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SUMMARY

New Science paradigms have recently evolved to promote open publication of scientific findings as well
as multi-disciplinary collaborative approaches to scientific experimentation. These approaches can face
modern scientific challenges but must deal with large quantities of data produced by industrial and scientific
experiments. These data, so-called “Big Data”, require to introduce new Computer Science systems to
help scientists cooperate, extract information, and possibly produce new knowledge out of the data. E-
Infrastructures are distributed computer systems that foster collaboration between users and can embed
distributed and parallel processing systems to manage Big Data. However, in order to meet modern Science
requirements, e-Infrastructures impose several requirements to computational systems in turn, e.g. being
economically sustainable, managing community-provided processes, using standard representations for
processes and data, managing Big Data size and heterogeneous representations, supporting reproducible
Science, collaborative experimentation, and cooperative online environments, managing security and privacy
for data and services. In this paper, we present a Cloud computing system (gCube DataMiner) that meets
these requirements and operates in an e-Infrastructure, while sharing characteristics with state-of-the-art
Cloud computing systems. To this aim, DataMiner uses the Web Processing Service standard of the Open
Geospatial Consortium and introduces features like collaborative experimental spaces, automatic installation
of processes and services on top of a flexible and sustainable Cloud computing architecture. We compare
DataMiner with another mature Cloud computing system and highlight the benefits our system brings, the
new paradigms requirements it satisfies, and the applications that can be developed based on this system.
Copyright © 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The progress and evolution of Information Technology have changed the way Science is approached
[1]. The large amount of data produced by Web and mobile applications and by scientific and
industrial experiments have required the introduction of new systems to process these data, extract
information and generate new knowledge. These data are usually classified as Big Data [2] and
are characterised by at least six “V”s: large Volume, high production (and requested processing)
Velocity, Variability in terms of complexity, Variety of representation formats, untrustworthiness
(Veracity) of the information, and high commercial or scientific Value of the extracted information.
In order to manage and process Big Data, non-conventional Computer Science systems are required.
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In the last decade, new Science paradigms are born and have evolved to manage also Big Data and
to promote collaborative experimentation and publication of scientific findings. These paradigms,
e.g. Open Science [3], e-Science [4] and Science 2.0 [5], have grown in time and today their
definitions overlap on several points. Overall, they support the open publication of results, findings
and documents (possibly involving Big Data) related to scientific research and they also promote
Computer Science systems that foster collaborative approaches to solve current complex problems
of Science. These new paradigms also indicate requirements for new Computer Science systems,
which involve: (i) collecting, analysing, and representing data to ensure their longevity and reuse;
(ii) open publication of all the elements of scientific research (processes, data, documents etc.); (iii)
supporting the three “R”s of the scientific method: Reproducibility, Repeatability, and Re-usability.

Big Data processing is one important point among the requirements of new Science paradigms.
In order to make Big Data processing affordable, distributed computing has been extensively
used in many domains. This kind of computing approach parallelises the computation on several
cores/processors or machines in a network of computers [6]. Flexible approaches exist to distributed
computing that tend to meet new Science paradigms requirements, but the current realisations are
far from this goal (Section 2). Many distributed computing systems can manage specific community
requirements but are typically too tied to certain repositories and data formats, and do not support
collaborative experimentation. Further, aspects like open publication of the results and the support
of the three “R”s of the scientific method are seldom taken into account. Other crucial indirect
requirements include: flexibility in deployment, sustainability of the overall computational system,
management of heterogeneous community requirements (e.g. different programming language etc.),
and quick import of community-provided processes. These aspects require new components to be
added to standard distributed computing systems.

In this context, e-Infrastructures (e-Is) are Computer Science systems that can meet the
requirements of Big Data and new Science paradigms, and can build on top of distributed computing
systems. An e-I is a network of hardware and software resources (e.g. Web services, machines,
processors, databases etc.) that allows users or scientists residing at remote sites to collaborate and
exchange information in a context of data-intensive Science [4]. In an extended definition, an e-I
includes the following facilities: (i) distributed storage systems and parallel (e.g. High Performance
Computing [7]) or distributed processing (e.g. Cloud or Grid computing [8]) systems for Big Data;
(ii) services to manipulate, publish, harmonise, visualise, and access data, which also manage
heterogeneous policies and formats; (iii) catalogues of the data and the resources accessible through
the e-I; (iv) security and accounting services; (v) systems to support collaborative scientific research,
through data sharing and social networking services.

