
The D-NET Software Toolkit: A Framework for the
Realization, Maintenance, and Operation of Aggregative

Infrastructures

Paolo Manghi
	

Michele Artini, Claudio Atzori, Alessia Bardi,
Andrea Mannocci, Sandro La Bruzzo

Leonardo Candela, Donatella Castelli, Pasquale Pagano

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

Via Moruzzi 1, Pisa
name.surname@isti.cnr.it

	
Abstract In the last decade, as a consequence of the multidisciplinary and data-
driven character of modern science, researchers grew a strong demand for
collecting, integrating and combining information objects from multiple r
research-oriented data sources. The objective is to improve the way research
results are shared, discovered, and re-used across community boundaries.
Interoperability issues of data and technologies, scarcity of computational
resources, and highly evolving requirements typically represent an obstacle to
practitioners constructing the “aggregative infrastructures” capable of
performing such an integration. This paper presents the architectural principles
and the services of the D-NET Software Toolkit, a framework where developers
find the tools for constructing and operating aggregative infrastructures in a
cost-effective way as instances of service-oriented data infrastructures. In D-
NET developers can select from a variety of data management services, can
configure them to handle data according to given data models, and can combine
them into autonomic workflows to obtain personalized aggregative
infrastructures.

	
1. Introduction
	
Research Repositories (RRs) are systems devised to support scientists at de-
positing, preserving, accessing and re-using research material and outcome.
Traditionally, RRs include digital archives and publication repositories, which
assist the research life-cycle by offering such functionalities for multimedia
objects, e.g. digitized material, and scientific literature, e.g. articles (Candela
et al., 2013b). In the last decade, the advent of data-driven science has

This is a pre-print of the following article: Paolo Manghi Michele Artini Claudio Atzori Alessia Bardi
Andrea Mannocci Sandro La Bruzzo Leonardo Candela Donatella Castelli Pasquale Pagano , (2014),"The
D-NET software toolkit", Program: electronic library and information systems, Vol. 48 Iss 4 pp. 322 - 354
http://dx.doi.org/10.1108/PROG-08-2013-0045

Please, cite this document by citing to the official article.

introduced datasets, intended as scientific raw and secondary data, in the
scholarly communication chain. A new generation of RRs, namely dataset
repositories, and relative technologies have been developed for this purpose,
e.g. CKAN (http://ckan.org/), DRYAD (White et al., 2008), PANGAEA
(Diepenbroek et al. 2002). Such RRs contain datasets accurately described
with metadata in order to enable citation, discovery and re-use (Callaghan et
al., 2012).

The multidisciplinary character of science and the strong requirements for
immediate access to new research results called for systems that facilitate re-
searchers at discovering and accessing content available from RRs, be these in
their community or across distinct communities. Such novel systems, hereafter
aggregative infrastructures, are capable of collecting information objects (i.e.
metadata and the files they describe) from heterogeneous RRs in order to form
uniform, cleaned, and enriched cross-RR information spaces. These
information spaces facilitate access to the objects at their original sites, by
enabling the realization of advanced services over the aggregated content; e.g.
search, browse, statistics, recommendations. In this work we shall focus on
three categories of aggregative infrastructures, for publication (or dataset)
repositories, cultural heritage, and scholarly communication. Publication (or
dataset) repository infrastructures collect and process bibliographic (or
scientific) metadata from a pool of repositories to support improved and
uniform cross-search and access to research literature (or datasets). In the
context of cultural heritage infrastructures metadata and audio/video material
from several digital archives are collected and processed to enable data
normalization, cross-discovery, preservation, or export towards third-party
services. Finally, scholarly communication infrastructures are built on the
experience of repository infrastructures and follow the demands of modern
science. Scholarly communication infrastructures give life to environments
where publications and datasets can be collected from the relative data sources
to be interlinked and enriched with further contextual information (e.g.
funding, institutions, research initiatives). The aim is not only to provide to the
researchers a richer, searchable, navigable and reusable information space
about research, but also to offer tools for measuring research impact with
respect to funding, research initiatives, etc.

Although distinct in the nature of the information objects they handle, ag-

gregative infrastructures have common functional and architectural patterns.
Examples of the functional patterns are those involving data curation:
managing multiple metadata formats, maintaining mappings between them, or
de-duplicating, annotating, validating, and enriching metadata. Examples of
architectural patterns are scalability (e.g. support access to large sets of ob-
jects), robustness (e.g. preserve objects from being lost), and administration of
a set of data sources, hence dealing with tasks such as data workflow
definition and scheduling. Despite the similarities, however, software

solutions to aggregative infrastructures are often tailored to one application
domain and can hardly be re-used into scenarios where distinct requirements
apply. As a consequence, the realization of an aggregative infrastructure is
generally a from-scratch operation, hardly sustainable in terms of design,
development and maintenance of software (Manghi et al., 2010c).

This paper presents the D-NET Software Toolkit. D-NET proposes a
service-oriented framework specifically designed to support developers at
constructing custom aggregative infrastructures in a cost-effective way. D-
NET offers data management services capable of providing access to different
kinds of external data sources, storing and processing information objects of
any data models, converting them into common formats, and exposing infor-
mation objects to third-party applications through a number of standard access
APIs. D-NET services are obtained by encapsulating advanced and state-of-
the-art open-source products for data storage, indexing, and processing – such
as PostgreSQL (The PostgreSQL Global Development Group, 2010),
MongoDB (MongoDB, 2012), Apache Solr (Kuć, 2013), and Apache HBase
(The Apache Software Foundation, 2013) – in order to serve broad application
needs. Most importantly, D-NET offers infrastructure enabling services that
facilitate the construction of domain-specific aggregative infrastructures by
selecting and configuring the needed services and easily combining them to
form autonomic data processing workflows. The combination of out-of-the
box data management services and tools for assembling them into workflows
makes the toolkit an appealing starting platform for developers having to face
the realization of aggregative infrastructures. D-NET was briefly introduced in
(Iatropoulou et al., 2010; Manghi et al., 2010b) to describe its initial
engineering and its use in the realization of repository infrastructures. After
several years of improvement and adaptations to satisfy different real-case
applications, this paper aims at providing the first in-depth description of D-
NET and its today largely enriched data management service kit.

Outline of the paper The paper is organized as follows: Section 2 presents
the high-level architecture of aggregative infrastructures, resulted from
rationalizing the issues that practitioners in the digital library field have to face
when designing and developing such systems. Section 3 presents the general-
concepts of the D-NET software toolkit. Section 4 describes D-NET’s data
management services and how they can be used to realize customized, robust
and scalable aggregative infrastructures. Section 5 reports on real-case
aggregative infrastructures powered by D-NET. Section 6 comments on the
cost-effectiveness of the D-NET approach, illustrating pros and cons. Finally,
Section 7 concludes the paper.

2. Aggregative infrastructures

In the context of Research Repositories, an information object is a digital
object characterized by: (i) a unique identifier (in its scope of creation), (ii) a
metadata object, and (iii) the described resource(s), e.g. file, web resource,
real-world resource. Aggregative infrastructures are information systems
whose software components address the functionalities for collecting metadata
objects from a set of RRs (e.g. repositories, archives, libraries, databases) and
processing them with the purpose of forming homogeneous information
spaces. For the purpose of metadata enrichment and object delivery,
aggregative infrastructures may also collect and process the digital objects
described by such metadata. Aggregative infrastructures offer advanced ser-
vices to scientists and communities (and their applications, e.g. e-Science
infrastructures) who may not have the resources (e.g. funds, computational
power, the storage space, or the technical competence) to individually build
such aggregations. In the following we shall describe the general features of
aggregative infrastructures, present categories of such systems, and report on
solutions to support their realization.
	
2.1 Features
Content Typically, aggregative infrastructure components deal with informa-
tion spaces of metadata objects and, possibly, relative digital objects:

Metadata objects Metadata objects are descriptive information relative to a
digital object or to a “real-world entity” (e.g. a book in shelf, a painting in a
museum). Typically, if needed, the link between metadata objects and their
digital objects is encoded by a metadata property value (e.g. a URL).
Metadata data models describe the structure of metadata objects and how
these objects of different types are linked with each other. Such models can be
can be conceptually represented as graphs of entities, whose edges define
entity relationships. The relative objects can be digitally encoded according to
different physical models so as to serve different usages, such as efficient
access, computation, and export.

Figure 1 illustrates a conceptual model and two physical storage models,
respectively intended for access to and exports of metadata objects relative to
publications, authors and publication files. Such objects are stored as records
of relational tables into a storage software component, but also as Dublin Core
XML metadata records of an export software component. The relational
representation mirrors the entities of the conceptual model, while the XML
representation wraps up publication objects with the related author names and
the URLs of the publication files. Export formats of metadata are generally
expressed using XML. As a consequence, metadata data models typically
come with a corresponding XML schema (also called XML format) to be used
for export/import. Often mappings from such formats onto standard XML
schemas are provided so as to leverage interoperability, e.g. Dublin Core

(Dekkers and Weibel, 2003), MARC (Furrie et al., 2003), EAD (Pitti, 1999),
MPEG21 (Walle and Koenen, 2006). Lately, also the RDF format for
LinkedData (Linked Data community; Bizer et al., 2009) is being regarded as
a valuable and standard format/protocol to export metadata objects.	

An information space is a collection of metadata objects conforming to the
same conceptual data model. Such a collection can be materialized according
to different physical models (e.g. relational database, graph store, XML native
DBs), depending on the functionality to be supported (e.g. statistics,
navigation, mining, export). Typically, an information space conforming to a
conceptual model can be mirrored according to different physical models, i.e.
the same object collection is kept copied or synchronized according to
different backends, in order to enable different kinds of processing over the
data. Orthogonally, information space can be staged into other information
spaces, conforming to distinct conceptual data models.

 	
Figure 1 - Metadata data models and physical representations

	
Digital object Digital objects are files (e.g. video files, text files, image files)
typically accompanied by technical metadata descriptions, such as the file
format (e.g. mime), and application-oriented parameters (e.g. color features for
images, size of file, version of creating application). In the following, we shall
consider digital objects and metadata as logically de-coupled, hence described
by different information object data models, although in principle they may be
stored together as one digital object. Depending on their intended usage,
digital objects can be stored in various ways: from plain file systems, to
scalable storage systems, e.g. MongoDB, complex policy management

systems, e.g. iRODS (Rajasekar et al., 2010), and streaming servers.

