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Abstract

The stress–strain relation of a no–tension material, used to model ma-
sonry structures, is determined by the nonlinear projection of the strain
tensor onto the image of the convex cone of negative–semidefinite stresses
under the fourth–order tensor of elastic compliances. We prove that the
stress–strain relation is indefinitely differentiable on an open dense subset
O of the set of all strains. The set O consists of four open connected
regions determined by the rank k = 0, 1, 2, 3 of the resulting stress. Fur-
ther, an equation for the derivative of the stress–strain relation is derived.
This equation cannot be solved explicitly in the case of a material of gen-
eral symmetry, but it is shown that for an isotropic material this leads
to the derivative established earlier in [14], [16] by different means. For
a material of general symmetry, when the tensor of elasticities does not
have the representation known in the isotropic case, only general steps
leading to the evaluation of the derivative are described.

1 Introduction

This note deals with theoretical aspects of a model treating the masonry struc-
ture as a nonlinear elastic material with zero tensile strength and infinite com-
pressive strength [11], [12], [5], [9], [2], [4], [1]. The resulting constitutive equa-
tion, known as the equation of masonry–like or no–tension materials, accounts
for some of masonry’s peculiarities, in particular, its incapability to withstand
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tensile stresses. Its nonlinear stress–strain relation is determined by the non-
linear projection P of the strain tensor onto the image of the set L−1 Sym−

of negative–semidefinite stresses Sym− under the fourth–order tensor of elastic
compliances L−1 with respect to the energetic scalar product on the space of
symmetric tensors.1

No–tension materials provide a particular case of saturated elastic materials
introduced later by Marcelo Epstein [7]; the stored energy of no–tension
materials is the relaxed energy of saturated materials, see Epstein [6], [7] and
Epstein & Forcinito [8]. Positive–semidefinite effective stresses in wrinkling
membranes [6], [7] and their constitutive equations differ just by the sign from
stresses and constitutive equations of masonry materials.

Practical applications of no–tension materials involve numerical implementa-
tion. The constitutive model is combined with the finite–element method in the
code NOSA–ITACA [20] to provide a tool for studying the structural behavior
of existing masonry structures in both the static and dynamical situations [13],
[15], [3]. The code has been successfully applied to the analysis of some build-
ings of historical interest [16]. A substantial ingredient of the numerical solution
of the equilibrium problem is the derivative of the stress–strain relation, allow-
ing to determine the tangent stiffness matrix required by the Newton-Raphson
method for solving the nonlinear algebraic system resulting from the discretiza-
tion into finite elements. In an isotropic material the derivative, as well as the
solution to the constitutive equation, can be determined explicitly [16, Section
2.4].

In this note we deal with materials of arbitrary symmetry and apply our
general results to isotropic materials to show the coincidence with results derived
previously for isotropic materials. We prove that the stress–strain relation is
indefinitely differentiable on an open dense subset O of the set of all strains and
derive an equation (see (12), below) for the derivative of the stress with respect
to strain. The set O consists of four open connected regions determined by the
rank k = 0, 1, 2, 3 of the resulting stress, with the cases k = 0 and k = 3 being
trivial. The mentioned equation (12) determines the derivative only implicitly,
for two reasons: first, it involves an orthogonal projection onto the tangent
space to the set of all elastic strains relative to the energetic scalar product
(determined by the tensor of elastic constants) which cannot be determined
explicitly and, second, it involves an anticommutation relation which cannot be
solved by a closed form formula except for the case of isotropic materials. For
a material of general symmetry, when the tensor of elasticities does not have
the representation known in the isotropic case, only general steps leading to the
evaluation of the derivative can be described.

To describe the idea of the proof and the line of our arguments, we note that
we employ the characterization of the stress–strain relation by the above men-
tioned nonlinear projection P of the strain tensor onto the image L−1 Sym− of
the convex cone of negative–semidefinite stresses under the fourth–order tensor
of elastic compliances. The proofs of our general results are based on those [19]

1We refer to Section 2 for the notation and further details.
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on the differentiability and the derivative of the nonlinear orthogonal projection
onto a closed convex set whose boundary contains a hierarchy of manifolds of
singular points of various orders (such as corners, edges, faces). Indeed, the
set L−1 Sym− is a closed convex cone with nonempty interior. Its boundary
in the six–dimensional space of symmetric tensors is piecewise smooth in the
sense that it consists of “a corner,” which is the zero tensor, and further of
“edges,” and “faces.”2 These sets are the images L−1 Sym−