The distributed computing systems used by e-Infrastructures parallelise the computations on a
variable number of machines connected to the e-I at the time of the computation. These computing
systems should also satisfy a number of requirements once immersed in an e-Infrastructure. In
particular, they should (i) support the publication of the enabled processes (e.g. scripts, compiled
programs etc.) as-a-Service, in order to allow their programmatic exploitation by other services
either provided by the e-I or by the communities using the e-Infrastructure; (ii) support processes
implemented under several programming languages to facilitate the communities’ exploitation and
take over; (iii) be interoperable with other services of the e-I through a standard representation of
the processes and of their parameters, in order to enable either complex workflows composition
or simple chained executions; (iv) save the provenance of an executed experiment, i.e. the set of
input/output data, parameters, and metadata, in order to enable any authorised user to reproduce and
repeat the experiment; (v) support data and parameters sharing through collaborative experimental
spaces to enact collaboration between users; (vi) be economically and technically sustainable
by enabling easy porting and deployment on several partners machines; (vii) support federated
authentication and authorisation and tailored accounting facilities, in order to promote integration
of existing technologies without compromising policies management and enforcement. Although
many flexible and easy-to-install implementations of computational systems exist [9, 10, 11], no one
is currently able to satisfy all these requirements. Limitations include poor interoperability between
services developed by different providers, difficulty to integrate processes written by non-experts
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in Computer Science (e.g. biologists, agronomists, students, Big Data analysts etc.), complexity
to manage the too heterogeneous Big Data representations and a general scarce use of standard
representations to describe processes and data.

The aim of this paper it to describe an open-source Cloud computing system (gCube
DataMiner [12]) that shares many features with state-of-the-art computational systems and
also aims at satisfying the requirements of new Science paradigms, and in particular the
e-Infrastructures requirements listed above. The presented platform adds functionalities for
collaborative experimentation, standard description of the hosted methods and of the executed
processes, and flexible provisioning of resources. Thanks to these functionalities, gCube DataMiner
is a fully working peculiar system, currently managing tens of thousands requests per month [13].
In particular, gCube DataMiner is able to (i) interoperate with the services of the D4Science e-
Infrastructure [14]; (ii) use the Web Processing Service (WPS [15]) standard to publish the hosted
processes; (iii) save the provenance of an executed experiment using the Prov-O representation [16].
Our system implements a Cloud computing Map-Reduce approach for Big Data processing and
saves the output as well as the provenance information onto a collaborative experimentation space,
which allows a user to share this information with other colleagues. The DataMiner deployment
is fully automatic and is spread across different machines providers (including the European Grid
Infrastructure Federated Cloud system [17]). We compare our system with another mature system
used by the same D4Science e-I [18, 19] to execute processes provided by communities of practice
in computational biology. We demonstrate the higher computing performance of our system and its
better flexibility to meet the requirements of e-Is on a use case of computational biology.

The paper is organised as follows: Section 2 gives an overview on Big Data, distributed and
parallel computational systems, and explains to what extent these currently meet the requirements
of new Science paradigms. Section 3 describes our system and explains its approach to Cloud
computing. Section 4 reports the performance of our system compared with another Cloud
computing system. Finally, Section 5 reports about current and possible applications of our system
and draws the conclusions.

2. OVERVIEW

Big Data processing has been widely addressed using distributed computing techniques, because
by definition this kind of data requires non-standard computing resources to be managed and
processed [20]. Applications of distributed computing to Big Data have been described in many
scientific papers [21, 22]. Indeed, extracting information from Big Data is crucial in Business
Intelligence [23, 24] and in many fields where data mining is needed [23, 25]. The extracted
information may have high impact in several domains, including geospatial and biological data
processing [25, 26], because of the large spectrum of possible stakeholders, ranging from students
and scientists to decision makers [27]. Crucial topics related to Big Data processing systems are
scalability, availability, data staging, transformation, quality assessment and data heterogeneity
management [21, 28, 29]. Further, privacy and access policies are important especially when data
are shared or exchanged between users [30, 31]. These topics still require research effort to be
properly addressed [32], especially for what regards collaborative approaches to data analysis and
the subsequent reasoning and actions to produce knowledge in a multi-disciplinary context [33].

