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Abstract

Software reuse can improve productivity, but does not exempt developers from
the need to test the reused code into the new context. For this purpose, we
propose here specific approaches to white-box test prioritization, selection and
minimization that take into account the reuse context when reordering or se-
lecting test cases, by leveraging possible constraints delimiting the new input
domain scope. Our scope-aided testing approach aims at detecting those faults
that under such constraints would be more likely triggered in the new reuse
context, and is proposed as a boost to existing approaches. Our empirical eval-
uation shows that in test suite prioritization we can improve the average rate
of faults detected when considering faults that are in scope, while remaining
competitive considering all faults; in test case selection and minimization we
can considerably reduce the test suite size, with small to no extra impact on
fault detection effectiveness considering both in-scope and all faults. Indeed, in
minimization, we improve the in-scope fault detection effectiveness in all cases.

Keywords: In-scope entity, test case selection, test case prioritization, test
suite minimization, test of reused code, testing scope

1. Introduction

Since the early days of the software engineering discipline, reuse has been
advocated as a key solution to face the “software crisis” and improve software
quality while reducing time-to-market [31, 39, 40]. Moreover, integrating pre-
existing components or portions of code that had already been widely tested
and used seemed a prelude to easily achieve more reliable systems, as showed
e.g. in [33].
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However decades of research and practice in software reuse have not yet
fully realized such optimistic expectations. Along with several success stories,
the literature reports about many failures [34, 27], some also with catastrophic
consequences as the often cited disasters of Therac 25 accidents [28] and of
Ariane 5 Flight 501 [30], both eventually attributed to bad test reuse practices.

As Weyuker warned in [46], developers reusing a component need to do con-
siderable testing to ensure the software behaves properly in its new environment.
In this regard, the results from a recent survey among developers from different
companies on the current practice of testing of reused software [45] are dismay-
ing: to the question whether they tested a component in any way before reusing
it, only 43% of the interviewed developers answered yes, while 41% did it rarely
and 16% not at all. From the interviews it emerged that a reason at the origin of
such risky behavior was the lack of proper and simple-to-use tools, in particular
for facilitating the testing of code that has been written by someone else. The
authors report that many developers would like to see a tool that could give
them some measure on how well they have tested a given function, class or code
portion, as for example code coverage tools.

Code coverage measures are widely used in testing practice as an adequacy
criterion [16]: given a set of program entities to be covered (they could be
statements, branches, paths, functions, and so on), a program is not considered
to be adequately tested until all such entities (or a given percentage thereof) have
been executed at least once. Moreover, test coverage tools provide guidance as
to what parts of a program should be exercised to augment a not adequate test
suite. Indeed, although the relationship between code coverage and test suite
effectiveness is debated, see e.g. [20], there is consensus that having coverage
information is important as evidently a test suite can hardly find bugs in code
that is never executed.

When the source code is available, as in the case of reuse from internal repos-
itory [41], measuring the test coverage of reused code would be useful as well for
developers [45]. The problem is that when testing reused software, traditional
ways to measure test coverage might produce meaningless information: in fact,
not all entities might be of interest when a code is reused in a new context and
environment. We refer to the latter as a testing scope.

In a recent paper [32], we proposed to adapt test coverage measures to
the specific reuse scope. Reaching 100% test coverage might not be a sensible
target from within a certain scope in which some parts of a reused code would
never be invoked. A more useful information for testers would be to know
how much coverage they could achieve within their reuse scope. Thus, instead
of measuring coverage as the ratio between the entities covered and the total
number of entities, in [32] we suggested to measure coverage of reused code
as the ratio between the entities covered and those that could potentially be
exercised in the new scope. We introduced the term of in-scope entities to refer
to the entities in the reused code that are exercised from the new context. The
remaining ones are referred to as the out-of-scope entities. Out-of-scope entities
are not to be confused with infeasible entities [13]: they are perfectly feasible,
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i.e. there exist test inputs that exercise them, but a user would never or very
unlikely invoke such inputs in the new reuse context.

A large portion of testing research aims at reducing testing effort and time.
Many different techniques have been developed for test prioritization, selection
and minimization: all such techniques take in input an existing pool of test
cases and produce a test suite that respectively reorders, reduces or tries to
minimize the original set, so to reduce testing costs. More cost-effective testing
approaches remain an exigency also for reused software. In the cited survey
on reuse and testing [45], 60% of the developers claimed that verification and
validation was the first thing that was reduced in case of time shortage during
a project.

In this paper we propose to use scope information to improve test prioritiza-
tion, selection and minimization for the purpose of testing reused code. We call
our approach scope-aided testing, as we do not propose novel techniques, but
take into account the reuse scope of entities when applying existing approaches
for test prioritization, selection and minimization. Although based on a simple,
intuitive idea, our approach may provide developers with guidance in the testing
of reused code.

In the testing literature, test prioritization, selection and minimization have
been mostly investigated for regression testing [47], i.e. for retesting a software
code after modifications. Here we address test prioritization, selection and min-
imization for reuse testing, i.e. for retesting a software component or a piece
of reused code (possibly unchanged) from within a new context in which it is
invoked under a different usage profile.

Ravichandran and Rothenberger [41] distinguished among three reuse strate-
gies: White-Box Reuse with internal components, Black-Box Reuse with inter-
nal components, and Black-Box Reuse with component markets. More precisely,
our approach can be applied to both the first and the second strategy, in which
the source code is available. Then, in Black-Box Reuse with internal compo-
nents the modification of reused code is not allowed, and thus we apply the
approaches presented in the following without considering any modifications.
In the case of White-Box Reuse, code could be modified, in such case in test-
ing we should consider both the change of context and of code. We can apply
scope-aided testing taking into account also the changes, i.e., we can use any
regression testing strategy empowered with scope information. For clarity of
exposition, since the focus of this work is on the new concept of scope-driven
approaches, the examples and studies in the paper are not modification-aware.

To the best of our knowledge, there exist no previous work specifically ad-
dressing test prioritization, selection and minimization for reused software. We
define scope-aided test prioritization, selection and minimization, and conduct
an empirical evaluation of them by comparing several metrics in the two cases
of using scope to boost existing techniques vs. applying the original techniques
unchanged. Precisely, we applied “scope-aid” to boost total and additional
greedy, similarity-based and search-based prioritization; greedy additional se-
lection; and the GE algorithm for minimization proposed in [6]. The results
vary across the subject programs, and we provide a detailed report in the fol-
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lowing. However overall they are encouraging in that scope may help detect
relevant faults faster, and can be used to derive a reduced test suite in reuse
contexts.

The paper is structured as follows: we introduce a motivating example in
Section 2 and some general definitions in Section 3. We then introduce more
detailed definitions for scope-aided prioritization, selection and minimization in
Section 4: for each, we provide first a definition of scope-aided approach and
then illustrate the approach on the example anticipated in Section 2. We then
describe the settings of our empirical evaluations in Section 5, including the
Research Questions, the study subjects, tasks, procedures and metrics. Results
are reported and illustrated separately for prioritization, selection and mini-
mization in Sections 6, 7, and 8, respectively. We discuss costs and benefits of
the approach in Section 9, and threats to the validity of our study in Section 10.
Related Work (Section 11) and Conclusions (Section 12) complete the paper.

2. Motivating Example

To illustrate our scope-aided testing approach, let us consider the small pro-
gram displayed in the leftmost column of Table 1, which contains two functions,
Example1 and Example2. Assuming a statement-coverage approach, Table 1 also
provides information regarding a set of test cases T = [TC1,TC2,TC3,TC4,TC5]
used to exercise the example code. Each test case is displayed along with the
values used for the input variables (x, y, and z) as well as the statements covered
(please ignore for the moment the last two lines, whose meaning is explained
later on).

As highlighted in Table 1, we assume two faulty statements in the function
Example1. The first one can only be triggered if Statement 2 is executed: hence
only test cases with x bigger than 0 are likely to reveal this fault. The second
fault, on the other hand, can only be triggered when Statement 5 is traversed:
hence only test cases with x equal to or less than 0 are likely to expose this
fault.

White-box approaches for test case prioritization, selection, and minimiza-
tion evaluate test cases based on how the entities in the program flowgraph
are covered. For example, the adoption of the additional prioritization strategy
would yield a prioritized test suite TSp = [TC2,TC1,TC4,TC5,TC3]. A test case
selection heuristic based on the additional greedy algorithm would produce the
test suite TSs = [TC2,TC1,TC4,TC5]; And the test minimization approach as
proposed by [6] would provide a minimized test suite TSm = [TC2,TC1,TC4,TC5].

Let us now assume that the aforementioned code is going to be reused in a
scope in which we know that x will always be bigger than 0 and the function
Example2 is no longer used. In Table 1, the statements exercised in such context
are highlighted in grey: we see that Statement 5 would never be reached and
so fault 2 would never be triggered. In our terminology, fault 2 is said to be
out-of-scope, whereas fault 1 that can be triggered under the known constraint
is an in-scope fault.
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Table 1: Statement coverage achieved by the test cases used to exercise the sample code

Code TC1 TC2 TC3 TC4 TC5
(x=1,y=1) (x=-1,y=-1) (x=1,y=-1) (z=0) (z=10)

Example1(x, y):
1. if x >0: X X X
2. s2 //fault 1 X X

else:
3. s3 X
4. s4 X
5. s5 //fault 2 X
6. if y >0: X X X
7. s7 X

else:
8. s8 X X
9. s9 X X

Example2(z):
10.if z == 0: X X
11. s11 X

else:
12. s12 X

#st. covered 4 7 5 2 2
#in-scope st. 4 4 5 0 0

#out-of-scope st. 0 3 0 2 2

Our scope-aided testing approach aims at exploiting this kind of context-
related information to bias test case prioritization, selection, and minimization
so to give priority to those test cases that are more likely to reveal in-scope
faults.

Scope-aided testing is not an approach per se, but a boost to existing prior-
itization, selection, and minimization approaches. For example, the application
of scope-aided prioritization, when used to boost the additional approach, would
provide a prioritized test suite TSp′ = [TC3,TC1,TC2,TC4,TC5]. Any of the
prioritized test suites (either scope-aided or not scope-aided) would trigger the
two faults, even though fault 2 is very unlikely to manifest itself within the
context scope in which x is always bigger than 0. However, the adoption of
a scope-aided prioritized test suite brings the benefit of revealing fault 1, the
critical one, faster.

The adoption of scope-aided selection to improve the selection heuristic
would provide the test suite TSs′ = [TC3,TC1], whereas its adoption to en-
hance the minimization approach proposed by [6] would yield the test suite
TSm′ = [TC1,TC2]. In both cases the scope-aided approach would preserve the
fault detection capability of the original test suites (when considering in-scope
faults) while bringing the benefit of yielding smaller test suites.
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3. General Definitions

This section introduces the basic concepts and definitions related to our ap-
proach. We start by defining the notions of scope and in-scope entity, already
anticipated in the introduction. When specifically referring to a testing context
and environment, we also call it a testing scope.

Definition 1 ((Testing) Scope): A subset of the (testing) input domain. More
formally, given the input domain D of a program P , and given a set C of con-
straints over D, a (testing) scope S is defined by the set of (test) input values
to program P that satisfy the constraints C.