0 ≡ {0}, L−1 Sym−

1 ,
L−1 Sym−

2 , under L−1, of the sets of negative–semidefinite tensors Sym−

0 ≡ {0},
Sym−

1 , Sym−

2 , of ranks 0, 1, and 2, respectively. Each of the last three sets is an
indefinitely differentiable manifold. By the first main result of [19], this implies
that the projection P (and hence also the stress) is indefinitely differentiable on
the interiors W0, W1, and W2 of the set of all strains V0, V1, and V2 that are
mapped by P into the sets L−1 Sym−

0 , L−1 Sym−

1 , L−1 Sym−

2 , respectively. By
the second main result of [19], the derivative of P on each of the sets W0, W1,
and W2 is related to the second fundamental form (i.e., the curvature) of the
manifolds L−1 Sym−

0 , L−1 Sym−

1 , L−1 Sym−

2 . The main steps in the proof is thus
the determination of the nature of the sets L−1 Sym−

0 , L−1 Sym−

1 , L−1 Sym−

2 ,
the evaluation of the second fundamental form of these sets (in Section 3) and
the maps associated with it (in Section 4). The main differentiability results
are stated in Section 5 for materials of general symmetry and in Section 6 for
isotropic materials.

2 No–tension materials

Throughout, Lin denotes the set of all second order tensors on Rn, i.e., linear
transformations from Rn into itself where n is an arbitrary positive integer;
typically n = 2 (planar no–tension bodies) or n = 3 (full fledged no–tension
bodies). Sym is the subspace of symmetric tensors, Sym+ the set of all positive–
semidefinite elements of Sym, Sym− is the set of all negative–semidefinite ele-
ments of Sym . The scalar product of A, B ∈ Lin is defined by A ·B = tr(ABT)
and | · | denotes the associated euclidean norm on Lin . We denote by I ∈ Lin
the unit tensor.

We interpret the fourth–order tensors as linear transformations from Sym
into itself. We denote by I the fourth–order identity tensor, given by IA = A
for every A ∈ Sym . Given the symmetric tensors A and B, we denote by A⊗B
the fourth–order tensor defined by A ⊗ B[H ] = (B · H)A for H ∈ Sym .

We denote the maps from Sym into Sym, linear or not, by outlined letters
L, P, etc. We often inclose the arguments of linear transformations from Sym
to Sym (i.e. of fourth–order tensors) in square brackets.

To describe the stress, we assume that L : Sym → Sym is a given fourth

2In a way similar to the corner, edges, and faces of the boundary of the octant of vectors

with nonnegative components in the three–dimensional space.
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–order tensor of elastic constants, such that

A · LA > 0 for all A ∈ Sym, A 6= 0,

B · LC = C · LB for all B, C ∈ Sym .

}

(1)

Throughout the paper we assume that L is a fixed linear transformation satis-
fying (1).

Definition 2.1. We define the energetic scalar product on Sym by setting
(A, B) = A ·LB for any A, B ∈ Sym; we further denote by ‖A‖ :=

√

(A, A) the
energetic norm.

Proposition 2.2. If X ∈ Sym, there exists a unique triplet (T, Y, Z) of elements
of Sym satisfying the following three equivalent statements:
(i) we have

X = Y + Z,
T = LY,

T ∈ Sym−, Z ∈ Sym+,
T · Z = 0.















(2)

(ii) we have (2)1,2 and

T ∈ Sym−,
(T − T ∗) · Z ≥ 0 for each T ∗ ∈ Sym− .

}

(iii) we have (2)1,2 and Y is the metric projection of X onto the convex cone

L−1 Sym− with respect to the energetic scalar product, i.e., Y ∈ L−1 Sym−

satisfies
‖Y − X‖ = min{‖B − X‖ : B ∈ L−1 Sym−}.

We refer to [2], [9] and [4] for various forms of the above statement and the
proof.

If (T, Y, Z) is the triplet associated with X in this proposition, we define by
P : Sym → Sym the metric projection onto L−1 Sym− mentioned in (iii); we
call Y = P(X) the elastic part of the deformation corresponding to the total
deformation X ∈ Sym and Z = X −P(X) the fracture part of the deformation.
The stress T : Sym → Sym and stored energy Ŵ : Sym → R are given by

T(X) = T = LP(X), Ŵ (X) = 1
2T(X) ·X

for any X ∈ Sym. When L is isotropic, the explicit form of the response function
T and its further analysis, first given in [13], [14], is presented in Section 6, below.
Generally, the map T is monotone and Lipschitz continuous and the function
Ŵ is continuously differentiable, convex and D Ŵ = T; see [4, Proposition 4.4
and Lemma 5.1].
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3 The second fundamental form of L
−1 Sym–

k

Throughout, let k be an integer with 0 ≤ k ≤ n. For each X ∈ Sym we denote
by Q(X) and R(X) the projectors onto ranX := {Xx ∈ Rn : x ∈ Rn} and
ker X := {x ∈ Rn : Xx = 0}, respectively, Q(X) + R(X) = I. We denote by
Symk and Sym−

k the set of all elements X of Sym and Sym−, respectively, with
rank X = k. We denote by Qk and Rk the restrictions of Q and R to Sym−

k .
For each X ∈ Sym there exists a unique X−1 ∈ Sym such that

X−1X = X X−1 = Q(X). (3)