Functionality Aggregative infrastructures are constituted by software
components whose functionalities and workflows largely vary depending on
application scenarios. In general components can be classified in the following
functional areas, depicted in Figure	2:

Storage Components in this area manage storage and indexing of digital
objects and/or metadata objects. For example a full-text index component
which keeps an information space of Dublin Core metadata objects; or a
storage component preserving large information spaces of AVI video digital
objects together with MPEG21 metadata objects.

Mediation Components in this area are capable of administering a set of
“external” data sources in order to enable information object exchange. The
exchange may be based on standard digital library APIs and formats, such as
the Protocol for Metadata Harvesting (OAI-PMH), Object Exchange Protocol
(OAI-ORE) (Carl Lagoze and Herbert Van de Sompel, 2007), and the more
traditional ODBC, FTP, WSDL/SOAP, SRW, and REST. Components in this
area may range from “registries” of data sources, which keep a list of data
source descriptions (e.g. access interfaces, typology, etc.), and “mediators”,
which implement the actual data exchange. Examples may be a registry for
administrating a set of remote JDBC-compliant library catalogues; and a
search mediation component, capable of sending SQL queries to the remote
catalogues and returning their fused results.

Provision Components in this area allow third-party applications to access in-
formation spaces by means of standard APIs and formats. Examples may be
OAIPMH publisher or OpenSearch components abstracting over the index
components in the storage area.

Manipulation Components in this area offer functionality for information
space enrichment, mirroring, staging, statistics, and validation. Enrichment
may take place thanks to components for inference and digital object
transcoding: transcoding DOCX documents into text files, mining text files for
subject classification, histograms from image digital objects, etc. Mirroring
and staging may be achieved via components for the transformation of
metadata objects (e.g., mapping EAD metadata objects onto MARC21
metadata objects). Validation evaluates the quality of information spaces, e.g.
quality of metadata records from a repository with respect to some given data
quality rules.

Figure 2 - Aggregative infrastructures functional architecture

Actors The life-cycle of aggregative infrastructures consists of three main ac-
tivities, namely realization, maintenance and operation, whose responsibility
is of four main actors: designers, developers, system administrators, data
managers/curators.

Realization: design of a system matching the initial requirements of data
aggregation and involves two actors, namely designers and developers.

Maintenance: standard software support, e.g. upgrade of software versions,
and software refinement, that is the adaptation of the software to new evolving
functional requirements; both designers and developers are involved.

Operation: the activity of operating a running infrastructure, which concerns
(i) hardware/application administration and (ii) information space
management. The first task is responsibility of system administrators who are
in charge of monitoring and fixing hardware features and software deployment
to match Quality of Service requirements, e.g. robustness, availability,
scalability, etc. The second task is assigned to data managers/curators who
must make sure information objects are properly collected from data sources,
transformed, enriched, validated to form mirrors or stages of information
spaces according to the given requirements.

2.2 Real-case scenarios
In this section, we shall report on three typologies of aggregative infrastruc-
tures to showcase their main features and differences: repository infrastruc-
tures, scholarly communication infrastructures, and cultural heritage
infrastructures. The aim is to show the variety of functional components
involved in their realization, the underlying implementation complexity, and
to highlight the interoperability issues that arise when combining components
into workflows for information space delivery. Examples of components are
exemplified in Table 1.

Table 1 - Aggregative infrastructure components: samples.

Repository Infrastructures Institutional Repositories (Lynch, 2003) are RRs
adopted by research institutions to archive, preserve and provide access for
research publications (e.g. article, books, technical reports) and relative
bibliographic metadata records. Known repository technology platforms are
Fedora (Lagoze et al., 2005), DSpace (Tansley et al., 2003), ePrints (Milling-
ton and Nixon, 2007), and Greenstone (Witten et al., 2001). In the Digital
Library realm, publication repository infrastructures are a common category of
aggregative infrastructures, whose aim is to collect metadata records from a
set of OAI-PMH compliant data sources, aggregate such records to form
uniform and searchable information spaces, and offer web portals to query
over such information spaces (Jackson et al., 2008). Known examples of such
systems are OCLC-OAIster (http://www.oaister.org), BASE: Bielefeld

Academic Search Engine (http://www.base-search.net), NARCIS, (Digital
Academic Repositories, http://www.narcis.nl), DART-Europe (http:
//www.dart-europe.eu/), CORE (http://core-project.kmi.open.ac.uk) and many
others.

Figure 3 shows an example of repository infrastructure’s workflow for
metadata collection and transformation: metadata records (e.g. Dublin Core
records) are collected from a data source to be transformed onto metadata ob-
jects of a target uniform information space. Other workflows may be present
in the aggregative infrastructure, e.g. for inferring content and enriching the
information space. The variables in this scenario, which have an impact on the
kind of components to be developed, are typically: the number and variability
of the repositories to be harvested, the required frequency of data collection
from the repositories, the common data model of the information space (e.g.
an XML metadata format), the metadata mappings, the information extraction
operation to be performed (e.g. computation intensive), the level of robustness
(e.g. replicas of aggregated metadata), availability (e.g. number of indices,
number of networks involved), and scalability (e.g. number of accesses). It is
evident how, depending on the peculiarities of the application domain,
repository infrastructures may substantially differ from each other and rely on
components integrating different software for data management. As shown in
Table 1, these infrastructures may need components for (i) the collection,
storage and indexing of information objects, (ii) the management of a set of
data sources and relative workflows, (iii) the transformation of XML records
with one-to-one mappings (e.g. REPOX (Reis et al., 2009) and MINT (Kollia
et al., 2012)), and (iv) the export of the objects via several standard protocols
for bulk or selective access (e.g. OAI-PMH, OAI-ORE, SRW, LinkedData
(Linked Data community; Bizer et al., 2009)).
	

	
Figure 3 - Repository Infrastructures: example of data workflow

Dataset Repositories are RRs adopted by research institutions (e.g.
DRYAD (White et al., 2008)) to archive, preserve and provide access to
research data information objects, namely datasets, such as time-series,
images, genes and proteins, worksheets. The nature of datasets and relative
metadata is strictly dependent on the scientific discipline. Dataset repository
infrastructures are also frequent and respond to the demand of making
accessible heterogeneous and independent scientific data sources. Known

examples are the CLARIN infrastructure for language resources (CLA), the
ESPAS infrastructure for geospatial information (Hapgood et al., 2012), or
DataCite for dataset repositories associated to the DataCite initiative
(www.datacite.org).

Cultural Heritage Infrastructures Cultural Heritage (CH) is certainly one of
the most active community in the realization of aggregative infrastructures
(Loebbecke and Thaller, 2011; Bardi et al., 2012b; Hunter and Gerber, 2010).
Digital archives are a category of RRs dedicated to the storage of (potentially
large) digital objects and metadata objects of cultural heritage material,
including texts, videos, audios, and images. The increased availability of cul-
tural heritage digital content raised a natural need to realize infrastructures for
the integration, preservation and delivery of such content to wider research,
academic, and public communities. Examples are the infrastructures supported
by the European Infrastructure for Cultural Heritage (Aloia et al., 2011)
(http://www.europeana.eu), the European Film Gateway project (Artini et al.,
2013) and the Heritage of People’s Europe (Bardi et al., 2012b).

The realization of aggregative infrastructures for CH can be particularly
complex when compared to other disciplines, due to the high degree of
heterogeneity and multidisciplinary flavor brought in by cultural heritage
communities (Papatheodorou, 2012). Typically, digital archives export objects
conforming to graph-like metadata data models (e.g. MARCXML for
libraries, EAD for archives, EN 15907 for audio/video, LIDO for visual
objects), generally packaged as XML records. Similarly, the aggregative
infrastructure information spaces contain metadata objects conforming to
graph-like data models. Common functional requirements are: making CH
material available via full-text search, enabling the navigation of relationships
between objects, and providing statistics based on such relationships.
Examples of workflow in a CH aggregative infrastructure are shown in Figure
4. The first peculiarity of such aggregative infrastructures is that the
transformation of data source XML records into metadata objects in the
information space is typically not a one-to-one mapping. The transformation
requires components to “unpackage” the incoming XML metadata records in
order to create information objects compliant to the common data model of the
target information space. Secondly, an XML physical representation of the
information space may not be the optimal choice, for example to enable
navigation and statistics, and more complex storage and provision components
may be required (e.g. relational databases, triples stores such as Virtuoso,
Sesame, graph stores such as Neo4J). Finally, aggregative infrastructures for
CH tend to include components to handle (possibly large) digital objects to
enable, for example, their long-term preservation (e.g. OPM provenance
model (Moreau et al., 2011), OAIS reference model (Consultative Committee
for Space Data Systems, 2002)), their transcoding into different formats (e.g.
thumbnails extraction), or their dispatch to third-party services, e.g. YouTube,

Flickr, remote FTP sites, data sources. Table 1 lists a collection of typical CH
aggregative infrastructure components.
	

Figure 4 - Cultural Heritage Infrastructures: example of data workflow

	

Scholarly Communication Infrastructures Although publication and dataset
repositories were conceived to serve complementary and non-interoperable
tasks of the research process, scientific communication requirements in data-
driven science are today forcing them to interoperate (Castelli et al., 2013).
Interlinking datasets with literature would greatly improve data availability,
discoverability, interpretability and re-usability (Boulton et al., 2012).

CRIS systems (Current Research Information Systems) are a category of
RRs devised to store metadata about the “research life-cycle”, such as funding
schemes, projects and participant organizations and people, research tools and
devices, patents. Their function is not only to keep track of grants and
stakeholders, but also to associate publications and datasets with contextual
information on research activities and actors. CRISs play an important role for
institutions willing to measure and assess the quality of their researchers and
the impact of research funding or initiatives in terms of productivity, e.g.
publications, datasets, patents.
	