In the above definition, the constraints can be as formal as algebraic expres-
sions over P input variables, or general properties delimiting the input domain
D. Notice that defining the testing scope is not part of our approach. Rather, it
presupposes that the information regarding the specific testing context is avail-
able.

Definition 2 (In-scope entities): The set of entities relevant to a given scope.
More formally, given a program P with entities {e1, e2, ..., en} and a scope S,
the set of in-scope entities with regards to S is Es = {ei1 , ei2 , ..., ein

} such that
∀eij

there exists some input v ∈ S that covers them.

Definition 3 (Out-of-scope entities): The set of entities that are not relevant
to a given scope (they are not covered by any input v ∈ S).

For the purpose of exposition in the following we will refer to relevant, or
in-scope, faults. This notion would refer to those faults that can be triggered by
some inputs within the scope. In real life this notion cannot be easily defined
since doing this would require to exhaustively exercise the program onto the
whole scope S, which is not feasible except for trivial programs. Therefore the
notion of relevant faults can only be defined in probabilistic terms.

Definition 4 (In-scope fault): A fault that is likely to manifest itself as a failure
under the scope inputs subset.

Definition 5 (Out-of-scope fault): A fault that is not likely to manifest itself
as a failure under the scope inputs subset.

To make the above definitions meaningful, we need to provide a definition
for “likely”. In the context of this work we evaluated the likelihood of a given
fault to manifest itself as a failure by using randomly generated test suites and
mutation testing (as detailed next in Section 5.2).
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4. Scope-aided Testing Approaches

White-box approaches for test case prioritization, selection, and minimiza-
tion evaluate test cases based on how the entities in the program flowgraph are
covered. Our scope-aided approach enhances existing traditional techniques by
taking into account the relevance of the entities to be covered with respect to
possible constraints delimiting the input domain scope. It is proposed as a boost
to existing approaches for focussing on in-scope faults when a code is reused in
a different context.

The core of our approach lies in the identification of in-scope entities. This
is achieved by the following steps:

1) Constraints identification: As the first step of our approach, we
use the information regarding the specific testing scope to identify the
input domain constraints that will be further used to identify the in-scope
entities. As said, the input domain constraints provided could vary, they
could be coarse grained such as a list of functions that are expected to
be used in that specific scope; or fine grained such as the precise range
of values expected to be used by a given variable. The more information
is provided, the more precise is the identification of the in-scope entities.
In the example from the motivating scenario in Section 2, the constraints
provided were the two facts that, in the new test context, (i) variable x
would always be bigger than 0; and (ii) function Example2 would be no
longer used. Other constraints such as the range of values expected for
the variable y, for example, could also be provided.

2) In-scope entities identification: Different approaches could be
adopted to identify the entities that are relevant under the input domain
constraints collected in the first step of our approach. For example, one
could apply a reachability algorithm on the static call graph of the given
program. Even though this is an undecidable problem [35], there exist al-
gorithms capable of generating approximated solutions. We decided to use
Dynamic Symbolic Execution (DSE) since it has shown to be a powerful
approach to analyze the code dynamically and guide its exploration based
on the input domain constraints [38, 7]. Our decision was influenced by the
fact that DSE is very actively investigated and several tools are available.
For this work, we adopted KLEE [3], a well-known symbolic execution
tool capable of automatically generating tests that achieve high coverage
even for complex and environmentally-intensive programs. To guide the
DSE exploration, we provide the input domain constraints (collected in
the previous step of our approach) to KLEE. When it is run on the target
code, KLEE tries to explore all paths, finding concrete test inputs to ex-
ercise them. The set of in-scope entities consists of those exercised by the
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DSE-generated test cases1. Indeed, if some entities are not exercised by
the DSE-generated test cases it is because they are not reachable under
the input domain constraints provided. As said, in Table 1 the in-scope
statements are those highlighted in grey.

Having followed these steps, the set of in-scope entities is used in input to
our approach. In the next three subsections we detail how they are used for
scope-aided prioritization, selection, and minimization, respectively. In each
subsection, we first define the problem we are addressing and then illustrate
an instantiation of our scope-aided approach to support the problem at hand
(using the motivating example depicted in Section 2). For each example, we first
review how a considered traditional technique works, and then explain how the
scope-aided approach could be adopted to improve testing of reused software.

4.1. Scope-aided Prioritization
Test case prioritization consists into reordering the test cases saved into a test

suite so that potential faults can be detected as early as possible. Prioritization
per se does not involve a reduction of the test suite size, but only a modification
of its execution ordering. This does not directly imply a cost reduction, however
brings two important advantages. If fault detection is anticipated, debugging
can start earlier. Moreover, should testing activity be terminated prematurely
(e.g. because of budget restrictions), then having executed the test cases in the
prioritized order ideally ensures that the available time has been well spent to
perform the most effective ones.

4.1.1. Definition of scope-aided prioritization
More formally, the test case prioritization problem is commonly defined [42]

as follows:

Definition 6. (Prioritization Problem):

Given: A test suite T ; the set PT of permutations of T ; a function f from
PT to the real numbers R

Problem: Find T ′ ∈ PT such that ∀T ′′: (T ′′ ∈ PT ) and
(T ′′ 6= T ′): [f(T ′) ≥ f(T ′′)]

In the above definition f is a given function that assigns some award value to
a test suite order. Ideally, such function would refer to fault detection rate: the
earlier the faults are detected, the more preferable a test suite order is. Unfortu-
nately in reality we cannot know in advance which test case detects which fault,
so prioritization approaches can only be based on surrogate criteria [47] that
are demonstrated to give good approximations for fault detection effectiveness.

1Note that we “replay” the test cases generated using the original program and use gcov
so to get accurate coverage achieved by the DSE-generated test cases.
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Both black-box and white-box surrogate criteria have been devised. In this
work, we focus on white-box prioritization approaches in which the ordering is
done according to how the entities in the program flow graph are covered. Sev-
eral different methods have been introduced providing different instantiations
for the “how" in the sentence above: in additional greedy ordering [43] a test
case ti will precede another test case tj if ti covers more yet uncovered entities
than tj ; in similarity-based prioritization [23] instead, ti will go before tj if ti

covers a flow graph path that is more dissimilar from all covered paths so far
than tj covered path; in search-based prioritization [29] ti is preferred over tj if
ti provides a higher increase for the adopted fitness function than tj does.

We now introduce the notion of Scope-aided Prioritization in analogous way
to that of Prioritization as follows:

Definition 7. (Scope-aided Prioritization Problem):

Given: A test suite T ; the set PT of permutations of T ; a testing scope S;
a function fs from PT and S to the real numbers R

Problem: Find T ′ ∈ PT such that ∀T ′′: (T ′′ ∈ PT ) and
(T ′′ 6= T ′): [fs(T ′) ≥ fs(T ′′)]

Thus the problem of scope-aided prioritization is the same as prioritization,
but we use an objective function fs that awards those orderings that would
reveal in-scope faults faster (more precisely, we use coverage of in-scope entities
as a surrogate criterion for detection of in-scope faults).

The scope-aided prioritization approach can be adopted to boost a wide
spectrum of traditional test case prioritization techniques. For the experiments
reported in the following, we considered two coverage-based approaches (total
and additional), one similarity-based approach, and one search-based approach.

4.1.2. The scope-aided approach applied to a prioritization example
In this section we illustrate our approach being applied to boost a coverage-

based prioritization technique. Both additional and total strategies have been
proposed [17]. For illustrative purposes, next we instantiate our approach on
the additional strategy (application to total would be quite similar).

Algorithm 1 depicts the additional strategy applied for test case prioritiza-
tion. On each iteration, the test case that yields the highest coverage is selected
(line 3) and the coverage information of the remaining test cases is updated
(line 6) to reflect their coverage with respect to the not yet covered entities.

When multiple test cases cover the same number of not yet covered enti-
ties, an additional rule is needed to decide which one of these test cases will
be selected. One possibility would be to simply pick one of the tied test cases
randomly, but this would imply having a non-deterministic output. Our im-
plementation of getNextTestCase sorts the tied test cases in ascending order
according to their IDs in order to guarantee a deterministic output.

After prioritizing a subset of the test cases it is possible to reach a point
in which all the entities are covered and the remaining test cases cannot con-
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Algorithm 1: Prioritization (additional strategy)
Input: T /*the test suite to be prioritized*/

coverageInfo /*list of entities covered by each test case from T*/
Output: T ′ /*a permutation of T*/

1 T ′ ←− [ ] /*T ′ is initialized as an empty list*/
2 while thereAreTestCasesToBePrioritized(T, T’, coverageInfo) do
3 selectedTestCase ←− getNextTestCase(T , coverageInfo) /*selects the

test case that yields the greatest coverage*/
4 add(selectedTestCase, T ′)
5 remove(selectedTestCase, T)
6 updateCoverageInformation(coverageInfo, selectedTestCase) /*adjusts the

coverage information of the remaining test cases to indicate their
coverage of entities not yet covered*/

end

tribute to increase coverage anymore. At this point, different approaches could
be adopted to order the remaining test cases. One possibility could be reset-
ting the coverage vectors of the remaining test cases and reapplying the addi-
tional strategy algorithm as done in [42]; another possibility could be adopting
a different approach (e.g., the total strategy) to prioritize the remaining tests.
Algorithm 1 does not adopt alternative strategies and keeps selecting the test
cases in the same way, which basically means that when the maximum coverage
is achieved, the remaining test cases are ordered according to their IDs.

When applied to the motivating example in Table 1, the first test case that
Algorithm 1 selects — the one that achieves the highest coverage — is TC2 that
covers seven (1, 3, 4, 5, 6, 8, and 9) out of 12 possible statements. Then, it looks
for the next test case that achieves the highest coverage with respect to the yet
to be covered statements (2, 7, 10, 11, and 12). For the next choice, three test
cases are tied (TC1, TC4, and TC5) covering two statements each and TC1 is
the one selected (as explained before). The list of uncovered statements is then
updated (10, 11, and 12). The next test case chosen is TC4 and then TC5. At
this point, 100% of the statements have been covered already and the remaining
test cases are ordered according to their IDs. The prioritized test suite returned
by Algorithm 1 would be TSp = [TC2,TC1,TC4,TC5,TC3].

Scope-aided prioritization adopting the additional strategy is depicted in
Algorithm 2. It is analogous to Algorithm 1 with the following modifications:

1. The set of in-scope entities, received as input, is used by getNextTestCase
to decide which test case achieves the highest coverage;

2. If multiple test cases cover the same number of not yet covered in-scope
entities, getNextTestCase tries to solve the tie by returning the test case
that achieves the highest additional coverage when considering all the
entities. If the tie persists, then the tied test cases are sorted in ascending
order according to their IDs.
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Algorithm 2: Scope-aided Prioritization (additional strategy)
Input: T /*the test suite to be prioritized*/

coverageInfo /*list of entities covered by each test case from T*/
inscopeEntities /*list of entities relevant to the current scope*/

Output: T ′ /*a permutation of T*/

1 T ′ ←− [ ] /*T ′ is initialized as an empty list*/
2 while thereAreTestCasesToBePrioritized(T, T’, coverageInfo, inscopeEntities)

do
3 selectedTestCase ←− getNextTestCase(T , coverageInfo, inscopeEntities)

/*selects the test case that yields the greatest coverage of in-scope
entities*/

4 add(selectedTestCase, T ′)
5 remove(selectedTestCase, T)
6 updateCoverageInformation(coverageInfo, inscopeEntities, selectedTestCase)

/*updates the set of in-scope entities and adjusts the coverage
information of the remaining test cases to indicate their coverage of
entities not yet covered*/

end

Modification 2 brings the advantage of making Algorithm 2 revert to the
traditional prioritization approach (Algorithm 1) after all the in-scope entities
are covered.