Processing Big Data with a distributed computing system typically involves parallelisation of the
computation (and possibly split of the data) on several available cores/processors or machines of a
network of computers. These resources intercommunicate and coordinate their actions to achieve
the common task of processing all the data. Distributed computing has been extensively used in
many fields of Science involving Big Data. For example, in computational biology Open Modeller
[34] uses distributed computing for species distribution modelling, and Lifemapper [35] uses Grid
computing to predict the distribution of world’s fauna and flora. Other initiatives, like the Map
of Life [36], rely upon distributed computing for retrieving and archiving species information.
Distributed computing is also used to process geospatial data, especially when the required spatial
resolution is high or the analysis is made at global scale [37]. Examples involve (i) discovering and
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integrating multi-disciplinary data for large-scale ecological analyses [38], (ii) comparing large-
scale geographical distributions of environmental parameters [39], (iii) analysing climate change
impact on species habitats [37, 40], (iv) forecasting fishing activity [41], (v) forecasting dust storms
[42] etc. Cloud Computing has been highlighted as one critical paradigm to support the requirements
of geospatial Big Data processing [42]. An overall survey of the Cloud computing resources that
tackle geospatial Big Data challenges is reported by Yang et al. [43]. For example, the elasticity
demanded to Cloud computing systems may address the production velocity and the variety of
Big Data, whereas the on-demand provisioning of resources enacts the implementation of ad hoc
solutions to manage data veracity and variety [43].

General platforms for Big Data processing propose general-purpose high-throughput computing
services [44, 45, 46] that offer long-time computing as a utility. Among these platforms, Cloud
computing systems [47] have several deployment models (e.g. private, community, public, hybrid
cloud) and service models to provide computational and storage resources at many levels
(application, platform, infrastructure).

Although these systems are powerful enough to manage a large amount of communities
requirements, they do not natively meet modern Science paradigms requirements. For example,
domain-specific implementations like the ones mentioned above, are typically too tied to a
certain repository and format and do not support neither data retrieval from many knowledge
sources nor collaborative experimentation. As for the general purpose systems, many of them
tend to meet modern Science paradigms but not completely. For example, several systems
stress on low maintenance, low deployment costs, and high sustainability, granting reliability,
easiness of installation, and usability at the same time. On the other hand, aspects like managing
different programming languages and importing community-provided processes are often neglected,
although they are crucial to meet the programming habits of the served communities [19]. Overall,
there is no system satisfying all the requirements reported in Section 1, nevertheless examples can
be given of flexible systems that may potentially meet them.

Flexibility in deployment, installation and support of different programming languages can be
found in HTCondor [44], an open-source framework to implement high-throughput and high-
performance computing systems. However, HTCondor requires expertise to be properly configured
and does not natively support either reproducibility and repeatability of experiments or collaborative
experimentation. Apache Hadoop [48] provides Cloud computing and storage facilities and supports
Map-Reduce computations. This system can be paired with many Apache packages and promotes
interoperability with other Apache services. Nevertheless, installing, configuring and integrating
new processes is not easy for non-expert developers, although every programming language is
potentially supported. Also, communication standards are not natively supported and only unofficial
attempts have been proposed [49]. Simplification in Cloud computations programming is promoted
by Apache Spark [11], which extends the Hadoop approach and features and allows building more
complex workflows than Map-Reduce. Nevertheless, using interoperability standards is still not
supported.

Apart from software that allows building Cloud computing systems, operational Cloud computing
platforms exist that provide on-demand interoperable machines and software to build new Cloud
services. Examples are Amazon EC2 [50], Google Cloud Platform [51], and Microsoft Azure [52].
These support all the provisioning approaches of Cloud computing (Software- , Platform-, and
Infrastructure-as-a-Service) but still require large effort for a non-expert community of practice
to build a Cloud computing system based on communication standards.

Usage of Cloud computing in a collaborative e-Infrastructure is not frequent but some
implementations exist, e.g. Yabi [9] and other domain-oriented systems [53, 54, 55]. However,
these do not publish their processes under recognized standards. On the other hand, services exist
that use standards to publish processes, but these do not natively support easy building of Cloud
computing systems. For example, 52North [56] and Zoo-project [57] support WPS publication and
easy chaining of processes, but are more oriented to easily integrate non-distributed processes than
to design Cloud computations. Services and software exist [58, 59, 60] that embed clients for remote
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WPS services in order to demand large computations to these remote systems. These system would
greatly benefit from WPS-based Cloud computing platforms.

3. METHOD

This section describes the components DataMiner relies upon and the details of the system. It also
explains how DataMiner manages parallel and Cloud computations. Further, it describes a Web GUI
that allows the users of an e-Infrastructure to interact with DataMiner.