Indeed, since X maps ran X bijectively onto ranX, we can put

X−1 = [X| ranX]−1Q(X)

where [X| ranX]−1 is the standard inverse of an injective map. Then clearly
(3) hold. This proves the existence. The uniqueness is clear. Note that given
the spectral representation of X with the eigenvalues xi then X−1 has the same
spectral representation with eigenvalues

ξi =

{

1/xi if xi 6= 0,

0 if xi = 0.

Definitions 3.1.

(i) We define the tangent space Tan(L−1 Sym−

k , Y ) to L−1 Sym−

k at Y ∈
L−1 Sym−

k as the set of all B ∈ Sym such that there exists a continuously
differentiable map A satisfying

A : (−ε, ε) → L−1 Sym−

k , A(0) = Y, Ȧ(0) = B. (4)

(ii) We define the normal space Nor(L−1 Sym−

k , Y ) to L−1 Sym−

k at Y ∈ L−1 Sym−

k

as the orthogonal complement of Tan(L−1 Sym−

k , Y ) in Sym relative to the
energetic scalar product.

(iii) If S : L−1 Sym−

k → V is a map on L−1 Sym−

k with values in a finite
dimensional vectorspace, we say that S is differentiable at Y ∈ L−1 Sym−

k

if there exists a linear map D S(Y ) : Tan(L−1 Sym−

k , Y ) → V such that

D S(Y )[B] =
d

dt
S(A(t))

∣

∣

t=0

for any continuously differentiable curve A as in (4). We do not indi-
cate graphically the fact that DS(Y )[·] is the surface derivative relative to
L−1 Sym−

k as this is uniquely given by the domain of S.

Proposition 3.2.

(i) The set L−1 Sym−

k is a connected indefinitely differentiable manifold of
dimension 1

2k(2n − k + 1);
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(ii) if T ∈ Sym−

k then

Tan(L−1 Sym−

k , L−1T ) = {L−1B ∈ Sym : Rk(T )BRk(T ) = 0}, (5)

Nor(L−1 Sym−

k , L−1T ) = {Z ∈ Sym : Rk(T )ZRk(T ) = Z}. (6)

Proof (i): By [10, Proposition 1.1, Section 5.1] Sym−

k is a connected man-
ifold of the indicated dimension and L−1 Sym−

k is its image under a bijective
transformation. (ii): It follows from the results of [19] that

Tan(Sym−

k , T ) = {B ∈ Sym : Rk(T )BRk(T ) = 0}.

Equations (5) and (6) then follow. �

Lemma 3.3. The map Qk is indefinitely differentiable on Sym−

k and its surface
derivative is given by

D Qk(T )[B]Qk(T ) = Rk(T )BT−1 (7)

for any T ∈ Sym−

k and any B ∈ Tan(Sym−

k , T ).

Proof See [19]. �

Definitions 3.4.

(i) For any Y ∈ L−1 Sym−

k , we denote the projections onto Tan(L−1 Sym−

k , Y )
and Nor(L−1 Sym−

k , Y ) by Qk(Y ) and Rk(Y ), respectively, and observe
that

(Qk(L−1T ) − I)L−1
(

C − Rk(T )CRk(T )
)

= 0 (8)

for any T ∈ Sym−

k and C ∈ Sym .
(ii) We define the second fundamental form Bk of L−1 Sym−

k as a map which as-
sociates with each Y ∈ L−1 Sym−

k a bilinear form Bk(Y ) : Tan(L−1 Sym−

k , Y )×
Tan(L−1 Sym−

k , Y ) → Nor(L−1 Sym−

k , Y ) given by

Bk(Y )(B, C) = D Qk(Y )[B]C

for every B, C ∈ Tan(L−1 Sym−

k , Y ).

Lemma 3.5. If T ∈ Sym−

k and B, C ∈ Tan(L−1 Sym−

k , L−1T ) then

DQk(L−1T )[B]C

= Rk(L−1T )
[

L−1
[

Rk(T )(L[B]T−1L[C] + L[C]T−1L[B])Rk(T )
]

] (9)

which also gives the second fundamental form Bk(L−1T )(B, C) of L−1 Sym−

k .