The second last line of Table 1 counts the number of statements covered by
each test case considering only the ones that belong to the set of in-scope state-
ments. When Algorithm 2 is applied, the first test case selected is TC3 as it is
the one that covers the highest number of in-scope statements. After TC3 is se-
lected, there is only one in-scope statement that needs to be covered (statement
7). TC1 is then selected as it is the only test case that covers that statement.
After TC1 is selected, 100% coverage is achieved for the in-scope statements
and the remaining test cases are ordered as explained before. The test suite pri-
oritized by Algorithm 2 is then provided as: TSp′ = [TC3,TC1,TC2,TC4,TC5].

4.2. Scope-aided Selection
Test case selection deals with the problem of selecting a subset of test cases

that will be used to test the software with respect to a given testing objective.
The majority of the selection techniques are modification-aware, i.e., they seek
to identify test cases that are relevant to some set of recent changes in the
software under test (in such context, it may also be referred to as Regression
Test case Selection).

However, test case selection can also be oriented towards different testing
objectives: it can focus, for example, on selecting tests to exercise the parts
of the software that are too expensive to fix after launch (risk-based test case
selection); or it can focus on ensuring that the software is capable of completing
the core operations it was designed to do (design-based test case selection) [26].
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4.2.1. Definition of scope-aided selection
More formally, the problem of test case selection can be defined as follows:

Definition 8. (Selection Problem):

Given: A program P ; and a test suite T

Problem: Find a subset of T , T ′, with which to test P

The problem of scope-aided selection is analogous to the selection problem
and it aims at selecting a set of test cases to test a given program with respect
to a testing scope. It is defined in analogous way to that of selection as follows:

Definition 9. (Scope-aided Selection Problem):

Given: A program P ; a test suite T ; and a testing scope S

Problem: Find a subset of T , T ′, such that T ′ ∈ S, with which to test P

In this work, because we focus on test case selection for reused software,
which does not necessarily imply regression test selection, we use, for our in-
stantiation example and for our exploratory study, a test selection technique
that is not modification-aware. Yet our approach can also be applied to the
regression test case selection problem.

4.2.2. The scope-aided approach applied to a selection example
To instantiate the scope-aided approach being applied to support a test case

selection example, we refer to the following selection heuristic: use the greedy
additional algorithm to repeatedly select the test case that covers the maximum
number of uncovered entities until all entities are covered. This heuristic is
depicted in Algorithm 3.

Algorithm 3: Selection (greedy additional heuristic)
Input: T /*the test suite from which test cases can be selected*/

entities /*list of entities to be covered*/
coverageInfo /*list of entities covered by each test from T*/

Output: T ′ /*a subset of T, with which to test the target program*/

1 T ′ ←− [ ] /*T ′ is initialized as an empty list*/
2 while thereAreUncoveredEntities(T, entities, coverageInfo) do
3 selectedTestCase ←− getNextTestCase(T , entities, coverageInfo)

/*selects the test case that covers the highest number of uncovered
entities*/

4 add(selectedTestCase, T ′)
5 updateUncoveredEntities(entities, selectedTestCase) /*removes the entities

covered by the selected test case from the list of uncovered
entities*/

end
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In Algorithm 3, the function getNextTestCase (line 3) behaves in the same
way as that of Algorithm 1, that is, when multiple test cases cover the same
number of not yet covered entities, it sorts the tied test cases in ascending order
according to their IDs in order to guarantee a deterministic output.

Without the support of our approach, the first test case selected by Algo-
rithm 3 is TC2 as it covers the highest number of uncovered statements (7 out
of 12). For the next choice, three test cases are tied (TC1, TC4, and TC5)
covering two statements each, and TC1 is selected. After TC1 is selected, three
statements still need to be covered (10, 11, and 12) and TC4 and TC5 are tied
again. After the tie is solved, TC4 is chosen and then TC5. When TC5 is se-
lected, 100% of the statements have been covered and test case selection stops
producing the final test suite TSs = [TC2,TC1,TC4,TC5].

The scope-aided selection makes use of the same algorithm. The only differ-
ence is that the list of entities to be covered, which is provided as input for Algo-
rithm 3, contains the set of in-scope entities identified by our approach, rather
than the full set of entities available in the target program. When supported by
the scope-aided approach, TC3 is the first test case chosen by Algorithm 3 as
it covers the highest number of in-scope statements (we recall that the second
last line of Table 1 counts the number of in-scope statements covered by each
test case). After TC3 is selected, statement 7 is the only statement yet to be
covered. TC1 is the next test case chosen as it covers statement 7. After TC1
is selected, 100% coverage is achieved for the in-scope statements and the test
case selection stops. The test suite produced by Algorithm 3 is then provided
TSs′ = [TC3,TC1].

4.3. Scope-aided Minimization
Test suite minimization is a technique that seeks to reduce as much as pos-

sible the test suite size by identifying and eliminating redundant test cases from
it.

4.3.1. Definition of scope-aided minimization
More formally, test suite minimization [19] can be defined as follows:

Definition 10. (Minimization Problem):

Given: A program P ; a test suite T ; a set of entities E = {e1, ..., en} that
must be exercised to provide the desired test coverage of P ; and subsets of T :
{T1, ..., Tn}, each one associated with one of the ei such that any of the test
cases tj ∈ Ti can be used to test ei

Problem: Find a representative set T ′ of test cases from T that satisfies all
ei ∈ E

The problem of scope-aided minimization is analogous to the minimization
problem, but we aim at covering only the entities that belong to a given testing
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scope. The definition of Scope-aided Minimization, comparable to that of Min-
imization, is provided as follows:

Definition 11. (Scope-aided Minimization Problem):

Given: A program P ; a test suite T ; a set of entities E = {e1, ..., en} that
must be exercised to provide the coverage of P ; a testing scope S; a subset of
in-scope entities Es ∈ E; and subsets of T : {Ts1 , ..., Tsm

}, each one associated
with one of the ei ∈ Es such that any of the test cases tj belonging to Tsi

can be
used to test ei

Problem: Find a representative set T ′ of test cases from T , such that
T ′ ∈ S, that satisfies all ei ∈ Es

The test suite minimization problem is equivalent to the well-known set cov-
ering problem which is NP-complete [24]. For this reason, the application of
heuristics is encouraged. Chen and Lau [6] proposed two heuristics, namely
GE and GRE, for the test suite minimization problem inspired on a previous
heuristic from Harrold et al. [19]. In their experiments comparing these three
heuristics, they observed that none of them was always the best. For our in-
stantiation example and for our exploratory study we arbitrarily adopted the
GE heuristic.

4.3.2. The scope-aided approach applied to a minimization example
As above stated, for this instantiation we adopted the GE heuristic from

Chen and Lau [6]. The GE heuristic, depicted in Algorithm 4, is built upon
a greedy algorithm based on the notions of essential test cases. A test case is
said to be essential if it is the only test case that can cover a given entity ei.
Algorithm 4 first selects all essential test cases (first while loop starting at line
2); then, it repeatedly selects the test case that covers the maximum number of
uncovered entities until all entities are covered (second while loop, line 7). In the
original implementation, if there is a tie between several test cases, an arbitrary
choice is made. Similar to previous examples, in this work our implementation
of getNextTestCase (line 8) sorts the tied test cases according to their IDs to
guarantee a deterministic output.

When applied to the motivating example, Algorithm 4 receives the list of
entities that need to be covered (1, 2, . . . , 11, 12) and identifies the essential
test cases. The first essential test case is TC2 as it is the only one that covers
statement 3. TC2 is selected and the list of uncovered entities is updated (2, 7,
10, 11, 12). The next essential test case selected is TC1 as it is the only one that
covers statement 7. After TC1 is selected, the list of yet to be covered entities
is (10, 11, and 12) because it covered two previously uncovered statements (2
and 7). This process continues with the further selection of TC4 (as being an
essential test case to cover statement 11) and then TC5 (an essential test case
to cover statement 12). After TC5 is selected, all the entities have been covered
and Algorithm 4 returns the minimized test suite TSm = [TC2,TC1,TC4,TC5].
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Algorithm 4: Minimization (adopting the GE heuristic proposed in [6])
Input: T /*the test suite from which test cases can be selected*/

entities /*list of entities to be covered*/
coverageInfo /*list of entities covered by each test from T*/

Output: T ′ /*a subset of T, with which to test the target program*/

1 T ′ ←− [ ] /*T ′ is initialized as an empty list*/
2 while thereAreEssentialTestCases(T, entities, coverageInfo) do

/*essential test cases are selected first*/
3 add(essentialTestCase, T ′)
4 updateUncoveredEntities(entities, essentialTestCase) /*removes the

entities covered by the essential test case from the list of uncovered
entities*/

end

5 if isEmpty(entities) then
6 return T ′

else
7 while thereAreUncoveredEntities(T, entities, coverageInfo) do
8 selectedTestCase ←− getNextTestCase(T , entities, coverageInfo)

/*selects the test case that covers the highest number of uncovered
entities*/

9 add(selectedTestCase, T ′)
10 updateUncoveredEntities(entities, selectedTestCase) /*removes the

entities covered by the selected test case from the list of
uncovered entities*/

end
end

11 return T ′

Notice that, for this small example, all the test cases happened to be selected
as being essential, but this is not always the case.

When supported by the scope-aided approach, Algorithm 4 receives the list
of the in-scope entities only. This is the only difference with respect to the
traditional approach for minimizing test suites using the GE heuristic. The first
test case selected by the scope-aided minimization is TC1 because it is an es-
sential test case to cover statement 7. After TC1 is selected, there are no more
essential test cases and the algorithm continues using the greedy additional ap-
proach. At this point, the entities that still need to be covered are (8 and 9)
and TC2 and TC3 are tied as both cover these two entities. The tie is solved
with TC2 being selected and the minimization stops as all the in-scope enti-
ties have been covered. The scope-aided minimized test suite is then provided
TSm′ = [TC1,TC2].
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5. Exploratory Study Settings

We conducted an exploratory study to assess the impact of our approach to
test case prioritization, selection, and test suite minimization. In this section
we discuss the settings of the study. More precisely, we focus on three research
questions:

RQ1: Scope-aided usefulness for test case prioritization: does scope-aided ap-
proach improve test case prioritization? In particular, we will compare
scope-aided prioritization with the original one (not scope-aided) with re-
spect to fault detection rate when considering in-scope faults (RQ1.1) and
all faults (RQ1.2);

RQ2: Scope-aided usefulness for test case selection: does scope-aided approach
improve test case selection? In particular, we will compare scope-aided
selection with the original one (not scope-aided) concerning the size of
the selected test suite (RQ2.1) and the impact of the selection on the test
suite’s fault detection ability (RQ2.2);

RQ3: Scope-aided usefulness for test suite minimization: does scope-aided ap-
proach improve test suite minimization? In particular, we will compare
scope-aided minimization with the original one (not scope-aided) with re-
spect to the effectiveness of the minimization (RQ3.1) and the impact of
the minimization on the test suite’s fault detection ability (RQ3.2).