3.1. Components

DataMiner (DM) is immersed in the D4Science distributed e-Infrastructure, an e-I built by using
the open-source gCube software [12]. DM was born to be interoperable with the services of this e-I.
Theoretically, every process hosted by DM can use all the resources of the D4Science e-I. In this
section, we explain the main e-I components our system uses during and after the computations.

3.1.1. e-Infrastructure Systems
The Information System
The Information System (IS) is a central service of most e-Infrastructures [61, 62, 63] and of

D4Science too. It provides the e-I services with updated information about the location and the status
of the available and reachable resources (e.g. databases, internal and external services, applications
etc.). For example, it provides information about the IP addresses, the Operating Systems and the
machine architectures of the computational, storage, and geospatial services available in the e-I.
These services possibly reside at different sites and are hosted by different providers (e.g. Windows
Azure [64], the European Grid Infrastructure [17] etc.). The IS acts as a registry of the e-I resources
and manages their assignment to certain communities of users. The D4Science IS is the main service
that supports publication, monitoring, discovering, and access for the e-I resources. Internally, it
uses a Resource Management service to allocate and deploy/undeploy resources on-the-fly for
users and services. The D4Science IS automatically indexes Apache Tomcat Web services [65],
after these have been endowed with appropriate non-invasive Java libraries of the gCube software
[66]. As for the other resources, e.g. databases and non-gCube services, indexing can be manually
done by fulfilling online forms that are transformed into IS resource profiles. The D4Science IS
is indeed made up of a number of services that ensure high availability of the information and
high performance on concurrent queries for on-the-fly information retrieval. We leave the technical
details of the D4Science IS to [67].

The Distributed Storage System
A Distributed Storage Systems (DSS) is a network of services that allows storing a large quantity

of data with a flexible management of information availability and storage capability [68]. DSSs are
not based on rigid schemas (like relational databases), but use different technologies, e.g. column
store (e.g. Cassandra [69]) or document store (e.g. MongoDB [70]), to manage even non-structured
or semi-structured data. Typically, they use data partitioning techniques where one dataset is divided
into several smaller packages and each is stored by one high-availability service. The drawback with
respect to most relational databases is that it is impossible to guarantee availability and consistency
(i.e. always retrieving the latest version of a stored dataset) of the information at the same time
(CAP Theorem [71]). D4Science uses the MongoDB document store to host files and metadata and
extends it by (i) adding smart management of metadata and using unique identifiers for the datasets,
(ii) enhancing the interoperability of MongoDB with the e-I services, (iii) enhancing access security,
and (iv) introducing temporary storage areas [72]. The D4Science DSS adopts a partitioning strategy
that uses a horizontally scalable architecture, with backup services for each storage node. This is the
base layer of the D4Science data sharing and computational services. Indeed, the storage system is
used as a common storage area by the services and the users of the e-I. In particular, it hosts software
packages, files metadata, files in tabular (e.g. CSV, Excel etc.) and binary formats etc.

Data Sharing and Collaboration Facilities
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D4Science users and services are all endowed with an online Workspace area. The Workspace
is a service that builds on the D4Science DSS and is mainly used to upload, publish, and share
data. In particular, virtual folders can be created (like in a virtual online file system) and each folder
and dataset can be shared with other specific users of the e-I or made publicly accessible through
public URLs. Thus, the Workspace is a shared online file system that can act as a way for users to
exchange data, metadata, software, parameters and computational results. Beside this system, social
networking facilities are provided to users and services to foster collaboration. In particular, the
D4Science social networking services produce continuously updated lists of events/news, posted by
users and applications through Web interfaces. An emailing system allows exchanging messages
between users and services (for example after a computation) and allows also users to invite other
people to join the e-I [73].

Geospatial Data Services
Services to manage environmental data are today integral parts of many e-Is [74, 58, 75]

Environmental data are generally offered by several providers under different formats. Usually, the
formats promoted by the Open Geospatial Consortium (OGC) are used, but these allow different
representations of the same data content (e.g. Web Coverage Service [76] and OPeNDAP [77] for
raster data) and thus require services to manage several representations, in order to retrieve and
publish information. D4Science includes services to discover (GeoNetwork OpenSource [78]) and
access (Geoserver [58] and Thredds [79]) raster and vector geospatial datasets, e.g. environmental
and biological data. These services can possibly harvest information from other OGC compliant
services and can publish data under OGC formats to visualise (e.g. using the Web Map Service [80])
and to extract information. The D4Science geospatial metadata are stored, indexed and published on
a GeoNetwork instance in ISO-19139 compliant format according to the INSPIRE directives [81],
in order to maximise the re-usability of the information by other e-Is [75]. These metadata can be
also discovered and retrieved using the CSW and OAI-PMH standards. A Web application allows
the D4science users to search for data and visualise/overlay maps [18].