Proof Differentiating (8) in the direction L−1B ∈ Tan(L−1 Sym−

k , L−1T ) and
using Rk(L−1T ) = I − Qk(L−1T ) we obtain for any C ∈ Sym the relation

D Qk(L−1T )[L−1B]L−1
(

C − Rk(T )CRk(T )
)

= Rk(L−1T )L−1
[

DRk(T )[B]CRk(T ) + Rk(T )C DRk(T )[B]
]
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For C satisfying Rk(T )CRk(T ) = 0, i.e., Qr(T )C = C this reduces to

DQk(L−1T )[L−1B]L−1C

= Rk(L−1T )L−1
[

D Rk(T )[B]Qk(T )CRk(T ) + Rk(T )CQk(T )D Rk(T )[B]
]

.

Combining with (7) we obtain

DQk(L−1T )[L−1B]L−1C = Rk(L−1T )L−1
[

Rk(T )(BT−1C + CT−1B)Rk(T )
]

.

Replacing B by L[B] and C by L[C] where now B, C ∈ Tan(L−1 Sym−

k , Y ), we
obtain (9). �

4 The normal cone to L
−1 Sym–

If Y ∈ L−1 Sym−, we define the normal cone Nor+(L−1 Sym−, Y ) by

Nor+(L−1 Sym−, Y ) = {Z ∈ Sym : (Z, V − Y ) ≤ 0 for all V ∈ L−1 Sym−}

where we use the energetic scalar product.

Proposition 4.1. If T ∈ Sym−

k then

Nor+(L−1 Sym−, L−1T ) = {Z ∈ Sym+ : Rk(T )ZRk(T ) = Z}.

Proof Since L−1 Sym− is a convex cone, Nor+(L−1 Sym−, Y ) is the set of all el-
ements of the dual cone that are perpendicular to Y (see [17, Example 11.4(b)]).
The dual cone with respect to the energetic scalar product to L−1 Sym− is Sym+

and thus
Nor+(L−1 Sym−, Y ) = {Z ∈ Sym+ : (Z, Y ) = 0};

however, since Z ∈ Sym+ and Y ∈ L−1 Sym−, the relation (Z, Y ) = 0 implies
ZT = 0; this in turn implies that ZQk(T ) = 0. We finally conclude that
Rk(T )ZRk(T ) = Z. �

For any Y ∈ L−1 Sym−

k and Z ∈ Nor+(L−1 Sym−, Y ), denote by Ck(Y, Z)
the linear transformation from Tan(L−1 Sym−

k , Y ) into itself such that

(Ck(Y, Z)B, C) = (Z, Bk(Y )(B, C))

for all B, C ∈ Tan(L−1 Sym−

k , Y ).

Proposition 4.2. For each T ∈ Symk, each Z ∈ Nor+(L−1 Sym−, Y ) and each
B ∈ Tan(L−1 Sym−

k , Y ), with Y = L−1T , we have

Ck(L−1T, Z)B = Qk(L−1T )
[

T−1L[B]Z + ZL[B]T−1
]

.
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Proof Letting C ∈ Tan(L−1 Sym−

k , Y ), we find from Lemma 3.5 that

(Z, DQk(L−1T )[B]C)

= (Z, Rk(L−1T )L−1
[

Rk(T )(L[B]T−1LC + L[C]T−1L[B])Rk(T )
]

)

= (Z, L−1
[

Rk(T )(L[B]T−1L[C] + L[C]T−1L[B])Rk(T )
]

)

= Z ·
[

Rk(T )(L[B]T−1L[C] + L[C]T−1L[B])Rk(T )
]

= Z · (L[B]T−1L[C] + L[C]T−1L[B])

= Z · L[B]T−1L[C] + Z · L[C]T−1L[B]

= T−1L[B]Z · L[C] + ZL[B]T−1 · L[C]. �

5 The main results: the differentiability and

the derivative of the stress

We say that a map F : Sym → Sym is differentiable at X ∈ Sym if there exists
a linear transformation D from Sym into itself such that

lim
B→X

‖F(B) − F(X) − D(B − X)‖/‖B − X‖ = 0.

We call D the derivative of F at X and write DF(X)[H ] = DH for each H ∈
Sym .

Define the sets

Vk := {X ∈ Sym : LP(X) ∈ Sym−

k }, (10)

0 ≤ k ≤ n; it is easy to see that

Vk =
⋃

{Y + Nor+(L−1 Sym−, Y ) : Y ∈ L−1 Sym−

k }

and clearly,
n
⋃

k=0

Vk = Sym .

Furthermore, define Wk as the interior of Vk and put

O =

n
⋃

k=0

Wk.

It is easy to see that O is an open dense subset of Sym . Recalling that the set
L−1 Sym−

k is an indefinitely differentiable manifold (Proposition 3.2) and using
[19, Theorem 1.6] we obtain the following result:

Theorem 5.1. The map P (and hence also T) is indefinitely differentiable on
O.