5.1. Study Subjects
In order to carry out our exploratory study and to investigate our research

questions in a realistic setting, we looked for subjects in the Software-artifact
Infrastructure Repository (SIR) [8]. SIR contains a set of real, non-trivial pro-
grams that have been extensively used in previous research. For selecting our
subjects, some prerequisites had to be considered: first, the subjects should be
written in the C language; second, they should contain faults (either real faults
or seeded ones) and a test suite associated with them.

For this study we selected a total of 17 variant versions from three C sub-
jects: grep, gzip, and sed. grep is a command-line utility that searches for lines
matching a given regular expression in the provided file(s); gzip is a software
application used for file compression and decompression; and sed is a stream
editor that performs basic text transformations on an input stream. grep and
gzip are available from SIR with 6 sequential versions (1 baseline version and 5
variant versions with seeded faults) whereas sed contains 8 sequential versions
(1 baseline version and 7 variant versions with seeded faults).

Other materials were used during this study: KLEE was used in one of the
steps of our approach to determine the set of in-scope entities; gcov2 and lcov3

2https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
3http://ltp.sourceforge.net/coverage/lcov.php
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utilities were used for collecting accurate coverage metrics. MILU [22] was used
to generate mutated versions of our study subjects. Finally, our own code was
used to automate the majority of the steps followed during this study.

Table 2 displays additional details about our study subjects. Column “LoC”
shows the lines of code4 of each variant version. The 4th and 5th columns
display the number of test cases available in the SIR test suite and the number
of mutant versions created for each study subject, respectively. Please ignore
for the moment the last three columns, whose meaning is explained later on.

Table 2: Details about the study subjects considered in our investigations

Sub. Ver. LoC Test
Suite

Mutant
versions

Mutants
compiled

Mutants
killed by
SIR suite

Hard
to kill
mutants

grep v1 9463 199 7981 2350 325 288
grep v2 9987 199 9471 2373 311 283
grep v3 10124 199 9690 2425 305 272
grep v4 10143 199 9821 2602 354 260
grep v5 10072 199 9797 2603 374 271
gzip v1 4594 195 5049 3965 580 354
gzip v2 5083 195 6088 4742 499 333
gzip v3 5095 195 4755 4261 547 249
gzip v4 5233 195 4641 4119 593 362
gzip v5 5745 195 5843 5072 502 335
sed v1 5486 360 6548 1991 815 673
sed v2 9867 360 3946 3055 919 793
sed v3 7146 360 4125 1176 864 782
sed v4 7086 363 7697 1838 900 815
sed v5 13398 370 1967 1483 1000 914
sed v6 13413 370 1889 1398 1000 925
sed v7 14456 370 2151 1133 1000 919

Total: 146391 4523 101459 46586 10888 8828

For carrying out our study, we needed a way of identifying different testing
scopes for the investigated subjects in order to evaluate the effectiveness of our
scope-aided approach. The usage scenarios depicted in the next three sections
represent the testing scopes for our study.

5.1.1. Testing scopes for grep
Because of its inherent characteristics, grep made this task of identifying the

testing scope relatively easy as it already considers three major usage scenarios:
1. grep -G is the default behavior and it interprets the provided pattern as

a basic regular expression.

4Collected using the CLOC utility (http://cloc.sourceforge.net/).
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2. grep -E switches grep into a special mode in which expressions are eval-
uated as extended regular expressions as opposed to its normal pattern
matching. The essential difference between basic and extended regular
expression is that some characters (e.g., ‘?’, ‘+’, ‘|’, etc) have a special
meaning when used in the extended mode whereas they are considered
ordinary characters when used in the basic expression.

3. grep -F makes grep interpret the pattern provided as a list of fixed strings,
separated by new lines, and performs an OR search without doing any
special pattern matching.

Indeed, these scenarios are so commonly used that there are even shortcuts to
them: egrep is equivalent to grep -E while fgrep corresponds to grep -F.

5.1.2. Testing scopes for gzip
For gzip, we defined the three following scenarios in which our subject could

be used:

1. gzip is used, within a bigger system, for compressing files only;
2. gzip is used by an online service only for decompressing the files submitted

by the service’s users; and
3. gzip is used for compressing not only files but also whole directories re-

cursively.

5.1.3. Testing scopes for sed
For sed, two usage scenarios were defined:

1. sed is used to perform basic text transformations in the contents provided
in the standard input (i.e., sed scripts and input text are both provided
in the standard input);

2. sed programs (or sed scripts) are used to parse the text from the input
files provided.

5.2. Tasks and Procedures
In this study we considered three types of entities: function, statement, and

branch, which correspondingly identify three coverage criteria. Then, for each
version of the subjects investigated and for each type of entity we performed
the following tasks:

1. Applied traditional prioritization, selection, and minimization techniques
on the object’s test suite

2. Applied our scope-aided prioritization, scope-aided selection, and scope-
aided minimization on top of the traditional techniques

3. Evaluated, for each possible combination of testing scope and adequacy
criteria, the performance of the scope-aided approach when compared to
the original techniques and considering mutant faults.
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As stated in step 3, in this study we considered mutant faults. For generating
mutated versions of our study subjects we used MILU [22], a C mutation testing
tool designed for both first order and higher order mutation testing that supports
many mutant operators (e.g., statement deletion, constraints replacement, etc).
For our study, we allowed MILU to generate first order mutants of our subjects
using any of the available mutant operators.

In sections 6, 7, and 8, we report our results with respect to the set of all
faults and in-scope faults. The identification of these sets is detailed next.

After the mutants are generated, we run the subject’s test suite against the
mutated versions to identify which mutants would be killed by the baseline test
suite. These compose the set of all faults (mutants) considered for the next steps
of our study. The number of all faults is displayed in the column “Mutants killed
by SIR suite” in Table 2.

The ideal way to decide whether a fault is relevant or not in a given scope
would be to refer to failure reports from the field where the program is used
under the scope constraints. We did not have such data for our subjects, so in the
aim of having unbiased data, we created, for each variant version investigated
and for each specific scope, one random test suite containing 1K test cases: for
each scope, the set of in-scope faults is composed by those mutants that are
killed by the random test suite targeting that specific scope.

For generating the random test cases we developed our own scripts following
a strategy very similar to that of Balcer et al. [2] for test scripts generation
based on the test specification language (TSL).

We start by identifying all the possible input parameters and environment
flags that can influence the behavior of the study subject (e.g., for gzip, the
-d and --decompress flags can be used for decompressing files; the -S and
--sufix flags can be used to define the suffix to be used for compressed files;
and so on). We then investigated which input data, if any, was required by
the subject (e.g., gzip can receive, as input data, a file to be either compressed
or decompressed) and created the necessary support files (for gzip we created
directories containing multiple files to be compressed; multiple compressed files
to be tested or decompressed; etc).

Our script creates random test cases by choosing arbitrary input variables
and input data to be used by the subject. To make sure that the subject’s
behavior is explored to its maximum, we allow our script to generate test cases
that exercise unexpected behavior and error inputs (such as trying to decompress
a file that is not compressed; or trying to compress a non-existent file, for
example). A random test case is accepted in the random test suite for a given
scope if the input domain constraints of the scope hold (e.g., for scope 2 of gzip,
a valid test case should always contain the -d, or --decompress, flag).

5.3. Metrics
In this section we introduce the metrics used in our exploratory study to

assess the usefulness of our approach. The APFD metric is used to assess
scope-aided prioritization whereas test suite size and impact on fault detection
capability are used to evaluate scope-aided selection and minimization.
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5.3.1. Average Percentage of Faults Detected (APFD)
In order to address the research questions concerning prioritization, we need

a way to assess and compare scope-aided prioritization with other prioritization
techniques. In this work, we adopt the APFD metric. APFD was first intro-
duced in [43] and in its first definition it assumed all the test costs and faults
severities to be uniform. Later, a variant version of this metric incorporating
varying test costs and different fault severities, the APFDC , was introduced [10].

Because in our approach we consider that faults have different relevance
within a given testing scope, our studies are naturally suited to the cost-cognizant
version of the metric.

APFDC is calculated according to Equation 1. In this equation, T is a test
suite containing n test cases with costs t1, t2, ..., tn; F is a set of m faults
revealed by T with severities f1, f2, ..., fm; and TFi is the first test case of an
ordering T ′ of T that reveals fault i.

APFDc =
∑m

i=1(fi × (
∑n

j=T F i tj − 1
2 tT F i))∑n

i=1 ti ×
∑m

i=1 fi
(1)

In this work, we consider different values of severity according to fault rele-
vance, since we focus in assessing the contribution of scope-aided prioritization
to increase the speed at which in-scope faults are revealed. On the other hand,
for simplicity, we consider all the tests to have the same cost, since we are not
focusing on the cost of test cases.

5.3.2. Test Suite Reduction
The test suite reduction ratio achieved by test case selection or test suite

minimization is measured according to Equation 2.

Reduction =
(

1− # test cases in the reduced test suite

# test cases in the original test suite

)
× 100% (2)

We apply this formula both to scope-aided selection and minimization ap-
proaches, and to the original (not scope-aided) ones.

5.3.3. Impact on Fault Detection Capability
The impact on fault detection capability of a given test suite is calculated

according to Equation 3.

Impact =
(

1− # faults detected by the reduced test suite

# faults detected by the original test suite

)
× 100% (3)

As above, we apply this formula both to scope-aided selection and minimiza-
tion approaches, and to the original (not scope-aided) ones.
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5.4. Execution
Many of the mutants generated by Milu [22] would not compile and this

represented a first filtering to reduce the amount of computation required to
define the sets of all faults and in-scope faults (the number of mutants that
compiled for each study subject is displayed in the 6th column of Table 2).
However, for some subjects, the number of mutants that compiled was still too
much. For gzip, for example, the average number of compiled mutants for each
version was 4431. We then decided that, for each variant version investigated,
we would run the baseline test suite (the one from SIR) on a set of 1K randomly
selected mutants.

When evaluating the test suites, we noticed that one of the test cases avail-
able for gzip requires the compression of a 2GB file and, even after our decision
of selecting “only” 1K mutants per version, we would still need to run that test
case 5k times. For this reason, we decide to remove this test cases and a few
others that would add a lot of computation overhead in our already expensive
study, without contributing with significant added value. The final test suite
for gzip considered in our study consisted of 195 test cases.

