities

D6.1 OpenAIRE Data Model Specification Page 39 of 48

• (If Dataset entity) relationship dataset -1 Publication_Dataset linked entities

For each linked entity involving merged entities, the same two steps highlighted above take
place. Existing linked entities for merged entities are made logically invisible (set the flag
deletedByInference to TRUE) and clone linked entities are created which point to the
representative entity and have the flag inferred set to TRUE. In the case the source entity
of the linked entity to be cloned is already linked with the representative entity, the
relationship is not created (e.g., merged entities and representative entity share a subset of
Project entities).

Note: as an optimization of the merging process, which leads to cloning of entities hence
to a possible increase of the entities in the information space, we could keep track of the
changes inferred by merge actions within linked entities and explicit relationship entities.
For each linked entity type and explicit relationship entity type connecting the entities A
and B, the model would feature two associations original_<entityA> and
original_<entityB> as an addition to the associations <entityA> and <entityB> which such
entities contain. The former pair keeps memory of the original pointers <entityA> and
<entityB> to the entities in A and B before the merge took place; the inferred pointers will
substitute the original ones and be kept in <entityA> and <entityB>.

4.1.3 Adding an inferred entity
Some inference processes may lead to the introduction of new main entities together with
linked entities or explicit relationship entities. Consider for example the citation inference
process, which returns a set of Publication_Publication entities with semantics of type
“citation” and may add new Publication entities relative to the citations that are not in the
information space. In this case, all such entities are added with the inferred flag set to
TRUE, deletedByInference set to FALSE, InferenceProvenance set to “citation_inference”,
Trust set to a given value.

4.1.4 Updating an original entity
Updating an entity consists in selecting one main entity and updating its property values or
its relationships with other entities. Updates are modeled as additions of entities obtained
from cloning the updated entity. The new entity is tagged as inferred and has a level of
trust UE, to be used in the second de-duplication phase. Depending on the value, the entity
may become the representative entity of a group which includes its original clone or be
used as “shadow” entity in such a group.

4.1.1 Removing an entity
An entity can be removed from the information space by setting its flag inferredAsDeleted
to TRUE. As any other inference action, the action is accompanied by its inference
provenance information and level of trust.

D6.1 OpenAIRE Data Model Specification Page 40 of 48

5 General data management issues

5.1 Administrative entity properties
All entities feature the following administrative properties:

• Timestamp of creation (linked entities have a start date and an end date inherited
by the CERIF semantic layer);

All entities but Structural and Static entities:
• Timestamp of inference action, i.e., deleteByInference, mergedWith
• A flag visible, set to TRUE if the entity is a visible entity, to FALSE otherwise
• A flag ForMining, set to TRUE if the entity should not be indexed but only delivered

to the Information Inference Service (WP7)
Data Source entities:

• Name Space Prefix property, which indicates a meaningful (intelligible) string to be
used to prefix local identifiers of entities and form a unique OpenAIRE identifier.

5.2 Users management
A set of Users which may have a number of Roles and, after having registered, may
“create” a number of Results in the database, by fetching them from different kinds of
sources or by manually ingesting them. Figure 12, shows the relationships between the
tables whose properties are listed in Table 3. The “email” was chosen as primary key to
follow the indication of D-NET user profiles, with which the table will be synchronized.

Table 3 - Database extension: User management in OpenAIRE, tables and properties

User
• email: PK String
• firstName: String (optional)
• secondName: String (optional)
• institution: String (optional)

Creation
• creation: PK FK

Results(resultID)
• creator: PK FK Users(email)
• dateOfCreation: Date
• lastUpdateDate: Date

Role
• name: PK String

User_Role
• role: PK FK Roles(name)
• user_email: PK FK Users(email)

Figure 12 – Database extension: User management in OpenAIRE, tables and relationships

D6.1 OpenAIRE Data Model Specification Page 41 of 48

5.3 Visualization issues
Usage of vocabularies and classification schemes through the semantic layer The
property Name of Class and Scheme is replicated into linked entities, main entities and
structural entities (when used to model vocabularies) to enable visualization of relationship
instances.