Furthermore, [19, Theorem 2.3.4] gives the following.
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Theorem 5.2. For every X ∈ Wk and C ∈ Sym we have

D P(X)[C] = [Ik(Y ) − Ck(Y, X − Y )]
−1

Qk(Y )C (11)

where Y = P(X) and Ik(Y ) is the identity transformation on Tan(L−1 Sym−

k , Y ).

We note that the existence of the inverse follows from the negative–semidefinite
character of Ck(Y, X − Y ), which in turn is a consequence of the convexity of
L−1 Sym−, see [19, Theorem 2.3.4(i)].

A combination of (11) with Proposition 4.2 leads to the following relation
for the derivative:

Theorem 5.3. If X ∈ Wk and C ∈ Sym then DP(X)[C] = B where B ∈
Tan(L−1 Sym−

k , P(X)) is the unique solution of the equation

B − Qk(L−1T )
[

T−1L[B]Z + ZL[B]T−1
]

= Qk(L−1T )C (12)

where T = LP(X), Z = X − P(X).

6 The isotropic case

Let us consider the isotropic elasticity tensor

L = 2µI + λI ⊗ I,

with µ and λ the Lamé moduli of the material, satisfying the conditions µ > 0,
2µ + 3λ > 0 which guarantee that Conditions (1) are satisfied. In particular, L

is invertible and

L−1 =
1

2µ
I − λ

2µ(2µ + 3λ)
I ⊗ I.

For X ∈ Sym, let x1 ≤ x2 ≤ x3 be its ordered eigenvalues and q1, q2, q3 the
corresponding eigenvectors. We introduce the orthonormal basis of Sym (with
respect to the scalar product “·”)

O11 = q1 ⊗ q1, O22 = q2 ⊗ q2, O33 = q3 ⊗ q4, (13)

O12 =
1√
2
(q1 ⊗ q2 + q2 ⊗ q1), O13 =

1√
2
(q1 ⊗ q3 + q3 ⊗ q1),

O23 =
1√
2
(q2 ⊗ q3 + q3 ⊗ q2),

where, for a and b vectors, the diade a ⊗ b is defined by a ⊗ bh = (b · h)a, for
any vector h and · is the scalar product in the space of vectors.

Given X, the projection Y = P(X) onto the convex cone L−1Sym− with
respect to the energetic scalar product can be calculated explicitly [16]. In
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particular,

if X ∈ V0 then P(X) = 0,

if X ∈ V1 then P(X) = x1O11 −
α

2(1 + α)
x1(O22 + O33),

if X ∈ V2 then P(X) = x1O11 + x2O22 −
α

2 + α
(x1 + x2)O33,

if X ∈ V3 then P(X) = X,



























(14)

where α = λ/µ and the sets Vk introduced in (10) are

V0 = {X ∈ Sym : x1 ≥ 0} ,

V1 = {X ∈ Sym : x1 < 0, αx1 + 2(1 + α)x2 ≥ 0} ,

V2 = {X ∈ Sym : αx1 + 2(1 + α)x2 < 0, 2x3 + α trX ≥ 0} ,

V3 = {X ∈ Sym : 2x3 + α trX < 0} .























(15)

Thus, setting T = L[P(X)], from (14)1–(14)4 we get the explicit expression of
the stress tensor T , with E = µ(2µ + 3λ)/(µ + λ) the Young modulus:

if X ∈ V0 then T = 0 ∈ Sym−

0 ,

if X ∈ V1 then T = Ex1O11 ∈ Sym−

1 ,

if X ∈ V2 then T =
2µ

2 + α
{[2(1 + α)x1 + αx2]O11

+[2(1 + α)x2 + αx1]O22} ∈ Sym−

2 ,

if X ∈ V3 then T = L[X] ∈ Sym−

3 .







































(16)

We point out that in the isotropic case all the tensors X, Y, X−Y and T are
coaxial. Now let us consider separately the four cases X ∈ Wk for k = 0, 1, 2, 3.
For T = L[P(X)] ∈ Sym−

k , we firstly calculate the tensors Rk(T ) and Qk(T ) that
project the space of vectors onto its subspaces kerT and ranT . Then, by using
Proposition 3.2, we determine the tangent space Tan(L−1 Sym−

k , L−1[T ]) and
the normal space Nor(L−1 Sym−

k , L−1[T ]) to L−1 Sym−

k at Y = L−1[T ]. We give
the explicit expressions of the projections Qk(Y ) onto Tan(L−1 Sym−

k , Y ) and
Rk(Y ) onto Nor(L−1 Sym−

k , Y ) and the fundamental form Bk(Y ) is thus deter-
mined by using equation (9). Knowing the linear transformation Ck(Y, X − Y )
from Tan(L−1 Sym−

k , Y ) into itself allows for calculating the derivative DP(X)
of P with respect to X, according to equation (11).