For running the random test suites to identify the set of in-scope faults,
we are interested only in those mutants that could be killed by the baseline
suite (column “Mutants killed by SIR suite” of Table 2). However, after a
preliminary analysis of this set, we noticed that for some subjects, in particular
for gzip, many mutants could be killed by the vast majority of the test cases,
and a considerably amount of them, even by any test case. Because in our study
we want to evaluate the ability of the scope-aided approach to identify the most
relevant faults to a given testing scope, we followed the suggestions given in [1]
and decided to eliminate the easy-to-kill mutants before proceeding to the next
steps. We considered only the mutants that could not be detected by more than
50% of the test cases (these are displayed in the last column of Table 2). After
this filtering, we proceeded with the execution of the random test suites.

As the reader may have noticed already, these steps required a lot of compu-
tational effort. About 4.5 million tests were run over the mutated versions only
for the identification of the set of all faults (199 tests from grep × 5000 mutants
+ 195 tests from gzip × 5000 mutants + ∼ 365 tests from sed × 7000 mutants).
After this step, we still needed to run the random test suites (3k tests for grep
and gzip, and 2k tests for sed) over the set of hard-to-kill mutants. Obviously,
however, these steps are not required for the adoption of our approach as they
were applied only for supporting our empirical studies.

6. Prioritization Study (RQ1)

As previously stated, prioritization aims at reordering a test suite so that
potential faults are revealed faster. A natural question that arises, thus, is
whether scope-aided prioritization helps traditional approaches to provide faster
detection of faults in reuse testing. In this section we investigate the usefulness
of scope-aided approach to support the test case prioritization task with respect
to the following research questions:
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RQ1.1: In-scope faults detection rate: how does scope-aided prioritization com-
pare with original (not scope-aided) prioritization with respect to fault
detection rate when considering in-scope faults?

RQ1.2: All faults detection rate: how does scope-aided prioritization compare
with original (not scope-aided) prioritization with respect to fault detec-
tion rate when considering all faults?

We answer these questions by comparing, for each prioritization approach
considered in this study, the original approach with the scope-aided one in terms
of the weighted average of the percentage of faults detected, or APFDC , over
the life of a given test suite.

With the purpose of having a broader view of the extent to which the scope-
aided approach could impact the traditional prioritization techniques, we wanted
to apply it to different approaches to prioritization: we focused on coverage-,
similarity-, and search-based strategies, which represent most of the used ap-
proaches. To select the specific techniques among those found in the literature,
we used three criteria: the technique should be well documented so to be prop-
erly reproduced; it should be proven to be effective; and, given the size of the
studies, it should be computationally affordable. In the end, we selected two
coverage-based prioritization approaches (the well-known total and additional
greedy heuristics); one similarity-based approach (proposed by Jiang et al. [23]);
and one search-based technique (one instantiation of the Hill Climbing algorithm
applied to test prioritization as proposed in the work from Li et al. [29]).

6.1. RQ1.1: In-scope faults detection rate
To answer RQ1.1, we assess scope-aided prioritization in comparison with

the traditional techniques when considering the in-scope faults. For calculating
the APFDC values, we assign 0 as the severity of the out-of-scope faults to
consider only the in-scope ones, getting severity equal to 1 (APFDC(1,0)).

All the results are reported in the Figures 1, 2 and 3, for the three coverage
criteria considered.

Considering the overall average for each subject, the scope-aided approach
improved the APFDC for all the subjects when considering the coverage-based
approaches, with the biggest improvement being an increase of 40.35% in the
average APFDC for gzip using the total approach (from 49.05 to 68.84). The
smallest improvement happened for gzip using the additional approach, but
in that case the scope-aided approach achieved only a negligible improvement
of less than 1% in the overall average APFDC . Concerning the similarity-
based approach, scope-aided improved the APFDC for grep and gzip, and it
was almost tied with the traditional technique for sed (overall average APFDC

of 93.46 for the traditional technique; and 93.29 for the scope-aided one). The
biggest increase in the overall average APFDC was a 10.12% improvement for
gzip. With respect to the search-based approach, scope-aided was defeated
by the traditional technique when considering gzip; it was basically tied when
considering sed (overall average APFDC of 95.83 for the traditional technique;
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and 95.82 for the scope-aided one); and it slightly improved (1.33%) the overall
average APFDC for grep.

Figure 1 displays the impact of the adoption of scope-aided approach with
respect to the Function coverage criterion. Each subfigure displays the consol-
idated results related to a given approach (either total, additional, similarity,
or search-based) applied to one of the subjects investigated in our study (grep,
gzip, or sed). The x-axes represent the versions of each subject (recall that we
analyzed all the versions of our study subjects available from SIR, i.e., 5 versions
for grep and gzip, and 7 versions for sed), while the y-axes display the impact on
the APFDC metric. The height of the vertical bars represents the contribution
achieved by the adoption of the scope-aided approach for each testing scope.
In particular, for similarity and search-based the contribution is obtained as an
average of 50 runs, to account for randomness in these techniques.

For inter-graph comparison, observe that (besides the bar height) the values
of the y-axes should also be considered as the scale of that axis changes across
the graphs. Let us consider, for example, Figures 1b and 1d: even though
the biggest bars in each graph have more or less the same size, they represent
very different values of the contribution to the APFDC (approximately 90 in
Figure 1b, and approximately 2 in Figure 1d).

For grep and gzip the leftmost bar (dark grey) is related to scope 1; the
central bar (grey) is associated with scope 2; and the rightmost bar (light grey)
represents the scope 3. For sed, because we investigated two testing scopes,
we have only two bars for each version: scope 1, represented by the leftmost
bar (dark grey); and scope 2, associated with the rightmost bar (light grey).
Bars with negative values mean that the adoption of scope-aided approached
achieved an APFDC lower than the one achieved by the traditional prioritization
approach (not scope-aided). If a bar is not visible it is because, for that case,
our approach was tied with the traditional technique.

Figures 2 and 3 are analogous to Figure 1 and they display the consolidated
data with respect to the Statement and Branch coverage criteria, respectively.

As regards the function coverage criterion (Figure 1), the scope-aided ap-
proach improved the original APFDC in 91 cases; it was tied with the traditional
technique in 12 cases; and it was defeated 73 times. The highest improvement
was achieved for gzip v1 when adopting the total prioritization approach for the
scope 2 (Figure 1b). The scope-aided approach obtained an APFDC of 98.57
against 8.78 achieved by the traditional technique. The greatest loss, on the
other hand, occurred for gzip v4 when applying the search-based prioritization
for the scope 1 (Figure 1k); the traditional approach achieved an APFDC of
80.13 and the scope-aided one achieved 73.86. Overall, the average APFDC

achieved by scope-aided prioritization (88.84) was higher than the one achieved
by the original techniques (86.36).

For the statement coverage criterion (Figure 2), once again the scope-aided
approach performed better than the traditional one in the majority of the cases
(101 times against 75); it also achieved a better average APFDC (88.55) than
the traditional approaches (86.82). This time, both the best and the worst
results were associated with the same combination of subject and prioritization
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Figure 1: Contribution to the APFDC when considering the set of in-scope faults and the
Function coverage criterion
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Figure 2: Contribution to the APFDC when considering the set of in-scope faults and the
Statement coverage criterion
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strategy. The greatest loss was noticed for gzip v3 with the total algorithm for
scope 1 (46.31 against 76.80), whereas the highest improvement was seen for the
version 1 and scope 2 of gzip (Figure 2b). The scope-aided test suite yielded an
APFDC of 98.71 against 9.21 achieved by the traditional technique.

The scope-aided approaches also outperformed the traditional ones when
looking at the overall results from the perspective of the branch coverage crite-
rion (Figure 3). The results were similar to the ones obtained for the statement
coverage criterion and, again, the best and worst results were associated with
the total algorithm being applied for prioritizing the test suites from gzip. The
highest improvement in the APFDC was observed for the version 1 and testing
scope 2 (improved from 9.86 to 98.63); whereas the worst result was seen for the
version 1 and scope 2 (26.09 against 75.13). All over, the scope-aided approach
improved the original APFDC 94 times; it was tied with the traditional tech-
nique in 1 single case; and it was defeated 81 times. Besides that, it achieved
a higher average APFDC value (88.71 against 86.72 achieved by the traditional
techniques).

One consistent result across all the coverage criteria was the fact that the
biggest discrepancy between results was always related to the total approach
being applied for the gzip subject. One possible explanation for that is the fact
that the test suite for gzip contains many test cases that are very similar to
each other. Many test cases related to the compression task, for example, are
repeated different times for each different compression level supported (from
1 to 9), which in the end may have a very small impact in the set of entities
exercised by those test cases (or may even not impact it at all). Recall that
the total strategy will prioritize the test cases according to the total number of
entities covered by them and test cases that are very similar to each other will
probably cover the same amount of entities. Besides that, there is a big chance
that very similar test cases will reveal the same set of faults. When the total
approach puts these “groups” of test cases all together, two main things could
happen that may have a big impact in the APFDC : either all test cases in a
given group reveal many faults (in such case, the first test case in the group will
contribute immediately to the increase of the APFDC) or none of the cases in
the group reveals any fault (this would freeze the contribution to the APFDC

metric until all test case in that group are evaluated).
We manually evaluated the set of in-scope faults assigned for each scope and

for all the versions of gzip and confirmed that specially for the scope 2, we had
a situation in which a few test cases would reveal a big set of faults whereas the
vast majority of the test cases would either reveal just a small set of faults or
not reveal any fault at all. In such scenario, a good (or bad) choice of the first
test case can have a huge impact in the APFDC achieved by the prioritized test
suite.

Because test case prioritization seeks to order the test cases in a way to
maximize the benefits even if the testing needs to be prematurely halted at some
point, we also investigated the results achieved by the scope-aided prioritization
when considering different fractions of a given test suite (75%, 50%, and 25%).
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Figure 3: Contribution to the APFDC when considering the set of in-scope faults and the
Branch coverage criterion
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Table 3: Average APFDC(1,0) (and coefficient of variation) when considering different frac-
tions of the prioritized suites

Coverage
criterion

Fraction: 75% Fraction: 50% Fraction: 25%

original scope-
aided original scope-

aided original scope-
aided

Function 88.0 (0.13) 88.6 (0.11) 87.6 (0.13) 88.2 (0.10) 85.0 (0.13) 85.1 (0.10)
Statement 88.9 (0.11) 88.8 (0.12) 86.2 (0.13) 87.9 (0.10) 84.4 (0.13) 86.2 (0.09)
Branch 89.0 (0.10) 88.3 (0.13) 87.9 (0.10) 87.3 (0.12) 85.1 (0.10) 86.4 (0.09)

Average: 88.6 88.6 87.2 87.8 84.8 85.9

The results obtained are displayed in Table 3. The values provided are
grouped by coverage criterion and they represent the average APFDC achieved
for the different fractions of the prioritized test suites. The values enclosed
in parentheses represent the coefficient of variation5. We highlight in bold the
cases in which scope-aided prioritization performed better than the original (not
scope-aided) prioritization.

Overall, scope-aided prioritization performed better than the original one in
the majority of the cases, except when considering the fractions 50% and 75%
for branch and the fraction 75% for statement where not scope-aided performed
better.