	
Figure 5 - Scholarly Communication Infrastructures: example of data workflow

	
Scholarly Communication Infrastructures aggregate content from dataset

repositories, publication repositories, and CRISs systems to play the role of a
meta-CRIS system, operating cross-institution, cross-region and cross-
discipline. Examples are the European OpenAIRE infrastructure (Manghi et
al., 2012a) and the Swedish ScienceNet infrastructure (Johansson and
Ottosson, 2012). These aggregative infrastructures generally include
components to handle transformation, storage and indexing of graph-like
metadata models, and introduce inference and de-duplication/merging
components in order to: (i) identify new relationships between natively
disconnected objects, and (ii) disambiguate metadata objects collected from
independent data sources but representing the same real-world entity (e.g.
bibliographic records collected from different repositories but describing the
same publication). The former components are necessary in order to deliver
added value and improve discovery of material by end-users, funding
agencies, etc. The latter components are crucial in order for the aggregative
infrastructures to expose coherent and precise statistics, fundamental to
generate credible measurements and assessments. Besides, such systems tend
to grow arbitrarily large information spaces (e.g. hundreds of millions of
interlinked objects), which become hardly sustainable in terms of size or
computation using open source RDBMs, such as PostgreSQL or MySQL.
Using such tools, replication, scalability, availability, volatility, processing of
very large data collections become critical challenges for system

administrators and developers. For such reasons, such aggregative
infrastructures consider the adoption of scalable open source “column stores”
such as HBASE (Khetrapal and Ganesh, 2006) and Cassandra (Lakshman and
Malik, 2010). Moreover, such stores are integrated with the Hadoop Map Re-
duce framework, facilitating parallel computing over very large collections,
for example to run efficient de-duplication algorithms. Figure 5 illustrates a
typical scholarly communication infrastructure’s workflow.

2.3 Related Work
As shown in the previous section, given initial data management requirements,
designers and developers realize their aggregative infrastructures by
customizing existing software products and pipelining them into workflows.
The interoperability issues that may arise are solved by coding software
“wrappers” and “connectors”. Typically, resulting solutions are developed
“from scratch” to optimally serve a specific application scenario and in
general do not target general-purposeness and reuse in different contexts. Such
an approach turns out to be not sustainable in the majority of cases, both in
terms of maintenance and evolution of the software (Manghi et al., 2010c).

As a reaction, research in the e-Infrastructure field started investigations on
software systems designed to support the construction of aggregative infras-
tructures (Candela et al., 2013a; Manghi et al., 2010a). Typically, such
systems implement modules supporting general-purpose functional patterns
for data collection, processing, storage and provision in order to allow
developers to build aggregative infrastructures by re-using, customizing, and
pipelining functionalities into workflows to meet the specific community
needs. Each solution has pros and cons and may be more apt to one
application scenario or another. For example, the gCube software system
(Simeoni et al., 2009) provides a service-oriented solution that is particularly
apt for application scenarios requiring parallelization of algorithms for big
data analytics, customization of big data staging workflows, dynamic service
deployment, and serving computational resources on demand, i.e. hybrid cloud
services. The SYNAT system proposed in (Mazurek et al., 2013) (Rosiek et
al., 2013) and the CORE system described in (Knoth and Zdrahal, 2012) are
instead designed to facilitate the construction of publication repository
aggregative infrastructures. Both products (i) enable the customization of
metadata aggregation and mining processes, and (ii) support the realization of
advanced access services. A further interesting example is that of ARIADNE
(Duval et al, 2011), an infrastructure for the aggregation of learning objects.
The underlying software has been designed to enable the construction of
learning object infrastructures, but also to support the integration of several of
such infrastructures. This is achieved by (i) supporting open standards for
metadata description, harvesting, query, and ingestion, and (ii) enabling the

synchronization of registries of learning object repositories from different
infrastructures.

While in the context of aggregative infrastructures the gCube system
approach would be an overkill, SYNAT, CORE, and ARIADNE services
would certainly offer fully-fledged solutions for the realization of repository
and learning object infrastructures. On the other hand, being focused on
classes of problems, the last three solutions would miss many of the
functionalities required to enable the construction of more complex
aggregative infrastructures (e.g. support for graph-like metadata models, de-
duplication in graph-like information spaces, information space tagging
components, etc.).

The D-NET Software Toolkit started from an approach that is similar to
SYNAT’s, CORE’s, and ARIADNE’s but then evolved to satisfy the
requirements of broader kinds of aggregative infrastructures such as those of
cultural heritage applications and modern scholarly communication scenarios.

3. D-NET Software Toolkit

The D-NET Software Toolkit is open source (Apache license), fully developed
in Java, based on the Web Service framework (http://www.w3.org/2002/ws),
and available for download at http://www.d-net.research-infrastructures.eu. Its
first software release was designed and developed within the DRIVER and
DRIVER-II EC projects (2006-2008) (Feijen et al., 2007). The scenario moti-
vating its realization was that of constructing the European repository infras-
tructure for Open Access repositories (DRI). The infrastructure had to harvest
(tens of) millions of Dublin Core metadata records from hundreds of OAI-
PMH repository data sources, harmonize the structure and values of such
records to form a uniform information space. A D-NET data infrastructure is a
run-time distributed environment, inspired by Service-Oriented Architecture
paradigms (Lomow and Newcomer, 2005; MacKenzie et al., 2006), where
administrators can dynamically construct, refine, and monitor service-oriented
applications for information space construction. A running D-NET
infrastructure consists of two main service layers: the application layer, which
consists of running D-NET data management services, needed to compose the
applications of the aggregative infrastructure; and the infrastructure core,
called enabling layer (Candela et al., 2007), whose services manage and
combine services in the application layer to shape up the target applications.
The D-NET data management kit, to be presented in the Section 4, provides
services that offer out-of-the-box and customizable data management
functionalities by encapsulating a variety of open source products. The rest of
the section will introduce the enabling layer services and the infrastructural
features they deliver.

	
3.1 The Enabling Layer
Services in the D-NET enabling layer offer resource discovery & re-use func-
tionalities, as inspired by overlay networks in peer-to-peer systems, and au-
tonomic computing functionality, as inspired by orchestration mechanisms in
service-oriented computing. The layer comprises four services: Information
Service, Manager Service, Result Set Service, and Chron Job Service.

Information Service (IS) D-NET resources are intended as infrastructure
entities whose purpose is to be discovered and re-used by services, which are
themselves system resources. The IS offers functionality for registration and
discovery of system resources. Resource registration consists in submitting a
resource profile to the IS. A profile is an XML file containing information
about the resource, such as an identifier, geographical location, resource
typology, properties that describe the current status. Resource discovery
consists in submitting a query to the IS, looking up for a resource based on its
profile properties. Services, whose status may change over time (e.g. amount
of disk space available for an index service), must keep their status properties
up-to-date to enable effective resource discovery. The set of resource
typologies managed by the IS is not static and can be modified at run-time to
integrate new kinds of functionality services into the system. In any moment,
the pool of resource profiles in the IS represents the up-to-date “map” of
resources available to the system.

For example, a Vocabulary Management Service can offer UIs and APIs
for the creation, update, and deletion of vocabularies of terms. The Vocabulary
Management Service can register vocabularies as resources in the IS, and keep
them up-to-date overtime, so that other services (e.g. a metadata Transfor-
mator Service) can discover and synchronize with them. Another important
example of resources is that of data sources (e.g. publication repositories,
dataset repositories). Managers of such data sources, whose maintenance lays
out of the infrastructure, are responsible for the registration of data sources.
Their profile may include a description of the data source (e.g. name, web site,
location) and technical properties (e.g. access protocols, access parameters).
Once registered, the data source can be discovered by services that are able to
access their content. As we shall see below, other typologies of D-NET
resources may be workflows (i.e. repeatable sequences of actions involving
several services), workflow configurations, XML metadata formats, XML
mappings, etc.

The IS implements subscription and notification mechanisms according to
the WS-BaseNotification specification (Graham et al., 2006). Services can
subscribe and be notified to events regarding system resources, for example:
registration of a resource of a given kind, de-registration of one given
resource, update of resource status information in the profile (thus implicitly to

the events which caused such changes to the status), etc.
The current implementation of the IS consists of several Java modules on

top of an eXist-db (http://exist.sourceforge.net), an open source native XML
database. Resource profiles are represented as XML files matching the XML
schemas associated to their resource typology. The adoption of an XML native
DB softens the need for service developers to know the exact structure of the
profiles when searching for resources with given properties (i.e. XQuery), and
allows for a straightforward implementation of the WS-BaseNotification
topics, whose formalism based on labeled trees and path queries can be
directly mapped onto XML and XQuery.
	
Manager Service (MS) The service addresses service orchestration and
monitoring, hence “autonomic behavior”. One or more MSs can be
configured by developers to autonomously execute workflows. D-NET
workflows are resources describing sequences of steps, where each step may
consists of business logic (i.e. Java code), remote service invocations,
workflow forks (i.e. parallel sub-workflows), and workflow conjunctions
(confluence of parallel workflows). Typically, service invocations are
preceded by a look-up into the IS, which discovers the “best” service of the
needed kind and available to execute the call. Workflows can be fired
manually or as a consequence of the notification of a resource-related event
from the IS or because of time-events, i.e. chron jobs set by a Chron Job
Service (Section 3.1). Workflows are commonly used to automatically
schedule data collection from data sources, population of information spaces,
and synchronization of information space mirrors or information space
staging.

Workflows can implement long-term transactions by exploiting
subscription and notification of events in the IS. When a time-consuming step
is to be fired (e.g. indexing a large set of metadata objects), the invocation is
accompanied by a subscription request to the event “conclusion of the step”.
The MS waits for the relative notification before moving on to the next step.
Workflows can also be used as monitoring threads, checking for consistency
and availability of resources or consistency and Quality of Service of the
aggregative infrastructure. For example, aggregative infrastructure policies
may require that a given collection of information objects be replicated K
times. A monitoring workflow may, at given time intervals, check that this is
really the case and possibly take corrective actions, e.g. creating a missing
replica. When corrective actions are not possible, warning emails can be sent
to administrators.

The MS implementation is based on the workflow engine of Sarasvati
project (http://code.google.com/p/sarasvati). The MS user interface offers a
graphical overview of the ongoing workflows and allows administrators to
interact with such workflows, for example to manually re-execute them or to
redefine their configuration parameters. Administrators can also consult the

history of workflow executions, which keep track of successful and failed
workflow steps, as well as of values of given input output parameters for such
steps (e.g. number of metadata records). Workflows are treated as
infrastructure resources, hence can be shared by different instances of the
Manager Service, and are preserved in the IS.

ResultSet Service The service manages ResultSets, namely “buckets” for
asynchronously transferring list of objects between a provider service and a
consumer service. A ResultSet is an ordered list of files, which can be
accessed via paging mechanisms, and is identified by an End Point Reference
(EPR) – the Web Service EPR standard describes the location of a web
resource on the Internet (Gudgin et al., 2006).