For X ∈ W0 and then T ∈ Sym−

0 , we have

R0(T ) = I, Q0(T ) = 0,

Tan(L−1 Sym−

0 , Y ) = {0} ,

Nor(L−1 Sym−

0 , Y ) = Sym,

Q0(Y ) = O,

10



R0(Y ) = I,

D P(X) = O.

For X ∈ W1 and then T ∈ Sym−

1 , it holds that

R1(T ) = I − O11, Q1(T ) = O11, (17)

Tan(L−1 Sym−

1 , Y ) = L−1 span(O11, O12, O13)

= span(L−1[O11], L
−1[O12], L

−1[O13]),

Nor(L−1 Sym−

1 , Y ) = {Z ∈ Sym : Zq1 = 0} = span(O22, O33, O23),

The tensors

P1 =
√

EL−1[O11], P2 =
√

2µL−1[O12], P3 =
√

2µL−1[O13], (18)

belonging to Tan(L−1 Sym−

1 , Y ), and

P4 =
1√

2µ + λ
O22, P5 =

(2µ + λ)O33 − λO22
√

4µ(µ + λ)(2µ + λ)
, P6 =

1√
2µ

O23,

belonging to Nor(L−1 Sym−

1 , Y ), form a L-orthonormal basis of Sym.
The projections Q1(Y ) and R1(Y ) respectively onto Tan(L−1 Sym−

1 , Y ) and
Nor(L−1 Sym−

1 , Y ) are defined by

Q1(Y )[H ] = (P1, H)P1 + (P2, H)P2 + (P3, H)P3, H ∈ Sym,

R1(Y )[H ] = (P4, H)P4 + (P5, H)P5 + (P6, H)P6, H ∈ Sym .

Recalling that Y = P(X), from (14)2 we obtain

X − Y = β2O22 + β3O33 = p4P4 + p5P5,

where the coefficients β2 and β3 are

β2 =
λx1 + 2(µ + λ)x2

2(µ + λ)
, β3 =

λx1 + 2(µ + λ)x3

2(µ + λ)
, (19)

and p4 and p5 come from (14)2 and (19)

p4 =
λx1 + (2µ + λ)x2 + λx3√

2µ + λ
,

p5 = (λx1 + 2(µ + λ)x3)

√
µ

√

(2µ + λ)(µ + λ)
.

For B, C ∈ Tan(L−1 Sym−

1 , Y ) we put

S = R1(T )(L[C]T−1L[B] + L[B]T−1L[C])R1(T ), (20)

11



and from (9) we get

B1(Y )(B, C)= R1(L
−1[T ])[L−1[S]]

= (P4 · S)P4 + (P5 · S)P5 + (P6 · S)P6 ,

and then

(X − Y, B1(Y )(B, C)) = (X − Y ) · L[B1(Y )(B, C)]

= (p4P4 + p5P5) · {(P4 · S)L[P4] + (P5 · S)L[P5]

+(P6 · S)L[P6]}
= p4(P4 · S) + p5(P5 · S).

(21)

Having in mind that

T−1 =
1

Ex1
O11,

P4 =
1√

2µ + λ
O22

and
P5 = ξ2O22 + ξ3O33,

with

ξ2 = − λ

2
√

µ(µ + λ)(2µ + λ)
,

ξ3 =
2µ + λ

2
√

µ(µ + λ)(2µ + λ)
,

from (20) and (17) we get

P4 · S =
2

Ex1
O11L[B]P4 · L[C],

P5 · S =
2

Ex1
O11L[B]P5 · L[C],

and finally, (21) becomes

(X −Y, B1(Y )(B, C)) =
2µp4

Ex1

√
2µ + λ

(L[C] ·O12)(B · O12)

+
2µp5

Ex1
(ξ2(L[C] · O12)(B ·O12) + ξ3(L[C] ·O13)(B · O13)).

(22)

From the relation

(C1(Y, X − Y )B, C) = (X − Y, B1(Y )(B, C))

for all B, C ∈ Tan(L−1 Sym−

1 , Y ), taking (22) into account, we obtain the ex-
plicit expression for C1(Y, X − Y ),

C1(Y, X − Y ) =
2µ

Ex1
(

p4√
2µ + λ

+ p5ξ2)P2 ⊗ L[P2] +
2µ

Ex1
p5ξ2P3 ⊗ L[P3]. (23)

12



Since the identity transformation on Tan(L−1 Sym−

1 , Y ) is

I1(Y ) = P1 ⊗ L[P1] + P2 ⊗ L[P2] + P3 ⊗ L[P3],

from (23), we get

I1(Y )−C1(Y, X−Y ) = P1⊗L[P1]+
2µ

E

x1 − x2

x1
P2⊗L[P2]+

2µ

E

x1 − x3

x1
P3⊗L[P3],

and relation (11) gives

D P(X) = P1 ⊗ L[P1] +
Ex1

2µ(x1 − x2)
P2 ⊗ L[P2] +

Ex1

2µ(x1 − x3)
P3 ⊗L[P3]. (24)