Virtual Research Environments
Based on an e-Infrastructure, it is possible to define Virtual Research Environments (VREs) [82].

VREs are online collaborative environments, each focussed on a specific topic or community and
corresponding to a subset of resources of the e-I that are temporarily assigned to a group of users.
D4Science allows creating VREs in short operational time, where users are endowed with processes,
Web interfaces, maps, and data that are suited for their domain of study. For example, a VRE for
marine biologists can contain Web applications, databases, and maps that allow them to study marine
protected areas. Sharing data and information through the e-I services available in the VRE, fosters
multi-disciplinary activities. This may result, for example, in the production of new degradation
indicators for marine protected areas. A VRE is usually moderated by a domain expert, who can
supervise and regulate the activities of the VRE participants by relying on proper e-I services.

3.1.2. Standards for services and executions descriptions
Web Processing Service
The Web Processing Service (WPS) is an XML-based standard promoted by the OGC [83].

In particular, it defines a standard to publish and discover processes made available as-a-Service.
Processes can be algorithms, calculations, and models that possibly process geospatial data.
Publishing a process via WPS, means assigning it a machine-readable information that describes the
process metadata and the accepted parameters, the inputs and the outputs. This also allows building
catalogues of processes using OGC-compliant cataloguing services (e.g. GeoNetwork [78]). A WPS
service should be conceived to offer both simple and complex processes, because WPS descriptions
are lightweight enough to enable very fast interactions. The data to feed the processes can be made
available either via public HTTP URLs or sent directly inside an HTTP-POST request. A WPS
response document is produced after a process execution and can contain other OGC documents,
e.g. Geography Markup Language (GML) documents. WPS processes are also suited to be used
in workflows that combine several of them, e.g. the ones of the Galaxy, Taverna, and Knime [84]
Workflow Management Systems.
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The operations offered by a WPS service are mainly three [15]: (i) GetCapabilities, which allows
to get the list of processes hosted by the service (capabilities); (ii) DescribeProcess, which returns
a description of a process, of its input parameters, and expected output; (iii) Execute, which allows
executing a process by passing a list of parameters and input data, and getting the output embedded
in an XML document.

The WPS standard presents limitations with respect to the requirements of e-Infrastructures. In
particular, in an e-I the capabilities should be specific of a certain community of practice, i.e. the list
of processes should change according to the context the service is serving (i.e. the VRE). Instead,
WPS supports only one GetCapabilities operation per service. Further, WPS requires the output to
be specified at process description phase, which is not always the case for user-provided algorithms
and for complex processes whose output is determined during the computation [85]. Another e-I
requirement is to support security and accounting per user, in order to trace the activities and to allow
interactions between selected users only (e.g. the VRE participants) or services. Finally, the WPS
specifications do not give indications on how to implement a Cloud computing system completely
based on WPS services, i.e. WPS is still considered an interface to interact with non-distributed
computational system, whereas several benefits would be gained if all the services constituting
a distributed computational system relied on WPS (Section 3.3). The WPS specifications are
independent on these considerations, nevertheless, these may affect the interaction with a service.
In the next section, we will explain how our system overcomes these limitations although based on
WPS.

Provenance of a Computation
Provenance is defined as the information about the entities, activities, and people involved in

the production of a dataset or a “thing” [86]. This information allows assessing the quality and the
reliability of the produced objects. When referring to computations and experiments, the provenance
is the set of information about input and output data, parameters, and metadata that allow to repeat
or reproduce an experiment [87]. Trusted datasets (or experiments) are likely to be reused in several
contexts, propagating correct citations at the same time. In that respect, provenance information
potentially maximises the longevity and re-usability of data and experiments [1]. The authoritative
W3C consortium promotes the PROV-O ontological conceptual data model of provenance [16, 88].
An XML schema is also proposed (Prov-XML) to practically represent key concepts and produce
provenance documents for data and processes. Indeed, the PROV-O model is flexible enough to be
applied to several domains and objects. The main elements of the PROV-O model are (i) “entities”
and “activities” with creation/usage/end times associated; (ii) composite entities; (iii) “agents”
responsible for entities and activities; (iv) “bundles” that combine several provenance objects; (v)
“properties” of entities; (vi) “collections” of entities.