D-NET services can be designed to accept or return ResultSet EPRs as
input parameters or results to invocations. Such an approach implements a
uniform data (file) exchange layer across different D-NET services, thereby
enabling transparent exchange of information objects between the
heterogeneous technologies encapsulated by the services.

ResultSets are implemented based on the SOAP protocol for data exchange
(Gudgin et al., 2007). As such, the transmission of data (envelope serialization
and materialization) may cause delays or overload the channel in the case of
large files. To cope with these issues, D-NET services may also expose REST
interfaces and provide responses in alternative formats, e.g. JSON. For
example this may be the case for index services in the need to communicate
with end-user portals.

Chron Job Service The service handles a set of scheduled tasks, called
“chron jobs”. Each job defines a pair time interval and workflow. When the
time interval expires, the workflow is fired. Time intervals can be repeated
infinitely or a given number of times. An example of chron job usage is in the
context of repository infrastructures, to fire the workflows necessary to harvest
metadata objects from repository data sources. Such actions are generally not
executed manually, especially in the presence of hundreds of repositories, and
need to be repeated infinitely at given time intervals. As we shall see,
DataSource Manager Services exploit Chron Job Service to provide
aggregative infrastructure administrators with control panels for harvesting
schedules.

3.2 Infrastructural properties
D-NET enabling services enable the construction of aggregative
infrastructures with the following features:

Economy of scale Services constituting one aggregative infrastructure may be
hosted over servers maintained at different institution sites; such an economy

of scale approach softens the administration costs for individual institutions
sustaining the infrastructure.

Robustness Service replicas, i.e. clones of functionality and content, can be
kept at different sites. This strategy, in combination with dynamic discovery of
resources, makes the system more robust to network failures and system
crashes (availability of service) as well as to concurrent accesses (scalability
by workload distribution).

Autonomicity Manager Services can autonomously orchestrate and monitor the
status of services in the aggregative infrastructure.

Elasticity Thanks to dynamic discovery, services can join or leave the
infrastructure anytime without administrators having to re-configure
application workflows. For example, to make the infrastructure more robust to
data loss, administrators should deploy and register a new storage service to
the Information Service and increase the parameter “number of storage
replicas” in the replica-monitoring workflow of the Manager Service.

4. D-NET Data Management Services

New D-NET service typologies can be added to the framework, generally
without requiring changes to existing services, and their instances can be
combined into workflows with instances of existing services. To become D-
NET services, services must implement the service participation and data
exchange policies established by the D-NET environment, which include (i)
common data-exchange APIs, to enable functionality-pipeline, (ii)
subscription and notification interfaces, to enable distributed transactions with
long-term and asynchronous operations, and (iii) service profile registration
and update to the Information Service. In order to facilitate the “D-NET-
ization” of products/software, the service template required to implement D-
NET encapsulation is available to developers.

Today, the D-NET framework provides a data management service kit,
whose services implement typical aggregative infrastructure components.
They have been added in the years to meet the peculiar requirements arisen
when facing new challenges in different application domains. Such services,
in order to address aggregative infrastructure requirements of arbitrary user
communities, are designed according to two engineering principles:
modularity and customizability.

Modularity Services provide “functionality in isolation”, that is functionality
“factored out as much as possible”, in order to maximize re-use in different

workflows. In addition, they support “functionality pipelining”, that is services
in the Data Management Kit agree on how information objects are represented
and exchanged between them. Services exchange XML serializations of
metadata and digital objects, called object representations (ORs). ORs are
XML records with header and body sections, the former describing technical
and provenance properties of the object and the latter containing the encoding
of the object. Data models are treated as D-NET resources, whose Information
Service profile contains a name, a unique identifier, and a link to the XML
schema. The header section contains: (i) the identifier assigned to the object in
the infrastructure, (ii) the original identifier of the object, if the object was
collected from a data source registered to the system, (iii) provenance
information about the object (e.g. the identifier of the data source resource
from which it was collected, a reference to the D-NET workflow which
generated it), and (iv) the identifier of the data model resource if the object is
metadata. The body section contains the XML encoding of the information
object, be it a metadata or a digital object. Metadata objects are represented by
an XML encoding whose structure is described the data model resource
indicated in the header. Digital objects are represented by an XML with three
elements: the URL of the object, if it was collected or still is out of the
infrastructure boundaries, the D-NET unique identifier of the object, if it is
stored in a D-NET Store Service, and the D-NET unique identifier of a
metadata object, if the object is associated to a metadata record.

Functionality in isolation and pipelining facilitate the engineering of
custom data management workflows. For example, a repository infrastructure
may need to harvest metadata objects, store them and then index them, while
another infrastructure may instead need to harvest and then index them
straightaway. Such different workflows can be supported in the same system
only if harvesting, storage and indexing functionality are factored out and
implemented as independent services.

Customizability Services managing metadata objects should be customizable
at run-time to operate according to a given data model. This feature makes
service instances dynamically programmable (e.g. by Manager Services) and
promotes their re-use to serve different goals.. For example, we shall see that
instances of D-NET services providing storage and indexing of metadata
objects are dynamically configurable to handle collections of metadata records
of several data models, based on requests from other services. To make this
possible, some of the D-NET data storage services obey to the so-called
factory pattern design, inspired by the WSRF resource framework (Banks,
2006). A factory service instance can be used across workflows in the need of
the same logic (e.g. indexing), but with different purposes (e.g. distinct
metadata data models, separate collections of metadata objects), in order to
exploit at best local resources (e.g. disk space, CPU). To this aim, one factory
service instance implements functionality for: (i) managing a set of units, i.e.

containers of objects of a given data model (e.g. Index units) and (ii)
managing the objects of one or more units (e.g. feeding and querying an Index
unit). Units are themselves resources registered with special profiles to the
Information Service, in order for services to discover them for usage (e.g.
discovery of the Index units supporting a given data model). Bulk
deposit/feeding of objects into a given unit is performed by sending a
ResultSet EPR with the objects to the factory service, which will
asynchronously pull the objects from the ResultSet to store them into the unit.

The following sections describe the core D-NET data management services
available in the latest D-NET release, following the architectural functional
areas in Figure 6. 	

4.1 Storage
Services in this area provide storage of information objects by wrapping
known open source technologies, such as full-text indexes, relational
databases, document stores, etc.. In particular, in the case of metadata objects
D-NET services support storage of ROs abstracting over the underlying
physical models (e.g. flat records of a full-text index, interrelated relational
tables). To this aim services offer a programmatic solution to the problem of
storing an input ResultSet of metadata ROs (XML records), conforming to a
given data model (XML schema), onto the local physical model. Two
solutions are generally supported: a high-level mechanism, based on so-called
data model layouts, and a low-level mechanism based on software plugins.
For example, the D-NET Index service is based on the Apache Solr index
(Kuć, 2013), whose physical model consists of a flat list of index fields, each
with configuration flags and parameters such as searchable field, browsable
fields, stemming options, returned in query results, etc. The service exposes
factory-pattern APIs for the creation of Index units that conform to an input
metadata data model resource profile and to a given layout for such model. A
data model layout for Index Services is a D-NET resource whose profile in the
Information Service contains the name of the layout, the data model of
reference, i.e. the identifier of the relative profile, and the names of fields that
will appear in the index. For each index field the layout specifies (i) the
relative indexing configuration parameters and (ii) the Xpath that obtains the
value to be indexed from the metadata records conforming to the target data
model. The same data model may be associated to several layouts, in order to
allow the definition of several indexing views of the same metadata record
structures. Layouts can be edited by administrators at run-time and support
Index Services with all the information needed to generate an index unit for a
given data model according to given domain requirements. Further D-NET
services, such as MDStore Services and OAI-PMH publisher service, adopt
flat list of fields as physical models and can therefore exploit the layout
mechanism. Other services, for example Database Services and ColumnStore

Services, cannot instead count on such run-time programmatic approach, since
the underlying physical models are not bound to a static structure and vary
from application to application (e.g. different relational DB structure). In these
cases, mappings are implemented by software service plugins and identified
by a unique name to be invoked when feeding an input ResultSet to the
service.

Index and Browse Service An Index (factory) Service manages a set of Index
units capable of indexing metadata objects and replying full-text CQL queries
over such objects (Library of Congress). Consuming services can create units
according to a given data model layout, feed them with metadata objects,
remove objects, and perform queries over one or more units sharing the same
layout. Figure 7 shows a consumer running a query Q over Index 1 and 2,
which contain objects of the same layout. The Index Service returns the EPR
of a ResultSet that contains the metadata objects in the two units that match Q,
ordered by ranking. The service is implemented on the Apache Solr index
(Kuć, 2013) and, as such, offers also browse by faceted search (drill-in)
functionality. The service also exposes Solr REST APIs.
	

	
Figure 6 - D-NET aggregative infrastructure architecture

Two different implementations of the service are available, both encapsulated
under the same D-NET factory service API. The first implementation adopts
Apache Solr in a stand-alone mode while the second in “sharded” mode (i.e.
distributed horizontal partitioning). The latter solution is recommended in two
scenarios: (i) the number of metadata objects grows beyond the usability
thresholds of a stand-alone installation – depending on the number of
concurrent accesses, RAM and I/O speed – or (ii) the refresh rate of the index
is very high and the number or size of metadata objects entails indexing time
that exceed the application requirements.

Figure 7 - MDStore Service and Index Service

Store Service The Store (factory) Service manages a set of Store units capable
of storing digital objects of a given data model. The Store Service offers to
consumers upload functionality that accepts a Store unit and a ResultSet of
digital object ORs, and batch downloads files from the list of object URLs.
Consumers can retrieve the content of Store units in bulk (e.g. all objects, by
date of creation) or fetch specific objects by identifier or by download URL.
The Service is implemented as an abstraction over the document-oriented
storage MongoDB (Chodorow and Dirolf, 2010), in order to exploit its high-
scalability and replica management features, but also to take advantage of out-
of-the-box support with the Hadoop Map-Reduce framework.

MDStore Service An MDStore (factory) Service manages a set of MDStore
units capable of storing metadata objects of a given metadata data model.
Consumers can create and delete units, and add, remove, update, and fetch the
metadata objects in a given unit. Figure 7 shows one consumer requesting to
store metadata objects from a ResultSet into MDstore 1 and another consumer
requesting to access the records stored in MDStore K, which are returned
through a ResultSet EPR. As the Store Service, the service is implemented on
top of MongoDB.