By using the expressions for the derivative of eigenvalues and eigenvectors
of a symmetric tensor summarized in [16], the derivative of P(X) in (14)2 turns
out to be

D P(X) =
2 + 3α

2(1 + α)
O11 ⊗ O11 +

(2 + 3α)x1

2(1 + α)
(

1

x1 − x2
O12 ⊗ O12

+
1

x1 − x3
O13 ⊗ O13) −

α

2(1 + α)
I ⊗ O11.

(25)

Having in mind expressions (18) linking P1, P2, P3 and O11, O12, O13, it is easy
to verify that (24) and (25) coincide.

For X ∈ W2 and then T ∈ Sym−

2 , it holds that

R2(T ) = O33, Q2(T ) = I − O33, (26)

Tan(L−1 Sym−

2 , Y ) = L−1(span(O33)
⊥),

Nor(L−1 Sym−

2 , Y ) = {Z ∈ Sym : Zq1 = Zq2 = 0} = span(O33),

The tensors

P1 =
√

EL−1[O11], P2 =
√

2µL−1[O12], P3 =
√

2µL−1[O13],

P4 =
√

2µL−1[O213], P5 = 2

√

µ(µ + λ)

2µ + λ

(

λ

2(µ + λ)
L−1[O11] + L−1[O22]

)

,

belonging to Tan(L−1 Sym−

2 , Y ), and

P6 =
1√

2µ + λ
O33,

in Nor(L−1 Sym−

2 , Y ) form a L-orthonormal basis of Sym.
The projections Q2(Y ) and R2(Y ) respectively onto Tan(L−1 Sym−

2 , Y ) and
Nor(L−1 Sym−

2 , Y ) are defined by

Q2(Y )[H ] = (P1, H)P1 + (P2, H)P2 + (P3, H)P3

+(P4, H)P4 + (P5, H)P5, H ∈ Sym,
(27)
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R2(Y )[H ] = (P6, H)P6, H ∈ Sym .

Having in mind the expression of Y = P(X) in (14)3, we have

X − Y = β3O33 = p6P6,

with

β3 =
(2µ + λ)x3 + λ(x1 + x2)

2µ + λ
,

p6 =
(2µ + λ)x3 + λ(x1 + x2)√

2µ + λ
,

For B, C ∈ Tan(L−1 Sym−

2 , Y ), putting

S = R2(T )(L[C]T−1L[B] + L[B]T−1L[C])R2(T ), (28)

we have
B2(Y )(B, C) = R2(Y )[L−1[S]] = (P6 · S)P6, (29)

and then

(X − Y, B2(Y )(B, C)) = (X − Y ) · L[B2(Y )(B, C)]

= p6P6 · (P6 · S)L[P6] = p6(P6 · S).
(30)

From (16)3 it follows that

T−1 =
2µ + λ

2µ

{

1

2(µ + λ)x1 + λx2
O11 +

1

2(µ + λ)x2 + λx1
O22

}

,

and from (28) and (26) we get

(X − Y , B2(Y )(B, C))

=
2µp6√
2µ + λ

2µ + λ

2µ

1

2(µ + λ)x1 + λx2
(L[C] · O13)(B · O13)

+
2µp6√
2µ + λ

2µ + λ

2µ

1

2(µ + λ)x2 + λx1
(L[C] · O23)(B · O23)

(31)

From the relation

(C2(Y, X − Y )B, C) = (X − Y, B2(Y )(B, C))

for all B, C ∈ Tan(L−1 Sym−

2 , Y ), taking (31) into account, we obtain the ex-
plicit expression for C2(Y, X − Y ),

C2(Y, X − Y )=
(2µ + λ)x3 + λ(x1 + x2)

2(µ + λ)x1 + λx2
P3 ⊗ L[P3]

=
(2µ + λ)x3 + λ(x1 + x2)

λx1 + 2(µ + λ)x2
P4 ⊗ L[P4].