3.2. Architecture

DataMiner (DM) is a service based on the 52North WPS implementation [56], but it extends this
implementation in order to meet the D4Science e-Infrastructure requirements. DM is developed with
Java as a Web service running on an Apache Tomcat instance [65], endowed with gCube libraries.
Further, DM offers a development framework to integrate algorithms and to interact with gCube-
based e-Is (Section 3.3).

The complete DM architecture is made up of two sets of machines (clusters) that operate in
a Virtual Research Environment (Figure 1): the Master and the Worker clusters. In a typical
deployment scenario, the Master cluster is made up of a number of powerful machines (e.g. Ubuntu
14.04.5 LTS x86 64 with 16 virtual CPUs, 16 GB of random access memory, 100 GB of disk)
managed by a load balancer that distributes the requests uniformly to these machines. Each machine
is endowed with a DM service that communicates with the D4Science IS to notify its presence and
capabilities. The balancer is indexed on the IS and is the main access point to interact with the
DMs. The machines of the Worker cluster have less local computational power (e.g. Ubuntu 14.04.5
LTS x86 64 with 2 virtual CPUs, 2 GB of random access memory, 10 GB of disk) and serve Cloud
computations, as explained in the next section.
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The Master and the Worker clusters are dynamically provisioned by the D4Science e-I through
an orchestration engine based on the OpenStack platform for Cloud computing [89]. Both the
DM clusters are based on pre-cooked application templates predefined and registered on the IS,
which indicate: (i) the required resources, i.e. servers, floating IPs, volumes, and security context
(the VRE) to be used by a cluster; (ii) the relations and connections between these resources, e.g.
the assignment of a volume to a server. The orchestration engine is endowed with a management
software that uses Ansible scripts [90] to configure multi-tier applications in a reliable and consistent
manner. Autoscaling is planned to be released, based on the metrics collected by the OpenStack
Telemetry service [91]. Changes to the clusters configurations are managed through the update of
the templates on the IS and are made by an e-I manager.

When a WPS request comes to the Master cluster balancer, it is distributed to one of the cluster
services (Master DM). The DMs host processes provided by several developers. In particular, two
kinds of algorithms are hosted: “Local” and “Cloud” algorithms. Local algorithms are directly
executed on the Master DMs and possibly use parallel processing on several cores and a large
amount of memory. Instead, Cloud algorithms use distributed computing with a Map-Reduce
approach and rely on the DMs in the Worker cluster (Cloud nodes). With respect to the standard 52
North implementation, DM adds a number of features. First, it returns a different list of processes
according to the VRE in which the service is invoked. When an algorithm is installed on a DM, it is
also indexed on the IS as a resource. Thus, an e-Infrastructure manager can assign it to a number of
VREs. When invoked in that VRE, DM returns only the subset of hosted processes that have been
assigned to the VRE. Thus, a VRE for agronomists will not report algorithms suited for marine
biologists or mathematicians and vice-versa. On the other hand, one may also want to create multi-
disciplinary VREs with algorithms belonging to different domains.

Although the load balancers are stateless services, the DMs are stateful services. In fact, when
a computation starts, an asynchronous client can ask about the status of the execution. The WPS
protocol solves this issue by embedding a direct URL to the DM in the WPS answer produced to
acknowledge process acceptance. This URL points to the DM service that reports the status of the
computation and the client will contact this service directly. The drawback of this approach is that
the WPS service should be directly reachable by clients.

Using a WPS standard in a Cloud computing system allows a number of thin clients to use the
processes. Third party software (e.g. the well-known QGIS [60] and ArcMap [92] for geospatial data
manipulation) can be able to retrieve the capabilities of a WPS service and run remote processes.
Further, the gCube framework already offers clients for R and Java [93] and the WPS service can
manage HTTP-GET requests. Thus, a process can be also invoked using a common Web browser,
which makes it easy to repeat the execution of an experiment. Indeed, for each execution DM
releases an “equivalent HTTP-GET” request to repeat the experiment via Web browser. Finally,
an OpenCPU [94] instance is provided in the D4Science e-I, which transforms WPS objects into
Javascript objects and allows for fast building of HTML applications.