Usage of hierarchies of Funding entities In order to ease the visualization of a
hierarchy of Funding entities, each entity is assigned an encoding of its position in the tree.
The property position is based on the assumption that the Funding “nodes” of a Funding
classification trees are numbered starting by 0 (where the root is virtually the
fundingScheme), from left to right and down to lower levels (see Figure 13). The identifier
of a node is then obtained as the numbering path leading from the root to the node. Note:
node additions, movements, or deletions cause the Funding tree to be re-numbered, hence
position properties to be updated.

Figure 13 – Tree numbering for node positioning

D6.1 OpenAIRE Data Model Specification Page 42 of 48

6 OpenAIRE Data Sources

6.1 Initial instantiation of the database
The database as described above will initially be instantiated to include:

• FP7 projects as Funding static entities;

• Licensing vocabulary as Class and Scheme entities: to be provided by
OpenAIREplus, currently: Embargo, Copyrighted, OpenAccess

• Subject vocabulary as Class and Scheme entities;

• ResourceType for Datasets as Class and Scheme entities: DataCite v2.2 vocabulary;

• Title types as Class and Scheme entities: DataCite v2.2 vocabulary;

• Date types as Class and Scheme entities: DataCite v2.2 vocabulary;

• Nationality types as Class and Scheme entities: ISO standard used in OpenAIRE;

• Language types as Class and Scheme entities: ISO standard used in OpenAIRE;

• Linked entities: at least one vocabulary of Class and Scheme entity for each linked
entity: CERIF data model.

6.1.1 CORDA data source: FP7 EC Projects
The cooperation with CORDA (ref. Veronique Riegler) consisted in identifying a mapping
between the CORDA wharehouse tables and the tables related with project data defined in
the OpenAIRE data model. In the following, for each OpenAIRE table we provide the field-
to-fiel correspondence with the data that will be provided by CORDA, together with the
operations that will be need to be implemented to refine the mapping, such as format
conversion or primary key generation.

Projects

OpenAIRE Field name OpenAIRE
Format

OpenAIRE Notes CORDA Field name CORDA
format

CORDA
Notes

ProjectID Integer Primary Key Project ID
(grant_agreement_number)

Integer Primary
Key

Web_site String Project Internet Address String

EC_project_website String Project Call Webpage URL String

Call_identifier String Project Call Identifier String

Acronym String Project Acronym String

Title String Project Title String

start_date Date Check for format
convertion

Project Start Date Date

fundedHow String Foreign key Project Funding Scheme String

end_date Date Project End Date Date

SC39 Boolean Special Clause
Model=sc_fp7_39

String

fundedBy String Foreign Key Project Program String

D6.1 OpenAIRE Data Model Specification Page 43 of 48

Persons
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

personID PK Primary Key: hash-
generated ID

Not provided

projectID Integer (only for persons from
CORDA, used to

generate personID)

Project ID Integer Primary
Key

participantOrder Integer (only for persons from
CORDA, used to

generate personID)

Participant Order Integer Primary
Key

projectRole String (only for persons from
CORDA, used to

generate personID)1

Person Role String

Name String Person Last Name String

Surname String Person First Name String

Nationality String Not provided

Email String Contact email String

Function (role in project, currently
implicitly is “coordinator”)

String Contact function String

Fax String Contact fax String

Phone String Contact phone String

Organizations
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

OrganizationID String Primary Key Organisation PIC String Primary
Key

Legal_short_name String Organisation Short Name String

legal_name String Organisation Legal Name String

web_site_url String Organisation Web Page String

logo_url String Optional Not provided N/A

country_of_origin: countryID String Foreign Key
(ISO code: it should

match the one used by
CORDA - check)