Even if our approach outperformed the traditional ones in the majority of
the cases, in Table 3 we can only see small improvements in the average APFDC .
It is important to observe though that for our experiments we adopted state-of-
the-art prioritization approaches that already achieved very high APFDC values
when applied in the traditional way. Thus, the scope-aided boost could improve
on top of approaches that were already good.

With the purpose of better understanding the contribution provided by the
scope-aided approach for the prioritization task, we also evaluated the results of
our study from the perspective of the different prioritization strategies investi-
gated. The results are displayed in Table 4 and the values provided are grouped
by the combination of prioritization approach and coverage criterion.

When considering the approaches total, additional, and similarity, scope-
aided prioritization performed better than the original ones for all the coverage
criteria considered. Concerning the search-based approach, the results from
scope-aided prioritization were better for function, and worse for statement and
branch.

5The coefficient of variation (CV), also known as relative standard deviation (RSD), is the
ratio of the standard deviation σ to the mean µ. Different from the standard deviation that
must always be understood in the context of the mean, the coefficient of variation allows the
comparison between data sets with different means and even different units. The lower the
value of CV, the lower the variance of that data set. Looking at Table 3, for example, we can
tell that the combinations statement–25% and branch–25%, both with a CV of 0.09, had the
lower variance across all the possible combinations of coverage criteria and test suite fractions.
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Table 4: Average APFDC(1,0) (and coefficient of variation) when considering different prior-
itization approaches and different coverage criteria

Approach
Function Statement Branch

original scope-
aided original scope-

aided original scope-
aided

Total 77.0 (0.35) 87.6 (0.14) 75.6 (0.34) 81.0 (0.24) 74.2 (0.34) 80.6 (0.24)
Additional 92.1 (0.07) 92.3 (0.07) 94.1 (0.06) 94.9 (0.05) 94.7 (0.05) 95.5 (0.04)
Similarity 83.6 (0.18) 87.3 (0.10) 86.1 (0.13) 88.1 (0.08) 86.4 (0.12) 88.5 (0.06)
Search-based 89.8 (0.08) 90.2 (0.08) 91.6 (0.06) 90.2 (0.08) 91.6 (0.05) 90.2 (0.08)

Average: 85.7 89.4 86.8 88.5 86.7 88.7

6.2. RQ1.2: All faults detection rate
To answer RQ1.2, we assess scope-aided prioritization in comparison with

traditional techniques when considering all faults. We calculated APFDC as-
signing the same severity for all the faults. Because we also consider all the test
cases to have the same costs, the APFDC formula reduces to the traditional
APFD in which costs are not considered.

Overall, the results achieved by the scope-aided approach when considering
all faults were slightly worse than the ones achieved when considering only the
in-scope faults, but still very competitive with the traditional techniques. This
was a positive result to us: we were somewhat prepared to see a greater lose in
the effectiveness when considering all the faults given that our approach targets
the in-scope ones.

For the sake of space, we do not replicate the barplots that would look similar
to the ones provided for RQ1.1. Instead, we highlight below the main results.

When considering the average among all the subjects, the average APFDC

achieved by scope-aided (87.25) was better than the one achieved by the tra-
ditional approaches (86.54), but to a smaller extent when compared with the
results achieved in the study considering in-scope faults. The biggest improve-
ment observed was an increase of 16.5% in the average APFDC for gzip using the
total approach (from 57.76 to 67.29), whereas the biggest defeat was a reduction
of 4.74% in the average APFDC for gzip using the search-based approach.

Table 5 displays the average APFDC achieved by the scope-aided and the
traditional approaches grouped by prioritization strategy and coverage crite-
rion. Scope-aided prioritization performed always better than the corresponding
original approach when considering the total strategy; and it performed always
worse when considering the additional strategy; for similarity and search-based
strategies the results varied. Even though the traditional approaches defeated
the scope-aided ones in a bigger number of cases, scope-aided still achieved
better results when considering the overall average.
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Table 5: Average APFDC(1,1) (and coefficient of variation) when considering different prior-
itization approaches and different coverage criteria

Approach
Function Statement Branch

original scope-
aided original scope-

aided original scope-
aided

Total 74.4 (0.24) 78.4 (0.23) 73.8 (0.23) 76.0 (0.26) 70.6 (0.31) 74.7 (0.30)
Additional 92.9 (0.07) 92.6 (0.07) 95.5 (0.05) 95.4 (0.04) 96.2 (0.04) 95.9 (0.03)
Similarity 84.3 (0.11) 86.5 (0.09) 85.9 (0.08) 85.7 (0.10) 87.0 (0.06) 86.5 (0.10)
Search-based 91.5 (0.04) 91.6 (0.04) 93.1 (0.04) 91.6 (0.04) 92.8 (0.03) 91.5 (0.03)

Average: 85.8 87.3 87.1 87.2 86.6 87.1

7. Selection Study (RQ2)

In this section we investigate the usefulness of scope-aided approach to sup-
port the test case selection task with respect to the following research questions:

RQ2.1: Test suite reduction: how does scope-aided selection compare with the
original one (not scope-aided) in terms of test suite reduction achieved?

RQ2.2: Impact on fault detection capability: what is the impact of scope-aided
selection with respect to the test suite’s fault detection capability when
compared to the original (not scope-aided) selection and considering both
all faults and in-scope faults?

7.1. RQ2.1: Test suite reduction
To answer RQ2.1, we assess scope-aided selection in comparison with the

traditional technique in terms of the test suite reduction rate achieved by each
approach. The reduction rate is calculated according to Equation 2 (detailed in
Section 5.3.2).

Table 6 displays the average reduction achieved and the results are grouped
by the different versions of each subject evaluated in our study. Scope-aided
outperformed the traditional approach in all the cases considered with an av-
erage extra reduction of 10.69% for grep, 5.60% for gzip, and 3.94% for sed.

The smallest reduction achieved by the traditional selection was 65.33% and
the biggest one was 98.61%; for scope-aided selection, the smallest reduction was
74.37% and the biggest one was 99.72%. In both cases, the smallest reduction
was associated with grep while targeting the branch coverage criterion, and
the biggest reduction was related to sed while targeting the function coverage
criterion.

When looking from the perspective of the different coverage criteria consid-
ered, the smallest rates of reduction achieved were 93.85% for the traditional
approach and 95.98% for the scope-aided one (for function); 72.86% for the
traditional approach and 78.89% for the scope-aided one (for statement); and
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Table 6: Comparison between the average test suite reduction (and coefficient of variation)
achieved by the scope-aided selection and the traditional approach

Subject
versions

grep gzip sed

original scope-
aided original scope-

aided original scope-
aided

V1 77.7% (0.17) 87.2% (0.11) 91.6% (0.02) 97.3% (0.01) 93.6% (0.04) 97.3% (0.02)
V2 77.6% (0.17) 88.7% (0.08) 91.6% (0.02) 97.0% (0.02) 93.9% (0.04) 98.1% (0.02)
V3 77.9% (0.17) 88.7% (0.10) 91.8% (0.02) 97.5% (0.01) 93.5% (0.04) 97.2% (0.02)
V4 78.1% (0.16) 89.0% (0.09) 91.6% (0.02) 97.3% (0.02) 93.2% (0.04) 97.2% (0.02)
V5 78.1% (0.16) 89.2% (0.09) 91.8% (0.03) 97.3% (0.02) 93.3% (0.04) 97.3% (0.02)
V6 - - - - 93.5% (0.04) 96.6% (0.03)
V7 - - - - 92.9% (0.04) 97.7% (0.01)

Average: 77.9% 88.6% 91.7% 97.3% 93.4% 97.4%

65.33% for the traditional approach and 74.37% for the scope-aided one (for
branch).

The scope-aided approach was expected to perform better in this metric
because, by construction, the test case selection is targeted to a subset of the
(testing) input domain. In fact, RQ2.1 was a proof of concept that demonstrated
preliminary positive results regarding the adoption of scope-aided approach for
test case selection. We now proceed to investigate what is the impact on the
fault detection capability caused by the test suite reduction.

7.2. RQ2.2: Impact on fault detection capability
We answer RQ2.2 by assessing the scope-aided selection in comparison with

the traditional technique in terms of the impact on fault detection capability
generated by each approach. Such impact is calculated according to Equation 3
(detailed in Section 5.3.3). For this research question we considered both the
set of all faults and the in-scope faults.

Figure 4 displays the boxplots for each approach grouped by the different
coverage criteria considered. The y-axis displays the impact (in %) on fault
detection capability. For this metric, the lower the impact, the better.

Overall, the traditional approach defeated the scope-aided one in all the
cases. In average, the scope-aided generated an extra impact of 6.77%, 12.16%,
and 13.84% for function, statement, and branch, respectively. Even though the
differences in the average were not very big, the data was more spread for the
scope-aided approach.

These results were in accordance with our initial intuition as we did not ex-
pect the scope-aided approach to generate a lower impact on the fault detection
capability than the traditional one when considering all the faults.

When considering the set of in-scope faults (Figure 5), the scope-aided ap-
proach improved and it defeated the traditional one for the statement and
branch coverage criteria. In average, scope-aided generated an extra impact
of 3.20% for function, but it created 1.70% and 1.25% less impact for statement
and branch, respectively.
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Figure 4: Impact on fault detection capability for the different coverage criteria when consid-
ering the set of all faults
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Figure 5: Impact on fault detection capability for the different coverage criteria when consid-
ering the set of in-scope faults

Looking from the perspective of the different subjects investigated, scope-
aided approach achieved better results than the traditional one for grep and gzip
with an average impact of 32.85% (against 37.30% generated by the traditional)
and 35.68% (against 43.05% generated by the traditional), respectively. For sed,
scope-aided generated an average impact of 39.70%, whereas the traditional
approach generated an impact of 26.76%.
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8. Minimization Study (RQ3)

In this section we finally investigate the usefulness of scope-aided approach
to support the test case minimization task. The research questions that we
address are the same as the set of RQ2.1 and RQ2.2 already considered for
selection, except that here we refer to the minimization task:

RQ3.1: Test suite reduction: how does scope-aided minimization compare with
the original one (not scope-aided) in terms of test suite reduction achieved?

RQ3.2: Impact on fault detection capability: what is the impact of scope-aided
minimization with respect to the test suite’s fault detection capability
when compared to the original (not scope-aided) minimization and con-
sidering both all faults and in-scope faults?

8.1. RQ3.1: Test suite reduction
We answer RQ3.1 in an analogous way to that applied for RQ2.1 (Section 7.1)

and we assess scope-aided minimization in comparison with the traditional tech-
nique in terms of the test suite reduction rate achieved by each approach.

Table 7 displays the average reduction achieved and the results are grouped
by the different versions of each subject evaluated in our study. Scope-aided
outperformed the traditional approach in all the cases considered with an av-
erage extra reduction of 10.53% for grep, 5.57% for gzip, and 3.69% for sed.