Database Service The Database (factory) Service offers functionalities for
managing a set of Database units. Each unit is an independent database in-
stance, containing relational tables. Consumers can create, delete and manage
new Database units, by handling tables and records within. A consumer, be it
a D-NET Service or a third-party application, may opt for an interaction
through D-NET APIs or a standard socket JDBC connection. The service is
developed on top of Postgres DBMS v9. 	
	
Column Store Service The service implements interfaces exposing methods
to feed metadata objects to an HBase cluster (The Apache Software Founda-
tion, 2013; Khetrapal and Ganesh, 2006) and to fetch objects from the cluster.
In order to feed objects to the service, consumers must provide an input
ResultSet and a reference to the service plugin required to map the objects into

rows of the HBase cluster according to the opted physical representation of the
data model. Plugins must be “injected” in the service by developers and are
strictly application dependent. Their internal logic is implemented by
MapReduce jobs, directly executable over the cluster and for the specific
purpose of feeding. The same holds for the action of fetching objects, where
extraction plugins are required to return a ResultSet of metadata objects that
fits the application needs. As shown in Figure 8, the service hosts several
feeding and fetching jobs, which can be invoked by consuming services to
accomplish their application tasks. The nodes of the cluster have to be set up
by the system administrator at service deployment time. In the current
implementation the cluster is ruled by Cloudera (Monash, 2009).

	
Figure 8 - Column Store Service

4.2 Mediation
Services in the mediation area are capable of fetching data from external data
sources and import them into the aggregative infrastructure as information ob-
jects conforming to a given data model resource. In order to be discovered and
accessed, data sources must be registered to the Information Service with a
profile that contains their descriptive properties (e.g. location, name,
institution), technical properties (e.g. data source manager, size, availability),
and typology (which can vary depending on the application domain, e.g.
publication repositories, dataset repositories, aggregators, databases, etc.). The
profile can specify on or more access point interfaces (APIs), that is different
ways to access the content of the data source. For example, a publication
repository may provide an OAI-PMH interface as well as an FTP interface to
provide bulk-access to metadata and files of publications, respectively. Data
source registration occurs manually via the Data Source Manager service user-
interface, and can be performed by data source managers or infrastructure
administrators, depending on the aggregative infrastructure requirements.

Data Source Manager Data Source Manager Services are instances of the
Manager Service tailored to provide user interfaces for the registration and
administration of data sources in the aggregative infrastructure.

Administration tasks include the organization and scheduling of data
collection and processing workflows.. Figure 9 illustrates the admin user
interface used to execute and monitor the execution of a workflow for the data
source Datacite. The workflow collects records from the OAI-PMH API of
DataCite, transforms them into Dublin Core (DC) and then splits into two
branches to be executed in parallel. Each branch transforms the DC records
into another format (DMF and ESE) and eventually populates a dedicated
Index unit. From the same interface, the data manager can modify the
mappings to be applied in the two transformation paths, check the history of
past executions of the workflows, and also set an automated scheduling of the
workflows, thanks to an interaction with the Chron Job Service.

	
Figure 9 - Data Source Manager Service: user interface

Collector Service The Collector Service accepts as input a data source and an
API for the data source and returns a ResultSet of metadata ORs. The service
embeds modules capable of handling the collection of metadata objects via
different access protocols. Currently, the service supports OAI-PMH and FTP,
but can be extended with further modules. In addition, it can host custom
HTTP access modules. Each module, which is identified by a unique name, a
URL, a list of parameters and an output metadata data model resource, is
implemented by code capable of performing the HTTP calls properly using the
parameters and converting the result onto a ResultSet that contains their OR
serialization. The conversion logic is hard-coded in the modules, which have
to be provided by developers to serve the need of data managers on a case-by-
case fashion. Data source resources can, in their profile, specify an HTTP
access point by indicating the name of the module to be used. 	

FTP Service An FTP Service can download digital objects from a given FTP
API of a data source registered to the system and store them into a Store unit.
To this aim, the service collects the list of files from the given FTP entry
point, generates a ResultSet of digital object ROs and sends it to the Store
Service as input to the given Store unit.

4.3 Provision
Services in the data provision area interface external applications, e.g. end-
user portals, third-party services, with objects in the storage area. Beyond bare
random access, D-NET supports the following APIs.

OAI-PMH Publisher Service An OAI-PMH Publisher Service offers OAI-
PMH interfaces to third-party applications (i.e. harvesters) willing to access
metadata objects. The service expects an input ResultSet of metadata ROs, a
data model resource and a data model layout. The layout specifies: (i) which
OAI-PMH sets should be exported from the input ResultSet, based on pairs:
set name, Boolean predicate (Artini et al., 2008); (ii) which metadata fields of
such collections can be used to specify such queries. The service is
implemented on MongoDB.

OAI-ORE Publisher Service The OAI-ORE Publisher Service offers pro-
grammable OAI-ORE interfaces over relational database records in a Database
unit resource. The Service can be configured via user interfaces by data man-
agers (see demo at http://demo.oaizer.research-infrastructures.eu/) to export
records of one table as ORE Aggregated Resources, in RDF or XML format
(La Bruzzo et al., 2013). Configurations can also specify how records linked to
the ones in the table can be included in the transitive closure of the aggregated
resources.

4.4 Manipulation
Services in the manipulation area designed to perform information space
enrichment, validation, mirroring and staging.

Feature Extractor Service A Feature Extractor Service generates a ResultSet
of OR objects by applying a given extraction algorithm to an input ResultSet
of OR objects. Examples are: extracting histograms from image digital
objects; extracting full-text or keywords from PDF digital objects; converting
digital objects from one format to another (e.g. DOC to PDF). Algorithms can
be plugged-in as software modules, which are invoked by their unique name.

Transformator Service A Transformator Service addresses the general
problem of transforming metadata objects of one metadata data model into

objects of one output metadata data model (Haslhofer and Klas, 2010). A call
to the service expects an input metadata data model, an input ResultSet of
metadata ORs, an output metadata data model, and the mapping to be applied.
User interfaces allow data managers to change or modify the mapping by
selecting from a list of XSLTs (to be uploaded) or using a mapping rule script
editor (Jochen Shirrwagen, University of Bielefeld). Scripts consist of rules of
the form: (i) field removal, addition, concatenation and switch, (ii) regular
expressions, (iii) invocation of an algorithm through a Feature Extractor
Service. User interfaces also support data managers at testing a set of
mappings, in the style of products such as Repox (Reis et al., 2009) and MINT
(Kollia et al., 2012). XSLTs and rule scripts encode one-to-one mappings,
where each incoming metadata object is converted into a corresponding
metadata object. In the case of one-to-many and many-to-one conversions,
where the expressiveness of XSLT is not enough, data managers select from a
list of (Groovy) software modules.

Hadoop MapReduce Service The service offers support for the execution of
MapReduce jobs over tables in the Column Store Services, by invoking the
name of the job and passing over the required parameters. Such jobs reside
locally to the service and are implemented to address application-specific
requirements. The association of a job to a given table is hardcoded, hence the
consistency of their execution and any possible side effect is responsibility of
the data manager.
	
De-duplication Service The De-duplication Service is an abstraction over the
Hadoop MapReduce Service. The service embeds a number of MapReduce
jobs for the identification of sets of duplicates in a given Column Store Service
table. For each job, data managers can configure a clustering function (Map
function) implementing blocking techniques (Reduce function) and a
similarity function to identify sets of equivalent records to be merged (Manghi
et al., 2012c). Its output is a list of sets of equivalent rows returned via a
ResultSet, also made available in dedicated rows of the Column Store table.
The interpretation and usage of the output list depends on the application
context.

Validator Service A Validator Service is used by data managers (and by data
source managers) to verify the quality of a ResultSet of OR metadata objects
with respect to a set of validation rules. Sets of rules are defined by data
managers as instantiations of rule templates of the form:

if ranking_function(record) below threshold remove record else return rank

Given an input ResultSet and a set of rules, the service returns the ResultSet of
the objects that passed the validation (i.e. records ranked over a given minimal

threshold of quality), the ResultSet of records that did not pass the validation,
and a report of the overall evaluation of the input ResultSet (made available
via mail or an URL). Validator Services are often employed in repository
infrastructures, for example to ensure a minimal level of data quality of the
harvested metadata objects, or to exclude data sources whose overall quality
lays beyond a given threshold. The service was realized by Nikon Gasparis,
Manos Karvounis, and Antonis Lempesis (University of Athens).

Tagging Tool Service The Record Tagging Service allows data managers to
tag a set of records in an Index unit. The service can be configured to include
user-defined tag schemes and relative tag. The user interface provides data
curators with a virtual environment where they can (i) search and browse to
identify the sets of objects they believe should be tagged or untagged, (ii)
perform the tagging and untagging actions, and (iii) preview the effects of
these actions before making the changes visible to the end-users – see demo at
http://demo.tagtick.research-infrastructures.eu (login/password dnet/dnet).

Metadata Editor Service The Metadata Editor Service allows data managers
to add, edit and delete metadata records once they have been aggregated and
stored into an Index unit. Edit actions include change of property values as
well as creating relationships between records in the information space. The
service acts as a “record patcher”, meaning that changes are persisted in-
dependently from the edited records and are applied to the last available
version of the records (e.g. last harvested and transformed) before these are
streamed to the next step in a workflow. Data managers can be assigned to
specific metadata collections (by data source or by MDStore) so as to limit
their area of action. In most scenarios, owners of the collections (e.g. data
source managers) are enrolled as infrastructure data managers so that they are
in charge of updating their records in the infrastructure.
	
5. Constructing Aggregative infrastructures using D-NET

A D-NET infrastructure is a running environment, enabled by one running in-
stance of the enabling services. Data management services can dynamically
register or unregister from the infrastructure environment and be used as com-
ponents of the intended aggregative infrastructure. D-NET designers and
developers construct customized aggregative infrastructures by (i) selecting
the services they need from the data management kit, (ii) configuring them to
match the data model they require, (iii) deploying and registering the services
to the infrastructure enabling layer, and (iv) configuring data workflows using
Manager Services. Besides, they might exceptionally realize new services to
complement missing functionality. However, some deployments of D-NET
infrastructures have been packaged to be distributed as ready-to-install

aggregative infrastructures. On request, packages for repository
infrastructures, CH infrastructures, and scholarly communication
infrastructures are available.