Organisation Country String
(ISO
code)

legal_body String Public Body (flag Y/N) String

legalPerson Boolean Legal Person (flag Y/N) String

nonProfit Boolean Non Profit (flag Y/N) String

researchOrganization Boolean Research Organisation
(flag Y/N)

String

higherEducation Boolean Higher Education (flag Y/N) String

1 This value will always be “Coordinator” (at least the string used by CORDA to describe the
coordinator, we should check for the real value when the data will come). This is because we only
have access to Persons when they are coordinator a project. By determining Person ID based on the
person role we leave ourselves the possibility to host Persons with different roles in the future. In
this case we would require to add a relationships Persons-Participants N:M to the ER schema, where
we describe the kind of relationships, rather than relying on a 0:N relationship CoordinatingPerson
as we are doing now (see table Participants).

D6.1 OpenAIRE Data Model Specification Page 44 of 48

internationalOrgEurInterest Boolean International Org Eur
Interest (flag Y/N)

String

internationalOrganizaztion Boolean International Organisation
(flag Y/N)

String

Enterprise Boolean Enterprise (flag Y/N) String

SMEvalidated Boolean SME Validated (flag Y/N) String

Participants
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

ParticipantID PK Primary Key
(Generated from)

Not provided

Project FK Foreign Key to
Projects

Project ID

Integer Primary
Key;

Foreign
Key to

Projects
ParticipantNumber Integer

Participant Order Integer Primary

Key
RespOrganization String Foreign Key to

Organizations
(transform

Organization PIC in
our current format:

ORG-…)

Organisation PIC String Foreign
Key

CoordinatingPerson FK Foreign Key to
Persons (hash-

generated ID, based
on Project,

ParticipantNumber
and string

“Coordinator”)1

Not provided Not
provided

Coordinator Boolean TRUE if
beneficiary_number =

1
false otherwise

Not provided Not
provided

Frameworks
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

FrameworkID String Primary Key Project framework String Primary
Key

Name String Use Project
Framework values

Not provided

Acronym String Use Project
Framework values

Not provided

SpecificProgrammes
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

specificProgrammeID String Primary Key Project specific program String Primary
Key

1The string used by CORDA to describe a coordinator should be used, which we assemued here to
be “Coordinator”. We should check when the data will arrive if this is the case.

D6.1 OpenAIRE Data Model Specification Page 45 of 48

Name String Use Project
Framework values

Not provided

Acronym String Use Project
Framework values

Not provided

Description String Project specific program
description

String

FrameworkID String Foreign Key Project framework String

Programmes
OpenAIRE field name OpenAIRE

Format
OpenAIRE

Notes
CORDA field name CORDA

format
CORDA
Notes

programmeID String Primary Key Project Program String Primary
Key

Name String Project Program
Description

String

Acronym String Not provided

specificProgrammeID String Foreign Key Project Specific Program String

FundingSchemes

OpenAIRE field name OpenAIRE
Format

OpenAIRE
Notes

CORDA field name CORDA
format

CORDA
Notes

fundingSchemeID String Primary Key Project Funding Scheme String Primary
Key

Name String Project Funding Scheme

Description String Project Funding Scheme
Description

String ,

D6.1 OpenAIRE Data Model Specification Page 46 of 48

7 Managing the Information Space using HBase

7.1 Mapping information space entities into HBase data model.
The Information Space will be stored in three different storage services:

• HBase NOSQL Service: main entities and linked entities will be stored into such
service according to the Column Family model described below.

•

• Relational Database Service: static entities, such as funding schemes, subjects,
Schemes and Classes, will be stored into a relational database. The same will hold
for the relationships between Results and End-users, when latter execute claim or
deposition (in the Orphan repository) actions.

7.1.1 Storing Main entities and Linked Entities
In the infrastructure, the data collection flow can be summarized as follows (see Figure
14):

1. Collection of information packages from external data sources onto MDStores and
relational database Service;

2. Storage of information packages into MDStores and relational database.

3. Unpackaging of information packages into entities and storage of such entities into
the HBase Service in the Column Family “Original entities”.