Table 7: Comparison between the average test suite reduction (and coefficient of variation)
achieved by the scope-aided minimization and the traditional approach

Subject
versions

grep gzip sed

original scope-
aided original scope-

aided original scope-
aided

V1 77.7% (0.17) 87.4% (0.11) 91.6% (0.02) 97.3% (0.01) 94.1% (0.04) 97.5% (0.02)
V2 77.7% (0.17) 88.9% (0.09) 91.8% (0.02) 97.1% (0.02) 93.9% (0.04) 98.1% (0.02)
V3 78.4% (0.16) 88.9% (0.10) 91.8% (0.02) 97.5% (0.01) 93.8% (0.03) 97.3% (0.02)
V4 78.6% (0.16) 89.2% (0.09) 91.8% (0.02) 97.4% (0.01) 93.4% (0.04) 97.3% (0.02)
V5 78.6% (0.16) 89.3% (0.09) 91.8% (0.03) 97.3% (0.02) 93.8% (0.04) 97.2% (0.02)
V6 - - - - 93.8% (0.04) 96.6% (0.03)
V7 - - - - 93.3% (0.04) 97.8% (0.01)

Average: 78.2% 88.7% 91.8% 97.3% 93.7% 97.4%

The smallest reduction achieved by the traditional minimization was 65.83%
and the biggest one was 98.61%; for scope-aided minimization, the smallest re-
duction was 74.37% and the biggest one was 99.72%. In both cases, the smallest
reduction was associated with grep while targeting the branch coverage crite-
rion, and the biggest reduction was related to sed while targeting the function
coverage criterion.

When looking from the perspective of the different coverage criteria consid-
ered, the smallest rates of reduction achieved were 94.36% for the traditional
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approach and 96.48% for the scope-aided one (for function); 72.86% for the
traditional approach and 78.89% for the scope-aided one (for statement); and
65.83% for the traditional approach and 74.37% for the scope-aided one (for
branch).

As previously explained in Section 7.1, the scope-aided approach was ex-
pected to perform better in this metric. We now evaluate the impact of the test
suite reduction on the fault detection capability.

8.2. RQ3.2: Impact on fault detection capability
To answer RQ3.2, we assess the scope-aided minimization in comparison with

the traditional technique in terms of the impact on fault detection capability
generated by each approach. This question is analogous to RQ2.2 (Section 7.2)
and we use the same equation (Equation 3) to calculate the impact on fault
detection capability of a given test suite.

Figure 6 displays the boxplots for each approach grouped by the different
coverage criteria considered. The results slightly improved with respect the ones
obtained for the same metric in our study with test case selection (Figure 4,
Section 7.2).
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Figure 6: Impact on fault detection capability for the different coverage criteria when consid-
ering the set of all faults

When considering the median values, scope-aided produced better results
for function and branch, and it was defeated for the statement criterion. With
respect to the average, the scope-aided minimization produced better result for
function and it was defeated by the traditional approach for the statement and
branch coverage criteria. The traditional minimization generated an extra im-
pact of 3.38% for function, whereas scope-aided generated 5.67% for statement
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and 4.74% for branch. Again, these results were in accordance with our initial
intuition.

Figure 7 displays the boxplots for each approach when considering the set
of in-scope faults. The results achieved by the scope-aided approach improved
considerably with respect to previous comparison considering the set of all faults.
Overall, the scope-aided approach defeated the traditional one in all the cases.
In average, the traditional approach generated an extra impact of 6.54%, 7.75%,
and 9.95% for function, statement, and branch, respectively.
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Figure 7: Impact on fault detection capability for the different coverage criteria when consid-
ering the set of in-scope faults

When looking from the perspective of the different subjects investigated, the
results were very similar to the ones observed in our study with selection (Sec-
tion 7.2): scope-aided approach achieved better results than the traditional one
for grep and gzip with an average impact of 30.72% (against 33.80% generated
by the traditional) and 36.16% (against 59.92% generated by the traditional), re-
spectively. For sed, scope-aided generated an average impact of 47.62%, whereas
the traditional approach generated an impact of 44.28%.

9. Discussion on Costs and Benefits of the Approach

In sections 6, 7, and 8 we investigated the potential usefulness of scope-
aided test prioritization, selection, and minimization. On the other hand, we
also need to consider the possible costs of our proposed approach. While only
data collected from real-world usage (which are not available) could provide
conclusive evidence about whether such costs are sustainable and justified, in
this section we present a preliminary assessment regarding the costs incurred
by the adoption of the proposed approach.
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In general, because the cost-benefit ratio incurred by the adoption of a given
technique largely depends on the specific testing scenario in which the technique
is going to be applied, deciding whether or not its adoption is worthwhile needs
to be done on a case-by-case basis. For example, in the ideal case where the test
suite is fully automated and one can analyze the test results within a negligible
time, any prioritization technique, even the most efficient one, would be worth-
less in practical terms. The same could be said for selection and minimization
techniques.

These techniques become attractive when the execution of the whole test
suite is not doable due to resource constraints (e.g., computer-time, person-
time, etc); or, for the specific case of prioritization, when the execution of the
whole test suite would take so long that it is worth prioritizing the test cases in
order to reveal potential faults faster and to maximize the benefits in the case
that testing needs to be prematurely halted.

The literature offers countless variations of prioritization, selection, and min-
imization techniques. In all cases, these techniques start from a test suite T and
derive a test suite T ′, which is a reordering of T in case of prioritization, and a
subset of T in case of selection or minimization. Let us indicate CORIG as the
cost of executing the original test suite T , and CP OST as the cost of testing after
applying the technique. CORIG can be expressed as Cexec + Cact, and CP OST

as Ctech + Cexec′ + Cact′ , where Ctech is the cost (e.g., effort, time) required for
applying the technique (minimizing a test suite, for example); Cexec and Cexec′

are the cost required for running the original test suite T and the set T ′ re-
sulting from the application of the technique, respectively; and finally Cact and
Cact′ denote the cost of analyzing the test results and taking appropriate actions
(fixing the bugs founds, for example) before and after applying the technique,
respectively.

We recall that our approach is proposed as a boost of other existing priori-
tization, selection and minimization techniques. So, by applying a scope-aided
(prioritization, selection or minimization) technique we obtain a test suite T ′s
different from the test suite T ′ that would be obtained by the same technique
without considering scope. As in previous sections we assessed the benefits of
our approach against some state-of-the-art prioritization, selection and mini-
mization approaches, consistently we will discuss augmented or reduced costs
of scope-aided approaches with respect to the original (not scope-aided) ones.

With regards to the cost of applying the technique (Ctech), when compared
to the original technique, our approach has an extra cost to identify the in-
scope entities, which will depend on the method chosen for performing this
task. We remind that our approach consists of two main steps: (1) constraints
identification and (2) in-scope entities identification.

With respect to (1), our approach presupposes that the information regard-
ing the specific reuse scope is available. In other words, we assume that develop-
ers know which functionalities are going to be reused and this information could
be available informally in their minds or in some formal specification document.
Some manual intervention may likely be required to express the reuse scope in a
format that can be used by the technology adopted for identifying the in-scope
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entities and this could incur costs that are hard to quantify in the general case.
In our case we adopted DSE and this first step was as simple as expressing the
reuse scope constraints into concrete parameters for the tool we adopted.

Regarding (2), the in-scope entities identification can then be done in auto-
mated way. As previously stated, in our studies we adopted DSE and we decided
to allow the DSE tool to explore the source code of each subject for a maximum
of 5 minutes, based on a previous research paper [3] that reported that this time
budget was enough to allow KLEE to achieve high coverage exploration even
for complex and environmentally-intensive programs.

We considered 5 minutes to be a reasonable amount of time for the purposes
of our study, as this task is performed just once for each testing scope and the
same results can then be used by all the techniques investigated (prioritization,
selection, and minimization). However, if such time budget is not doable for
some testing scenario this would not compromise the adoption of our approach
as the vast majority of the in-scope entities can be identified after just a few
seconds of DSE exploration. As we can see in Figure 8, on average, 90% of the
in-scope functions and statements can be identified within 30 seconds. For the
branch coverage criterion, 90% of the in-scope entities are identified at around
45 seconds.

Although DSE is largely adopted in research, it is known for limited scalabil-
ity due to classic challenges such as the path explosion, for example [4]. Thus, for
adopting our approach for very large software, if the limited scalability cannot
be mitigated, a different technique for identifying the in-scope entities should
be considered.

Figure 8: In-scope entities identification over a time period of 5 minutes
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We now provide some discussion about the costs related to the individual
testing techniques investigated in this work. For prioritization techniques one
can consider roughly that Cexec = Cexec′ and Cact = Cact′ , as prioritization per
se does not involve a reduction of the test suite size, but only a modification
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of its execution ordering. Then we would have that with any prioritization
technique (including scope-aided ones) CP OST > CORIG, because the former
will have some additional Ctech associated. It is important to notice, though,
that the real benefit provided by prioritization lies in the fact that faults can be
revealed faster — which means that developers can start debugging activities as
soon as possible — and the de facto metric to quantify the gains is the APFDC .

As reported in Section 6, overall the scope-aided approach improved the
APFDC for all the subjects investigated, with the biggest improvement being
an increase of 40.35% in the average APFDC for gzip using the total approach.
Besides that, when considering different fractions of a given test suite (75%,
50%, and 25%) scope-aided prioritization performed better than the not scope-
aided one in the majority of the cases. In particular, for the 25% fraction, our
approach defeated the traditional one in all the cases considered, even if to a
small extent.

Regarding the cost of selection and minimization, in general we have that
these aim at decreasing the overall cost of testing by reducing the size of test
suite T ′. This is of course true when the savings in terms of decreased Cexec′ <
Cexec and Cact′ < Cact are higher than the cost of applying the technique Ctech.
With our approach we saved, on average, 176 test cases for grep (22 tests in
addition to those saved by the traditional approach); 190 test cases for gzip (11
extra test cases); and 355 tests for sed (14 test cases besides those saved by
traditional). These results are displayed in percentage format in Table 6. The
average figures for minimization (Table 7) were very similar and the maximum
number of extra test cases saved were 19, 30 and 55 for gzip, sed and grep,
respectively. Again, deciding whether the potential saving is worthwhile against
the cost of the technique, will depend on the specific test environment and the
cost incurred into executing and analyzing each test case.

10. Threats to Validity

In this section we present a summary of the potential threats to validity
of our study, including: threats to internal validity (concern aspects of the
study settings that could bias the observed results); threats to external validity
(concern aspects of the study that may impact the generalizability of results);
and threats to construct validity (concern confounding aspects by which what
we observed is not truly due to the supposed cause).

10.1. Threats to internal validity
Testing scenarios representativeness: We defined the testing scopes for this

study based on possible realistic uses of the subjects chosen. Real use of the
subjects may include different scenarios that had not been considered in this
study. We controlled this threat by carefully reading the subjects’ documen-
tation to understand well how they could be used before selecting the testing
scopes for our study.

In-scope entities identification: As stated, we used KLEE for performing
the symbolic execution of the subjects’ code and identifying the set of in-scope
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entities. To deal with the path explosion, a classic challenge for symbolic exe-
cution [4], it is usually necessary to define a time budget within which the path
exploration will occur. Because some of the KLEE’s search heuristics for path-
finding are random-based, if the exploration is halted by a timeout, the output
is not deterministic (i.e., a different set of in-scope entities could be identified
in different runs). To minimize this threat, we allowed KLEE to explore our
subjects’ code for 5 minutes expecting that the majority of the paths would had
been explored within this time budget (in [3], the authors reported that some of
the GNU Coreutils programs achieved high coverage exploration within three
minutes).