The DataMiner services rely on the security services of the D4Science e-I and require a user token
[95] to be provided for each operation. This token is passed via basic HTTPS-access authentication,
which is supported by most WPS and HTTP(S) clients. The token identifies both a user and a Virtual
Research Environment and this information is used by DM to query the IS about the capabilities to
be offered in that VRE, i.e. the processes the user will be able to invoke with that authorization.

The DataMiner computations can take inputs from the D4Science Workspace. Inputs can
also come from Workspace folders shared among several users. This fosters collaborative
experimentation already at the input selection phase. Inputs can also come from external
repositories, because a file can be provided either as an HTTP link or embedded in a WPS
execution request. The outputs of the computations are written onto the D4Science DSS and
are immediately returned to a client at the end of the computation. Afterwards, an independent
thread also writes this information on the Workspace. Indeed, after every successfully completed
computation, a Workspace folder is created that contains the input, the output, the parameters of the
computation, and a provenance document summarizing this information. This folder can be shared
with other people and used to execute the process again. Thus, the complete information about the
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execution can be shared and reused. This is the main way by which DataMiner fosters collaborative
experimentation.

The DM processes can access to the resources available in a VRE by querying the IS. For
example, it is possible to discover geospatial services, maps, databases, and files. The DM Java
development framework simplifies the interaction with the IS. Since the IS interface is HTTP-
REST too, the interaction with the IS can be managed by the processes directly. Further, the DM
development framework provides methods to transform heterogeneous GIS formats into a numeric
matrix and thus simplifies the effort to process geospatial data [39].

DataMiner can also import processes from other WPS services. If a WPS service is indexed
on the IS for a certain VRE, its processes descriptions are automatically harvested, imported, and
published among the DM capabilities for that VRE. During a computation, DM acts as a bridge
towards the external WPS systems. Nevertheless, DM adds provenance management, authorization,
and collaborative experimentation to the original service.

3.3. Computing

DataMiner is able to execute processes written in several programming languages, e.g. Java, R,
C etc. A process integration framework is provided to developers [96] along with automatic tools
to execute other programming languages through Java wrappers [97]. Developing a DM process
requires extending one between two Java interfaces: the first (StandardLocalAlgorithm) is for
processes that will run on one Master DM machine (possibly using several cores), the second
(NodeAlgorithm) is for processes that will use the Worker cluster with a Map-Reduce approach.

The StandardLocalAlgorithm interface requires implementing an initialisation method (init()), a
processing method (process()), and a post-processing method (shutdown()). Inputs are declared in
a specific method (setInputParameters()) with an associated type that is automatically translated by
DM into a WPS object, i.e. a literal (integer, string, double etc.) or a complex input (CSV, XML,
binary files etc.). The inputs are all passed to the process as strings, which may contain the path to a
file, the name of a table on a database (along with database coordinates), the value of a literal input
etc. DataMiner is responsible for preparing the objects for a process. For example, it transforms CSV
files into tables if required, otherwise it automatically downloads input files and passes their local
paths to the process. Outputs are declared in a separate method (getOutput()) where the developer
specifies the type and the list of the outputs that will be produced. If output cannot be defined
before the execution of a process (non-deterministic output), a Java Map object should be fulfilled
with primitive or complex objects during the computation. This map will be transformed by DM
into a WPS complex data type containing a GML document. This GML document contains GML
“feature collection members” [98] for each output, with HTTP links associated to files (stored on
the D4Science DSS) in the case of complex objects (Figure 2).

As for Cloud computing algorithms (NodeAlgorithms), the interface requires specifying (i) a
preliminary setup phase of the algorithm (setup(), part of the Map process), (ii) a post-processing
method (postprocess()) that concludes the Reduce phase, and (iii) a processing method that accepts
indices referring to a portion of the input to process. These indices are based on the assumption that
the algorithm should process a Cartesian product of two sets of elements (Left and Right sets). Thus,
the algorithm should provide the number of Left elements (getNumberOfLeftElements()) and of
Right elements (getNumberOfRightElements()) to process. DataMiner will autonomously establish
which portion of these elements each Cloud node will process. The Left and Right indices associated
to an input portion will be passed to the process method on the nodes. Thus, the Map phase of the
Cloud computation is managed at service level (on a Master DM), not at process level. This allows
refining or changing the DM Map algorithm as soon as new features and services are available in the
e-I (e.g. to control or add resources), independently on the processes implementations. Currently,
this algorithm depends on the number of nodes available at the start of the computation. At the
beginning of a computation, a Master DM receives a processing request and executes the setup
method of the process. Thereafter, the DM queries the IS for the current list of nodes and the list
of potential additional nodes that the e-I could instantiate according to the policies governing the
VRE and the user’s computational quota. The Left X Right product is divided into chunks that are
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equally virtually assigned to the estimated overall number of nodes (Map phase). A WPS request is
prepared for each chunk to be sent to the Worker cluster and the Master DM creates a thread pool
for these requests. Each node receiving the request will execute the process method on the indicated
Left and Right elements. However, the size of the thread pool at the start of the process is equal
to the number of nodes that are really available. This number is less than the number of prepared
threads, which is indeed equal to the number of chunks. The pool size establishes how many threads
should be instantiated concurrently, whereas the other ones will be queued.