Figure 14 - Data Flow and services

The HBase service will store in each row a main entity and a linked entity, organized in the
following columns:

The following columns characterize rows:

• The identifier of the row;

D6.1 OpenAIRE Data Model Specification Page 47 of 48

• The entity type of the object;

• The original object (protocol buffer encoding), as provided by the MDStore (XML
record) or the Relational Database (XML encoding of relational record);

• A list of relationships to other objects in the information space: the column cell may
contain the properties of such relationships, if any, e.g. class, scheme (protocol
buffer encoding);

• A property stating if the object has been collected from data sources or added by
inference services;

• A property stating if the object has been deleted by inference services;

• An XML encoding of the object to be used for full-text indexing (see D6.2 for
details).

Consolidation A second Hadoop processing will complete the XML encoding to contain all
fields and relationships required for visualization in the full-text Index. The process will
collect for each entity (e.g., a Result), the values relative to properties of other entities
related with the former (e.g., project names) to be used for visualization and search
purposes. The process will store the result in another Column Family, named “Complete
entities”, in order to leave untouched the Column Family relative to the original data as
collected from the data sources, and possibly repeat the process again without
regenerating such content.

Deduplication Subsequent Hadoop processing will de-duplicate the information space,
starting from Results and then completing with Persons and Organizations. As a result of
such processing, the cell of the column Body of the represenatative entities (see entity
merge actions above) will be modified to include the information relative to provenance of
the merged entities. For example, in the case of Publicaitons, the Instances, the
DataSources (collectedFrom), and the Projects relative to all merged entities will be
embodied in the representative entity. Similarly the Body cell of the merged entities will be
included in the entity XML visualization template. In the same action, “shadow fields” may
be added to the record, if necessary (when a field value is missing in the representative
entity).

7.2 Full-text Indexing Strategy
In OpenAIRE the portal will enable the following access functionalities:

• Full-text search of entities of the main entity types;

• Faceted browsing over properties of the main entity types;

• Navigation between main entities connected by linked entities.

The D-NET index service is based on Solr Apache full-text index. To address the
requirements above, the index will be organized to contain records relative to entities of
the main types. In particular, such records typically contain:

• A property entityType which classifies the record w.r.t. its entity type;

• Properties of the structural entities and static entities connected to the main entity;

• Properties named after the relationship (Scheme-Class pairs) between the entity
and other entities whose values are significant properties of the target entity
record; for example, the relationship “author” between a result entity A and a
person entity B will be materialized into the index as a property author with value

D6.1 OpenAIRE Data Model Specification Page 48 of 48

the name of B; note that records can include realtionships at multiple levels of
depth, e.g., data sources of results;

• A property record which contains the XML representation of the record for user
interface usage; the record will for example contain elements (or attributes) which
contain the pointer to the person B.

Materializing relationships between entities equates to hardcode “joins” between main
entities into the index. Hence, the decision of which relationships are to be materialized is
to be taken based on the search and navigation logic to be offered to end-users.

An index reflects the current status of authoritative entities and has therefore to be kept
synchronized with the last changes to original entities and the enrichments of inference
activities. Due to the size of the database, synchronization is performed incrementally, so
as to include only changes occurred after the last synchronization operation. New or
updated authoritative entities can be identified based on the time-stamp, while deleted
entities are logically removed from the space and can therefore be identified.

Synchronization may involve millions of entities (e.g., refresh of UKPUBMED repository) and
lead to database queries which may take hours, which slow down the database and the
index. To cope with such numbers, synchronization is performed in different record
tranches, where database is searched for entities which changed since the last commit,
resulting entities are clustered based on a hash function which guarantees that no more
than M index update actions are executed for each cluster, and each hash entity class is
then applied to the index.