SIR test suite coverage: The SIR test suites used for our investigations does
not achieve full coverage of the study subjects. Different results could had
been achieved if full coverage was provided, as the level of coverage may affect
effectiveness, see, e.g., [20]. One possible way of controlling this threat would
be adding more test cases to achieve different levels of coverage up to full.
We performed a cost-benefit analysis and decided to use each subject as it is
provided (i.e., not to introduce other test cases) with all of its artifacts, since it
represents the golden standard for benchmarking purposes.

In-scope faults identification: The set of in-scope faults derived for comput-
ing the APFDC and for evaluating the impact on the fault detection capability
may not contain all the relevant faults that could be possibly revealed in a given
testing scope. However, since we use the same fault matrix for both the origi-
nal approaches and the scope-aided ones, we do not see how such threat could
produce different impacts on different evaluations in systematic way, and thus
influence the results on fault detection rates.

Prioritization evaluation: In this study we used APFDC as the metric for
evaluating the speed in which faults are revealed by a given test suite. However,
APFDC is not the only possible measure of rate of fault detection. Control
for this threat can be achieved only by conducting additional studies using
different metrics for evaluating the prioritization quality of the test suites used
in our study.

Selection and Minimization evaluation: We adopted two metrics for evaluat-
ing the selection and minimization of the test suites in our study: (i) test suite
reduction and (ii) impact on fault detection capability. However, there exist
other metrics that could be adopted to evaluate the quality of the produced test
suites. Control for this threat can be achieved only by conducting additional
studies using different metrics for evaluating the selection and minimization
quality.

10.2. Threats to external validity
Subject representativeness: In this work we investigated the proposed scope-

aided testing approaches on 17 variant versions of C programs. We acknowledge
that the 17 versions belong to three subjects only. However it is important to
notice that, in some cases, the differences between versions of a same subject
were quite significant. Indeed, when considering the case of sed, for example,
the development of v5 spans almost 5 years and the differences when compared
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with v4 are astounding — nearly every “major” function has been changed sig-
nificantly. So, these could be considered as different programs. A similar case of
fairly significant differences happened between versions v6 and v7 (as reported in
the accompanying material from the SIR repository). Nevertheless, additional
studies using a range of diversified subjects should be conducted for better rep-
resentativeness. As explained in Section 5.1 the study settings imposed a set of
requirements on the subjects that made it not easy to identify good candidates.
Besides that, as stated before, our experiments were computationally intensive
and very time-consuming.

Faults representativeness: In our study we considered mutant faults and
subjects with real faults might yield different results. Control for this threat
can be achieved only by conducting additional studies using subjects with real
faults.

Prioritization strategies: We assessed scope-aided prioritization when used
as a boost for coverage-, similarity-, and search-based prioritization strategies.
Other prioritization techniques and more instances of the strategies already
studied should be investigated before more general conclusions can be drawn.

Selection and Minimization strategies: Analogously to the previous threat,
in this study we investigated only one selection (and one minimization) strategy.
Other strategies should be investigated before more general conclusions can be
drawn. Control for this threat can be achieved only by conducting further
studies using different selection (and minimization) techniques.

10.3. Threats to construct validity
Study design: We introduced scope-aided testing approaches for prioritiza-

tion, selection, and minimization that focus on giving priority to the detection
on the most relevant (in-scope) faults. In the study we wanted to evaluate
the fault detection rate (for prioritization) and the impact on fault detection
capability (for selection and minimization) of the original and the scope-aided
approaches on the targeted subset of in-scope faults. We were conscious that
constructing such a study could suffer of biased design, as we were using our
testing approaches’ goal (the in-scope faults) also into the evaluation metrics
(APFDC and impact on fault detection capability). The only way to prevent
this threat would have been to use study subjects with failure reports from
real world usage, but we were not able to find such subjects. To mitigate the
threat, we used large suites of random test cases, different from the baseline test
suite (the one that is later prioritized, selected and minimized), to identify the
in-scope faults.

11. Related Work

In this work we have introduced the scope-aided testing approach to support
test prioritization, selection and minimization of reused software.

Our work builds on a huge literature of white-box approaches for test pri-
oritization, selection and minimization, as surveyed in [47] and [5]. However,
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to the best of our knowledge, techniques and tools in the literature are mostly
conceived for regression testing purpose, and there exists no previous work that
expressly targets test prioritization, selection and minimization when an exist-
ing test suite is used to test a software component or a piece of code that is
reused in a new context. To confirm such statement, we have made a systematic
search within both ACM DL and IEEExplore repositories, looking for any pa-
per that included in the abstract both terms “reuse” and “test” (or “testing”),
and any of the three words: prioritization, selection or minimization. We then
screened all papers returned by the search, and in fact among them we could
not find any relevant reference.

In test suite prioritization test cases can be re-ordered based on various
criteria [9, 18]. So far criteria used by other authors include test case execution
time, history of failure detection, fault localization costs, and others, but to
the best of our knowledge no work exists that relates program entities to their
relevance in a reuse context and uses such information to re-order them, as we
do. Our approach prioritizes white-box test cases based on possible constraints
on the input domain in order to focus on more relevant faults in a reuse scope. As
such, scope-aided prioritization is also related to operational testing, as pursued
in, e.g., Musa’s SRET (Software Reliability-Engineered Testing) approach [36].
In SRET test cases are selected from the user’s operational profile, thus those
inputs that are forecast to be more often invoked in use are also more stressed
in testing. Hence, also SRET could be deemed as a test case prioritization
method. In a similar way to SRET, by prioritizing test suites focusing on the
in-scope entities, we also aim at targeting the input subdomain that is the most
relevant for the user, while giving lower priority to inputs that are not or seldom
exercised. Differently from SRET, we do not use a statistical approach to order
the test cases, but exploit dynamic analysis to identify the program entities that
are covered when the in-scope inputs are invoked.

Achieving adequate coverage may require a high number of test cases, and
researchers have proposed several approaches for test selection and minimiza-
tion, e.g. [25, 14]. Scope-aided approaches for test selection and minimization
during reuse testing aim at reducing the size of a test suite based on the princi-
ple to retain those test cases covering the code entities that really matter, and
discard test cases covering entities that are outside scope.

While software reuse may involve reuse of software artifacts and documen-
tation beyond mere code reuse, our work is related to reuse of code, both in
systematic [12] or pragmatic forms [11]. Indeed, depending on the extent and
formality under which code is reused, testing difficulties and approaches vary.
The research of testing in software reuse has followed two main directions:
product-lines testing and component-based testing. As surveyed in [44, 11],
various testing frameworks have been proposed for product lines. The main
challenge in product line testing is to account for variability among products,
and not among different usage contexts or scopes. Therefore, we consider our
approach not closely related to product line testing. In component-based test-
ing [15] researchers have investigated both approaches for testing and certifying
one component built for reuse, and approaches for testing the integration of a
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component into a system [21]. Our research is more related to the second case, in
that our approach can be used for testing the integration of a component into
a system, assuming that the component code is available, as is generally the
case in internal reuse. A component developer following the approach proposed
in [37], could incorporate in a component metadata relevant information to fa-
cilitate the derivation of possible usage scenarios in component reuses. In [48]
a framework is presented that supports prioritization of compatibility testing
in component integration: the aim is close to our goal, however prioritization
focuses on evolution and regression, and not on the usage context.

12. Summary, Conclusions and Future Work

In front of a huge literature on challenges and approaches on the one side to
support and promote software reuse, and on the other side to improve software
testing cost-effectiveness, the very problem of testing reused code has surpris-
ingly received scant attention. In particular, while coverage measures are widely
used in software development, appropriate coverage testing tools for code that is
reused are lacking [45]. There exist many regression testing techniques and tools
that address the retesting of software after maintenance in order to ascertain
that the modifications have not produced undesired effects. As such, these ap-
proaches naturally focus on those test cases that exercise the software function-
alities or code entities impacted by the changes. When testing a reused code (be
it changed or unchanged) into a new context, the main goal is to test the ways
in which the software is invoked from the new context. Quoting Weyuker [46],
when developing a component for a particular project or application, . . . testers
usually have some information or intuition about how the software will be used
and therefore emphasize, at least informally, testing of what they believe to be
its central or critical portions. These priorities will likely change, however, if it
is decided to incorporate the component into a different software system.

The approach of scope-aided testing we propose here entails exactly lever-
aging the information or intuition about how the software will be used in each
new context or scope to redirect the focus of existing white-box prioritization,
selection and minimization, and thus make them more cost-effective for reuse
testing.

In brief our scope-aided testing approach requires developers to make explicit
any constraints limiting the reuse input domain. The identification of reuse
constraints is the first basic step, and the only one which obviously requires
human intervention. After the scope constraints are given, the approach can
be completely automated, and in this paper we have leveraged in particular
dynamic symbolic execution techniques.

We use such constraints first to identify in-scope entities (as described in
Section 4), and then to adapt an existing technique to privilege these in-scope
entities when picking the next test case to execute. We have shown how to
do so considering some existing prioritization (Section 6), selection (Section 7)
and minimization (Section 8) approaches, however the basic idea is general and
other techniques could be adapted as well.

42



The results from our empirical evaluation are encouraging: although scope-
aided did not win consistently in all studies, when looking in particular at those
cases in which only a limited number of test cases can be executed, scope-aided
clearly outperformed not-scope aided approaches. When only 25% of the test
cases are executed (see Table 3), for example, scope-aided prioritization de-
feated, to a small extent, the traditional approaches for all the coverage criteria
considered by finding in-scope faults faster. When applied to minimize test
suites, scope-aided consistently produced lower impact in terms of reducing the
in-scope fault detection capability (see Figure 7). In this paper we have reported
summary results from our empirical studies. More detailed data can be found
on-line at http://labsedc.isti.cnr.it/tools/scope-aided-testing.

Concerning the future, further experimentation is needed to know more
about the usefulness of scope-aided approaches to reuse testing. We would
like to address other subjects and other test techniques, as well as to study
other possible methods to identify in-scope entities. We aim at increasing the
data reported in the above mentioned page as more subject are studied.

The approach proposed in this work can only be applied in those reuse
contexts in which the source code of the reused software is available. However,
the studies conducted here did not take into account the impact of changes in the
reused code to the scope-aided approach. Our intuition is that our approach can
still be applicable and useful, but we would need to run additional experiments
in a setting that explicitly models code changes and assess its cost-effectiveness
in order to confirm (or not) this intuition.

Besides, we envisage that the same idea of scope could be applied to black-
box reuse considering other types of test requirements, for example the spec-
ification of functional requirements. In the same way that we distinguished
here between in-scope and out-of-scope code entities, we could identify in-scope
requirements and adapt the functional testing of a reused code accordingly.
Similarly, one could think of prioritizing or selecting test cases addressing con-
figuration testing, by privileging those configurations that are more relevant in
a reuse context.
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