Repository infrastructures D-NET is today the software platform of several
repository infrastructures. The CEON national repository aggregator of Poland
(ICM), La Referencia national repository aggregator of Argentina (MINCYT),
and Recolecta the national repository aggregator of Spain (FECYT) are
infrastructures based on installations of the same D-NET package. The
package addresses common requirements of this category of infrastructures:
(i) aggregation of an arbitrary and dynamic number of repositories, (ii)
flexibility of data processing workflows to facilitate their extension with
further metadata transformations, (iii) ensuring scalability, robustness, and
availability of service on low-cost servers, as typically available at institution
sites, and (iv) use of open source products. Specifically, the installation builds
an information space with two mirrors: MDStore units, where data source
metadata objects are collected and transformed, and Index units, where these
objects are made available to portals.. Moreover, Validation Services are
included, to rule out low quality metadata or relative repositories, and OAI-
PMH Publisher Services, to export the aggregated information space to third-
party consumers.

Recently, D-NET has also been used in the context of the ESPAS project
(Hapgood et al., 2012), where scientific geo-spatial datasets are being
collected and integrated from several scientific data sources.

Cultural Heritage infrastructures In the Cultural Heritage D-NET is
currently powering two aggregative infrastructures, respectively for the
European Film Gateway EC project (Artini et al., 2013) and for the Heritage
of People’s Europe EC Project (HOPE). A further aggregative infrastructure
focusing on epigraphy material is being realized for the EAGLE project
(www.eagle-project.eu).

In the EFG project, the infrastructure provides a single access point to 59
collections from 36 filmography archives and across 21 European countries,
for a total of 640,000 digital objects such as movies, documentaries, posters,
censorships, etc. The relative metadata objects are collected as metadata
records from the archives and mapped onto EFG metadata objects in the
information space. EFG objects conform to the EFG Data Model (Savino et
al., 2009), a graph-like metadata data model whose information space has two
mirrors: MDStore units (XML physical representation), i.e. each object is
represented by one XML file with elements encoding relationships to other
objects) and Index units. The infrastructure includes Metadata Editor Services
and a testing Index unit, intended to manually check the quality of the
information space prior sending content to the public Index unit. Due to the
graph-like data model of the XMLs harvested from the data sources – e.g.

Cinematographic Works Standards EN15907 (European Committee for
Standardization, 2010) – the aggregative infrastructure includes
Transformation Services capable of applying many-to-many mappings from
original metadata objects to EFG metadata objects. Finally, since the EFG
information space has to be delivered to Europeana, the space is staged into
another information space conforming to the Europeana Data Model and made
available via OAI-PMH Publisher Service. Workflows keep data sources and
information spaces synchronized, exception made for the two EFG
information space mirrors, which require human validation.

	
Figure 10 - The HOPE and OpenAIRE aggregative infrastructures

In the HOPE project, the infrastructure today collects more than 2 millions

metadata objects, describing around 1,600,000 digital objects, collected from
15 content providers in the field of social and labor history from 18th to 21st
century. Similarly to EFG, the HOPE common data model is physically
represented with XML files kept in two information space mirrors: MDStore
and Index units. The infrastructure stages the HOPE information space into an
EDM information space for Europeana. On the other hand, due to the higher
heterogeneity degree, the aggregative infrastructure adopts different
workflows (Bardi et al., 2012b). HOPE data sources may belong to the domain
of libraries, archives, visual, and audio/video. The HOPE common data model
needs to capture important concepts of such domains and is therefore designed
as a combination of standard metadata formats in such domains: MARC for
libraries (Library of Congress, 2005), EAD for archives (Library of Congress,
2002), EN 15907 for audio video, LIDO (ICOM International Committee for

Documentation, 2010) for visual. The infrastructure defines the two-phase
transformation workflow illustrated in Figure 10. Given a data source of one
of such domains, the original metadata records (compliant to the local
metadata format - LMF) are collected and transformed into the corresponding
standard XML format (SMF), to be eventually transformed into the HOPE
common metadata format (CMF). The infrastructure includes the Tagging
Tool Service, to tag metadata objects according to given history ontologies,
and Social Network Publishing Services (developed for HOPE), to
automatically publish digital objects in the original data sources onto web
social tools, such as YouTube and Flickr.

Scholarly Communication infrastructures The goal of the OpenAIRE
project (Open Access Infrastructure for Research in Europe) is to realize and
maintain the European Scholarly Communication Infrastructure (Manghi et
al., 2012a). To this aim, the project deployed a D-NET aggregative
infrastructure capable of collecting and interlinking content from publication
repositories, dataset repositories, and CRIS systems. The infrastructure must
deliver statistics services to measure the impact of research with respect to
Open Access mandates (Suber, 2004 – 2012) and funding over research. The
infrastructure information space implements the OpenAIRE data model
(Manghi et al., 2012b), which defines a graph of entities relative to articles,
datasets, persons, projects, organizations, funding agencies across all research
disciplines and countries. The infrastructure contains today around 9,000,000
publications and 4,000,000 persons. Its workflows disambiguate (de-
duplicate) the information space of publications and datasets and run mining
algorithms to identify relationships between such objects, e.g. article-project
relationships. To make this possible, the information space has three mirrors,
as shown in Figure 10: the first mirror is made of MDStore units caching
metadata records harvested from OpenAIRE data sources and their “cleaned”
counterpart (i.e. after vocabulary normalization, date formats, etc.). The
second mirror is a table in the ColumnStore Service, configured to store the
graph of metadata objects relative to the OpenAIRE data model. The third
mirror is a full-text index, where the same objects are stored in full-text index
physical model, apt to be queried from the OpenAIRE portal. Mirroring from
the MDStores to the ColumnStore Service is performed by dedicated feeding
modules, capable of handling the transformation from the XML metadata
records to the HBASE rows. Modules are relative to publication repositories
(Dublin Core), dataset repositories (DataCite data model,
http://schema.datacite.org/), and CRIS systems (CERIF data model, EuroCRIS
http://www.eurocris.org/). Similarly, mirroring from ColumnStore Service to
Index units is performed via data fetching modules that collect and combine
HBASE rows to yield the metadata XML records required by the portal. The
De-duplication Service is deployed and configured to disambiguate the
metadata objects (publication, person and organization metadata objects) in

the Column Store Service before these are delivered to the Index Service. A
dedicated workflow is run whenever new metadata objects are fed to the
Column Store Service, e.g. when new XML records have been collected from
the data sources.
	
6. Cost-effectiveness

D-NET is conceived to reduce the costs of designers and developers at
realizing, refining, and maintaining aggregative infrastructures. Such benefits
derive from (i) its service-oriented architecture, which supports loosely
coupled components and light-weight encapsulation; (ii) the enabling layer
features of resource discovery and orchestration; (iii) the existence of a pre-
defined kit of data management services, designed according to the principles
of modularity and customizability, and encapsulating the most common and
state-of-the-art data management back-ends; and (iv) the possibility to easily
extend the service kit with further services, i.e. functionalities.

On the other hand, D-NET is intended as a development framework, not as
a “double-click” installation product. In order to use it, developers should have
the same skills required to realize an aggregative infrastructure from scratch:
consolidated experience in Java programming, service-oriented computing,
and network protocols. In some cases, depending on the degree of
customization, developers should also have knowledge of the internals of the
Open Source software used to implement the D-NET services to be deployed
in the given installation. For example, in order to customize the usage of D-
NET Column Store Services, they must know how the data is organized and
stored in an HBASE back-ends. Moreover, developers must acquire the
internals of the framework, such as synchronous and asynchronous
communication, configuration of the metadata formats, configuration of the
workflows, in order to devise aggregative infrastructures matching their
requirements. A working week of training proved so far to be enough to start
working independently on a D-NET deployment: training sessions have been
taken by FECYT (Fundación Española para la Ciencia y la Tecnología),
MINCYT (Ministerio de Ciencia, Tecnología e Innovación Productiva
Argentina), and the institutions International Institute of Social History (NL)
and Library of the Friedrich Ebert Foundation (DE) in order to construct and
maintain the respective National repository infrastructures and the HOPE
project aggregative infrastructure. The alternative, for such organizations,
would have been to design and develop the whole aggregative infrastructures
from scratch, with definitely higher cost of realization and maintenance
(Manghi et al., 2010c).

However, as previously mentioned, D-NET is also available in “double-
click” installation packages. Its services can be pre-configured and packaged
to include given workflows and handle given metadata formats, so as to be

used as a final product, with no need for developers to dig in software
configuration issues. A common D-NET package is the one for repository
infrastructures, as described in section 2.

In terms of hardware costs, a D-NET installation does not generally need
powerful machines. For example, an installation suitable for a repository
aggregative infrastructure handling 10,000,000 documents has the following
minimal requirements in virtual machines:
	
Virtual Machine A: Information Service, Index Service, MDStore Service,
Web Portal: CPU 2.4 Ghz dual core, RAM 8 Gb, disk 70 Gb.

Virtual Machine B: Harvester Service, Transformation Service, Data Source
Manager Service: CPU 2.4 Ghz, dual core, RAM 2 Gb RAM, disk 20 Gb.

Virtual Machine C : MDStore Service (replica), Index Service (Information
Space mirrors replica): CPU 2.4 Ghz, dual core or quad core, RAM 8 Gb, disk
70 Gb.

In order to achieve optimal degrees of system robustness and availability,
having physical machines, possibly over different networks, proves to be the
optimal solution. This is the case for EFG and HOPE infrastructures. Clearly,
D-NET deployments which comprise ColumnStore Services or Index
Services with distributed installations would require machine clusters, in a
number which depends on the size of the information space and expected
performance, and possibly residing on the same local network.

7. Conclusions

The D-NET Software Toolkit is a general-purpose service-oriented
framework for the construction of customized, robust, scalable, autonomic
aggregative infrastructures in a cost-effective way. D-NET is today adopted
by several EC projects, national consortia and communities to create
aggregative infrastructures under diverse application domains and other
organizations are enquiring for or are experimenting its usage. Its
customizability and extensibility make it a suitable candidate for creating
aggregative infrastructures mediating between different scientific domains
and therefore supporting multi-disciplinary research.

In this paper we have described its architectural principles and focused on
its data management kit. A further service kit is available, offering general-
purpose user interface functionalities (e.g. user profiling, recommendations,
alerts, statistics), whose internals and details are still unpublished.

The D-NET software is open source and available for usage, improvement
and extension by any community of developers willing to contribute.