(32)
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Thus, for

I2(Y ) = P1 ⊗L[P1] + P2 ⊗ L[P2] + P3 ⊗ L[P3] + P4 ⊗ L[P4] + P5 ⊗L[P5], (33)

the identity transformation on Tan(L−1 Sym−

2 , Y ), from (32), we have

I2(Y )−C2(Y, X − Y )

= P1 ⊗ L[P1] + P2 ⊗ L[P2] +
(2µ + λ)(x1 − x3)

2(µ + λ)x1 + λx2
P3 ⊗ L[P3]

+
(2µ + λ)(x2 − x3)

λx1 + 2(µ + λ)x2
P4 ⊗ L[P4] + P5 ⊗ L[P5],

and relation (11) gives

DP(X) = P1 ⊗ L[P1] + P2 ⊗ L[P2] +
2(µ + λ)x1 + λx2

(2µ + λ)(x1 − x3)
P3 ⊗ L[P3]+

λx1 + 2(µ + λ)x2

(2µ + λ)(x2 − x3)
P4 ⊗ L[P4] + P5 ⊗ L[P5],

which coincides with the derivative of P(X) with respect to X calculated by
differentiating (14)3 and using the expressions of the derivative of eigenvalues
and eigenvectors of X [16].

Finally, if X ∈ W3 then T ∈ Sym−

3 and we have

R3(T ) = 0, Q3(T ) = I,

Tan(L−1 Sym−

3 , Y ) = Sym,

Nor(L−1 Sym−

3 , Y ) = {0} .

Q3(Y ) = I,

R3(Y ) = O,

and
D P(X) = I.

When the derivative DP(X) is known, the derivative of the stress T =
L[P(X)] with respect to X is D T(X) = L DP(X), and, in particular,

D T(X) = 2µ DP(X) + λI ⊗ D P(X)T [I],

where D P(X)T is the transpose of the fourth-order tensor DP(X) defined by

D P(X)T [H ] · K = DP(X)[K] · H , for every H, K ∈ Sym .
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7 The anisotropic case

In principle for L anisotropic the derivative D P(X) can be calculated by follow-
ing the same procedure of the isotropic case. For example, let us consider the
case

X ∈ W1 = interior of
{

A ∈ Sym : L[P(A)] ∈ Sym−

1

}

,

then T = t1O11, where t1 < 0 and O11 = q1 ⊗ q1, (see (13)) with q1, q2, q3 the
eigenvectors of T . Here, unlike the isotropic case, the vectors q1, q2, q3 are not
eigenvectors of X and their dependence on X is unknown, since, at the moment,
the explicit expression of the projection Y = P(X) is not available. On the other
hand, q1, q2, q3 are eigenvector of X − Y and

X − Y = a2O22 + a3O33,

with a2, a3 ≥ 0. The calculation of D P(X) requires the following steps.

Step 1 Determine the tensors

R1(T ) = I − O11, Q1(T ) = O11,

and the subspaces

Tan(L−1 Sym−

1 , Y )= L−1 span(O11, O12, O13)

= span(L−1[O11], L
−1[O12], L

−1[O13]),

Nor(L−1 Sym−

1 , Y ) = {Z ∈ Sym : Zq1 = 0} = span(O22, O33, O23).

Step 2 Determine a L-orthonormal basis Pi, i = 1, ..., 6 of Sym such that

P1, P2, P3 ∈ Tan(L−1 Sym−

1 , Y ),

P4, P5, P6 ∈ Nor(L−1 Sym−

1 , Y ).

In particular,

Pi = ξ
(i)
11 L−1[O11] + ξ

(i)
12 L−1[O12] + ξ

(i)
13 L−1[O13], i = 1, 2, 3,

Pi = ξ
(i)
22 O22 + ξ

(i)
33 O33 + ξ

(i)
23 O23, i = 4, 5, 6, (34)

with ξ
(i)
kl ∈ R.

Step 3 Determine the projectors

Q1(Y ) = P1 ⊗ L[P1] + P2 ⊗ L[P2] + P3 ⊗ L[P3],

R1(Y ) = P4 ⊗ L[P4] + P5 ⊗ L[P5] + P6 ⊗ L[P6].

Step 4 Considering that

X − Y = b4P4 + b5P5 + b6P6,
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we get

C1(Y, X − Y ) =
∑

j=4,5,6

bj

t1

{

ξ
(j)
22 O12 ⊗ L[O12] + ξ

(j)
33 O13 ⊗ L[O13]

+ 2−1/2ξ
(j)
23 (O12 ⊗ L[O13] + O13 ⊗ L[O12])

}

.

Step 5 For

I1(Y ) = P1 ⊗ L[P1] + P2 ⊗ L[P2] + P3 ⊗ L[P3],

the identity transformation on Tan(L−1 Sym−

1 , Y ), find the spectral decompo-
sition of I1(Y ) − C1(Y, X − Y ) and then determine (I1(Y ) − C1(Y, X − Y ))−1.
The expression for D P(X) comes from (11). Such a procedure could be imple-
mented in the NOSA-ITACA code and applied to solve the equilibrium prob-
lem of anisotropic no-tension solids. In particular, once Y = P(X), and then
T = L[Y ], is calculated numerically, its derivative can be calculated numeri-
cally as well, by following steps 1–5, thus allowing determination of the tangent
stiffness matrix.
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