Acknowledgments. This work would have not been possible without the
precious cooperation of the other members of the D-NET technical team:
ICM Research Centre (Warsaw) for Authentication and Authorization
Service, University of Bielefeld Library (Bielefeld, Germany) for
development activities in the data management area, and the Department of
Informatics, National and Kapodistrian University of Athens (Greece) for the
Validator Service. Special thanks go to Marko Mikulicic, Antonis Lempesis,
Katerina Iatropoulou, Natalia Manola, Yannis Ioannidis, Jochen Shirrwagen,
Friedrich Summann, Wojtek Sylwestrzak, and Marek Horst for their design
and development efforts.

Research partially supported by the European Commission FP7 projects:
DRIVER-II (Grant agreement: 212147, Call: INFRA-2007-1.2.1 Scientific
Digital Repositories), OpenAIRE (Grant agreement: 246686, Call: FP7-
INFRASTRUCTURES-2009-1), and OpenAIREplus (Grant agreement:
283595, Call: FP7INFRASTRUCTURES-2011-2), EFG1914 (Grant
agreement: 292276, Call: CIP-ICT-PSP-2011-5, 2.2. “Digitising content for
Europeana”), and HOPE (Grant agreement: 250549, FP7 EU eContentplus
2009).

References

Clarin: Common language resources and technology infrastructure. URL http://www. clarin.eu.
Driver: Digital repository infrastructure vision for european research. URL http: //www.driver-

community.eu.
Nicola Aloia, Cesare Concordia, and Carlo Meghini. Europeana v1.0. In Maristella Agosti,

Floriana Esposito, Carlo Meghini, and Nicola Orio, editors, Digital Libraries and Archives
-7th Italian Research Conference, IRCDL 2011, Pisa, Italy, January 20-21, 2011. Revised
Papers, volume 249 of Communications in Computer and Information Science, pages 127–
129. Springer, 2011. doi: http://dx.doi.org/10.1007/978-3-642-27302-5 16.

Michele Artini, Federico Biagini, Paolo Manghi, and Marko Mikulicic. OAI-Publishers in
Repository Infrastructures. In Post-proceedings of the Forth Italian Research Conference
on Digital Library Systems (IRCDL), pages 93–98, Padua, Italy, January 2008. DELOS: an
Association for Digital Libraries.

Michele Artini, Alessia Bardi, Federico Biagini, Franca Debole, Sandro La Bruzzo, Paolo
Manghi, Marko Mikulicic, Pasquale Savino, and Franco Zoppi. Data Interoperability and
Curation: The European Film Gateway Experience. In Maristella Agosti, Floriana
Esposito, Stefano Ferilli, and Nicola Ferro, editors, Digital Libraries and Archives -8th
Italian Research Conference, IRCDL 2012, Bari, Italy, February 9-10, 2012, Revised
Selected Papers, volume 354 of Communications in Computer and Information Science,
pages 33–44. Springer, 2013. doi: 10.1007/978-3-642-35834-0.

Tim Banks. Web services resource framework specification v1.2. Technical report, OASIS,
2006.

Alessia Bardi, Paolo Manghi, and Franco Zoppi. Aggregative Data Infrastructures for the
Cultural Heritage. In Juan Manuel Dodero, Manuel Palomo-Duarte, and Pythagoras
Karampiperis, editors, 6th Research Conference, MTSR 2012, Cádiz, Spain, November 28-
30, 2012. Proceedings, volume 343 of Communications in Computer and Information

Science, pages 239–251. Springer, 2012b.
Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data -the story so far. International

Journal on Semantic Web & Information Systems, 5(3):1–22, 2009.
Geoffrey Boulton, Philip Campbell, Brian Collins, Peter Elias, Dame Wendy Hall, Graeme

Laurie, Onora O’Neill, Michael Rawlins, Dame Janet Thornton, Patrick Vallance, and
Mark Walport. Science as an open enterprise. Final report, The Royal Society, June 2012.

Sarah Callaghan, Steve Donegan, Sam Pepler, Mark Thorley, Nathan Cunningham, Peter
Kirsch, Linda Ault, Patrick Bell, Rod Bowie, Adam Leadbetter, Roy Lowry, Gwen
Moncoiffé, Kate Harrison, Ben Smith-Haddon, Anita Weatherby, and Dan Wright. Making
data a first class scientific output: Data citation and publication by nerc’s environmental
data centres. International Journal of Digital Curation, 7(1):107–113, 2012. doi:
doi:10.2218/ijdc.v7i1.218.

Leonardo Candela, Donatella Castelli, Paolo Manghi, and Pasquale Pagano. Recent
Developments in the Design, Construction, and Evaluation of Digital Libraries: Case
Studies, chapter Infrastructure-Based Research Digital Libraries, pages 1–17. IGI Global,
January 2013a. doi: 10.4018/978-1-4666-2991-2.ch001.

Leonardo Candela, Donatella Castelli, Paolo Manghi, and Pasquale Pagano. Enabling Services
in Knowledge Infrastructures: The DRIVER Experience. In Post-proceedings of the Third
Italian Research Conference on Digital Library Systems (IRCDL), pages 71–77, Padua,
Italy, January 2007. DELOS: a Network of Excellence on Digital Libraries.

Leonardo Candela, Donatella Castelli, Paolo Manghi, and Pasquale Pagano. Infrastructure-
Based Research Digital Libraries. In Colleen Cool and Kwong Bor Ng, editors, Recent
Developments in the Design, Construction, and Evaluation of Digital Libraries: Case
Studies, chapter 1, pages 1–17. IGI Global, 2013b.

Donatella Castelli, Paolo Manghi, and Costantino Thanos. A vision towards scientific
communication infrastructures. International Journal on Digital Libraries, pages 1–15,
2013. ISSN 1432-5012. doi: 10.1007/s00799-013-0106-7. URL http://dx.
doi.org/10.1007/s00799-013-0106-7.

Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide. O’Reilly Media,
2010.

Consultative Committee for Space Data Systems. Reference Model for an Open Archival
Information System. Technical Report CCSDS 650.0-B-1, National Aeronautics and Space
Administration, January 2002. Blue Book.

Makx Dekkers and Stuart Weibel. State of the Dublin Core Metadata Initiative. D-Lib
Magazine, 9(4), April 2003. URL http://www.dlib.org/dlib/april03/weibel/04weibel.html.

Erik Duval, Katrien Verbert, and Joris Klerkx. "Towards an open learning infrastructure for
open educational resources: abundance as a platform for innovation." Rainbow of computer
science. Springer Berlin Heidelberg, 2011. 144-156.

Michael Diepenbroek, Hannes Grobe, Manfred Reinke, Uwe Schindler, Reiner Schlitzer, Rainer
Sieger, Gerold Wefer. PANGAEA - an information system for environmental sciences.
Computers & Geosciences Journal, Vol. 28. Issue 10 issn:0098-3004, Elsevier, 2002,
1201-1210

European Committee for Standardization. En 15907 film identification -enhancing
interoperability of metadata -element sets and structures. European Standard ICS
35.240.30; 97.195, European Committee for Standardization, July 2010.

Martin Feijen, Wolfram Horstmann, Paolo Manghi, Mary Robinson, and Rosemary Russell.
DRIVER: Building the Network for Accessing Digital Repositories across Europe.
Ariadne, 53, 2007. ISSN 1361-3200.

Fundación Española para la Ciencia y la Tecnología (FECYT). RECOLECTA or Recolector de

Ciencia Abierta: National repository aggregator of Spain. URL http://recolecta.fecyt.es
Betty Furrie et al. Understanding MARC bibliographic: machine-readable cataloging.

Cataloging Distribution Service, Library of Congress, in collaboration with the Follett
Software Company, 2003.

Steve Graham, David Hull, and Bryan Murray. Web Services Base Notification 1.3 (WS-
BaseNotification). Oasis standard, OASIS, October 2006.

Martin Gudgin, Marc Hadley, and Tony Rogers. Web services addressing 1.0 -core.
Recommendation, W3C, May 2006.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk
Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2 part 1: Messaging
framework (second edition). Technical report, W3C, April 2007.

Mike Hapgood, Anna Belehaki, and Natalia Manola. Forecasting the future of near-earth space.
International Innovation Journal, pages 67–69, September 2012.

B Haslhofer and W. Klas. A survey of techniques for achieving metadata interoperability. ACM
Computing Surveys, 42(2), 2010.

HOPE. Heritage of the people’s europe. ”http://www.peoplesheritage.eu”. Jane Hunter and
Anna Gerber. Harvesting community annotations on 3d models of museum artefacts to
enhance knowledge, discovery and re-use. Journal of Cultural Heritage, 11(1):81 – 90,
2010. ISSN 1296-2074. doi: 10.1016/j.culher.2009.04.004.

Katerina Iatropoulou, Antonis Lebesis, Paolo Manghi, Natali Manola, and Marko Mikulicic. On
Constructing Repository Infrastructures -The D-NET Software Toolkit. In Proceedings of
the Fifth International Conference on Open Repositories, Madrid, Spain, July 2010.

ICM. Ceon poland repository aggregator. URL http://agregator.ceon.pl/.
ICOM International Committee for Documentation. Lightweight Information Describing

Objects, November 2010. URL http://network.icom.museum/ cidoc/working-groups/data-
harvesting-and-interchange/lido-technical/ specification/.

Amy S. Jackson, Myung-Ja Han, Kurt Groetsch, Megan Mustafoff, and Timothy W. Cole.
Dublin core metadata harvested through oai-pmh. Journal of Library Metadata, 8(1):5–21,
2008. doi: 10.1300/J517v08n01 02.

Ake Johansson and Mats Ola Ottosson. A national current research information system for
sweden. In e-Infrastructures for Research and Innovation : Linking Information Systems to
Improve Scientific Knowledge Production, pages 67–71. Agentura Action M, 2012.

Ankur Khetrapal and Vinay Ganesh. Hbase and hypertable for large scale distributed storage
systems a performance evaluation for open source bigtable implementations. Evaluation,
page 8, 2006. http://www.uavindia.com/ankur/downloads/HypertableHBaseEval2.pdf.

Petr Knoth and Zdenek Zdrahal. Core: three access levels to underpin open access. D-Lib
Magazine, 18(11/12), 2012. URL http://oro.open.ac.uk/35755/.

Ilianna Kollia, Vassilis Tzouvaras, Nasos Drosopoulos, and Giorgos Stamou. A systemic
approach for effective semantic access to cultural content. Semantic Web, 3(1):65–83, 01
2012. doi: 10.3233/SW-2012-0051. URL http://dx.doi.org/10. 3233/SW-2012-0051.

Rafall Kùc. Apache Solr 4 Cookbook. 2013.
Sandro La Bruzzo, Paolo Manghi, Alessia Bardi: OAIzer: Configurable OAI Exports over

Relational Databases. In Garoufallou, Emmanouel and Greenberg, Jane, editors, Metadata
and Semantics Research, Communications in Computer and Information Science, pages
35–47. Springer Berlin Heidelberg, 2013, doi:0.1007/978-3-319-03437-9_5

Carl Lagoze, Sandy Payette, Edwin Shin, and Chris Wilper. Fedora: An Architecture for
Complex Objects and their Relationships. Journal of Digital Libraries, Special Issue on
Complex Objects, 6(2):124–138, 2005.

Carl Lagoze and Herbert Van de Sompel. Interoperability for the discovery, use, and re-use of

units of scholarly communication. CTWatch Quarterly 3.3 (2007): 32-41.
Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured storage system.

SIGOPS Oper. Syst. Rev., 44:35–40, April 2010. ISSN 0163-5980. doi:
10.1145/1773912.1773922.

Library of Congress. Cql: Contextual query language (sru version 1.2 specifications). URL
http://www.loc.gov/standards/sru/specs/cql.html.

Library of Congress. Encoded archival description, 2002. URL http://www.loc.gov/ ead/.
Library of Congress. MARC Standards Web Page. http://www.loc.gov/marc/, September 2005.
Linked Data community. Linked Data - Connect Distributed Data across the Web.

http://linkeddata.org/home.
Claudia Loebbecke and Manfred Thaller. Digitization as an IT Response to the Preservation of

Europe’s Cultural Heritage. In Andrea Carugati and Cecilia Rossignoli, editors, Emerging
Themes in Information Systems and Organization Studies, pages 359–372. Physica-Verlag
HD, 2011. doi: 10.1007/978-3-7908-2739-2.

Greg Lomow and Eric Newcomer. Understanding SOA with Web Services. Independent
Technology Guides. Addison Wesley Professional, 2005.

Clifford A. Lynch. Institutional repositories: Essential infrastructure for scholarship in the
digital age. ARL, (226):1–7, February 2003.

Matthew C. MacKenzie, Ken Laskey, Francis McCabe, Peter Brown, and Rebekah Metz.
Reference Model for Service Oriented Architecture 1.0. Technical report, OASIS,
February 2006. Public Review Draft 1.0.

Paolo Manghi, Leonardo Candela, and Pasquale Pagano. Interoperability Patterns in Digital
Library Systems Federations. In Proceedings of the Second DL.org Workshop on Making
Digital Libraries Interoperable: Challenges and Approaches, in conjunction with ECDL
2010, Glasgow, Scotland (UK), September 2010a. ISTICNR.

Paolo Manghi, Marko Mikulicic, Leonardo Candela, Michele Artini, and Alessia Bardi.
General-Purpose Digital Library Content Laboratory Systems. In Proceedings of the 14th
European Conference on Digital Libraries, Glasgow, UK, September 2010b.

Paolo Manghi, Marko Mikulicic, Leonardo Candela, Donatella Castelli, and Pasquale Pagano.
Realizing and Maintaining Aggregative Digital Library Systems: D-NET Software Toolkit
and OAIster System. D-Lib Magazine, 16(3/4), March/April 2010c. ISSN 1082-9873. doi:
doi:10.1045/march2010-manghi.

Paolo Manghi, Lukasz Bolikowski, Natalia Manola, Jochen Shirrwagen, and Tim Smith.
Openaireplus: the european scholarly communication data infrastructure. D-Lib Magazine,
18(9-10), September-October 2012a. doi: 10.1045/ september2012-manghi.

Paolo Manghi, Nikos Houssos, Marko Mikulicic, and Brigitte Joerg. The data model of the
openaire scientific communication e-infrastructure. In JuanManuel Dodero, Manuel
Palomo-Duarte, and Pythagoras Karampiperis, editors, Metadata and Semantics Research,
Communications in Computer and Information Science, pages 168–180. Springer Berlin
Heidelberg, 2012b. ISBN 978-3-64235232-4. doi: 10.1007/978-3-642-35233-1 18. URL
http://dx.doi.org/10.1007/ 978-3-642-35233-1_18.

Paolo Manghi, Marko Mikulicic, and Claudio Atzori. De-duplication of aggregation authority
files. Int. J. of Metadata, Semantics and Ontologies, 7(2):114 – 130, 2012c. doi:
10.1504/IJMSO.2012.050014.

Cezary Mazurek, Marcin Mielnicki, Aleksandra Nowak, Maciej Stroinski, Marcin Werla, and
Jan Weglarz. Architecture for aggregation, processing and provisioning of data from
heterogeneous scientific information services. In Robert Bembenik, Lukasz Skonieczny,
Henryk Rybinski, Marzena Kryszkiewicz, and Marek Niezgodka, editors, Intelligent Tools
for Building a Scientific Information Platform, volume 467 of Studies in Computational

Intelligence, pages 529– 546. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-35646-9.
doi: 10.1007/ 978-3-642-35647-6 32.

Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCYT). La Referencia national
repository aggregator of Argentina. URL http://lareferencia.redclara.net

Peter Millington and William J. Nixon. EPrints 3 Pre-Launch Briefing. Ariadne, 50, 2007. C
Monash. Cloudera presents the mapreduce bull case. dbMs2. com blog, apr, 15, 2009.
MongoDB. Mongodb, 2012. URL http://www.mongodb.org.

Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia
Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh Simmhan,
Eric Stephan, and Jan Van den Bussche. The open provenance model core specification
(v1.1). Future Generation Computer Systems, 27(6):743–756, 2011. doi:
http://dx.doi.org/10.1016/j.future.2010.07.005.

National Technical University of Athens. Metadata interoperability services. URL
"http://mint.image.ece.ntua.gr/redmine/projects/mint/wiki".

Christos Papatheodorou. On cultural heritage metadata. International Journal of Metadata,
Semantics and Ontologies, 7(3):157–161, 01 2012. doi: 10.1504/IJMSO. 2012.050184.

Daniel V. Pitti "Encoded archival description: An introduction and overview." 1999.
Arcot Rajasekar, Reagan Moore, Chien-Yi Hou, Christopher A. Lee, Richard Marciano,

Antoine de Torcy, Michael Wan, Wayne Schroeder, Sheau-Yen Chen, Lucas Gilbert, Paul
Tooby, and Bing Zhu. iRODS Primer: Integrated Rule-Oriented Data System. Morgan &
Claypool, 2010.

Diogo Reis, Nuno Freire, Hugo Manguinhas, and Gilberto Pedrosa. REPOX: a framework for
metadata interchange. In Proceedings of the 13th European conference on Research and
advanced technology for digital libraries, ECDL’09, pages 479–480, Berlin, Heidelberg,
2009. Springer-Verlag. ISBN 3-642-04345-3, 978-3-642-04345, URL
http://dl.acm.org/citation.cfm?id=1812799.1812878.

Tomasz Rosiek, Wojtek Sylwestrzak, Aleksander Nowinski, and Marek Niezg´odka
Infrastructural approach to modern digital library and repository management systems. In
Robert Bembenik, Lukasz Skonieczny, Henryk Rybinski, Marzena Kryszkiewicz, and
Marek Niezgodka, editors, Intelligent Tools for Building a Scientific Information Platform,
volume 467 of Studies in Computational Intelligence, pages 111–128. Springer, 2013.
ISBN 978-3-642-35646-9. URL http: //dblp.uni-
trier.de/db/series/sci/sci467.html#RosiekSNN13.

Pasquale Savino, Franca Debole, and Georg Eckes. Searching and browsing film archives. the
european film gateway approach. In 4th International Congress on Science and Technology
on the Safeguard of Cultural Heritage in the Mediterranean Basin, Cairo, Egypt, December
2009.

Fabio Simeoni, Leonardo Candela, David Lievens, Pasquale Pagano, and Manuele Simi.
Functional adaptivity for digital library services in e-infrastructures: the gcube approach. In
Agosti M., Borbinha J., Kapidakis S., Papatheodorou C., and Tsakonas G., editors,
Research and Advanced Technology for Digital Libraries. 13th European Conference,
pages 51 – 62, Corfu, Greece, 2009. Springer Verlag. ISBN 0302-9743. doi:
dx.doi.org/10.1007/978-3-642-04346-8\ 7. In: ECDL 2009 -Research and Advanced
Technology for Digital Libraries. 13th European Conference (Corfu, Greece, 27 September
-October 2 2009). Proceedings, pp. 51 62. Agosti M., Borbinha J., Kapidakis S.,
Papatheodorou C., Tsakonas G (eds.). (Lecture Notes in Computer Science, vol. 5714).
Springer Verlag, 2009.

Peter Suber. Open access overview, 2004 – 2012. URL http://www.earlham.edu/
~peters/fos/overview.htm#journals.

Robert Tansley, Mick Bass, and MacKenzie Smith. DSpace as an Open Archival Information
System: Current Status and Future Directions. In Traugott Koch and Ingeborg Sølvberg,
editors, Research and Advanced Technology for Digital Libraries, 7th European
Conference, ECDL 2003, Trondheim, Norway, August 17-22, 2003, Proceedings, Lecture
Notes in Computer Science, pages 446–460. Springer-Verlag, 2003. ISBN 3-540-40726-X.

The Apache Software Foundation. Apache HBASE, 2013. URL http://hbase. apache.org/.
The PostgreSQL Global Development Group. PostgreSQL 9.0 Reference Manual. Network

Theory Ltd., 2010.
Rik Van de Walle and Rob Koenen. The MPEG-21 book. New York: Wiley, 2006.
Hollie C. White, Sarah Carrier, Abbey Thompson, Jane Greenberg, and Ryan Scherle. The

dryad data repository: a singapore framework metadata architecture in a dspace
environment. In Proceedings of the 2008 International Conference on Dublin Core and
Metadata Applications, DCMI ’08, pages 157–162. Dublin Core Metadata Initiative, 2008.
URL http://dl.acm.org/citation.cfm?id=1503418. 1503435.

Ian H. Witten, David Bainbridge, and Stefan J. Boddie. Greenstone - Open-Source Digital
Library Software. D-Lib Magazine, 7(10), October 2001.