During the computation, some machine could be unavailable. In this case, the other DM nodes
will process more chunks. An internal queue on each node limits the number of concurrent chunks
that can be processed by the node (the default is four). The Master DM periodically queries the IS
to get the list of available nodes and possibly adjusts the size of the thread pool. If the number of
chunks to process is still high after a certain period, more machines are requested to the IS. In turn,
the IS tries to instantiate new DMs through appropriate provisioning services. The Reduce phase is
called after all the chunks have been processed and follows the implementation of the postprocess()
method of the process.

Each Master DM thread that processes a chunk of the computation is endowed with retry
mechanisms that take care of possible computation failures due to random factors, e.g. a URL that
is temporary unreachable, a machine that exhausted the resources or that is busy etc. The maximum
number of retries is set to two times the number of available resources, because within this range
the load balancer will likely send the request to a fully working machine, if available.

The presented Cloud computing approach assumes that all the DMs machines have the same
processes installed. This may seem a strong assumption, but it is managed by means of a fully
automatic provisioning strategy (Section 3.2). In fact, a process running on DM is typically made up
of a Java archive (JAR) containing the process code and other dependencies, e.g. auxiliary scripts,
compiled programs, Linux packages, R packages etc. When a developer delivers a process, (s)he
should specify the set of dependencies required by that process. Auxiliary files should be made
available through the Workspace and packages should be indicated by fulfilling proper forms [97].
During the deployment phase on a DM instance, this information is transformed into a sequence
of Ansible playbook scripts [90] that install the process and all the auxiliary packages on the DM
machine. This mechanism can be also invoked during a computation: based on the error returned
by a computation on a node, the Master DM can recognize that the node misses the process and
then it invokes the Ansible installation scripts on that machine. This mechanism also makes the
maintenance of the DMs easier.

At the end of a computation, the produced complex outputs (files, images etc.) are saved on a
temporary area of the D4Science DSS and returned as HTTP links (possibly also embedded in the
WPS answer if not too large). Afterwards, a separate thread creates a Workspace folder where the
inputs, outputs, parameters, and provenance information are saved. A user will be able to retrieve
a summary of the computation through the Workspace, where the computation folder will be a
standalone, self-consistent information object containing all the information required to execute the
experiment again or to be shared with other users. As for the provenance, a Prov-O XML document
is produced for each computation in the Workspace folder (Figure 3). In this document, a process
is represented as an “activity” with time and user information attached. The operator, the VRE,
the inputs and the parameters are all represented as “entities”. The output is an entity too, which
contains a reference to the activity it was generated from. Thus, this information can be extracted
from the provenance document and can be reused to make the output recognizable as belonging to
a certain computation.

3.4. Web Interface

DataMiner offers a Web GUI to the users of a VRE (Figure 4). On the left panel, the GUI presents
the list of capabilities available in the VRE, which are semantically categorised (the category is
indicated by the process provider). For each capability, the interface calls the DescribeProcess
operation to get the descriptions of the inputs and outputs. When a user selects a process, in the
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right panel the GUI on-the-fly generates different fields corresponding to the inputs (Figure 4-
a). Input data can be selected from the Workspace (the button associated to the input opens the
Workspace selection interface). The “Start Computation” button sends the request to the DM Master
cluster, which is managed as explained in Section 3.3. The usage and the complexity of the Cloud
computations are completely hidden to the user, but the type of the computation is reported as a
metadata in the provenance file.

In the end, a view of the Workspace folders produced by the computations is given in the
“Check the Computations” area (Figure 4-b), where a summary sheet of the provenance of the
experiment can be obtained (“Show” button, Figure 4-c). From the same panel, the computation
can be also re-submitted. In this case, the Web interface reads the Prov-O XML information and
rebuilds a computation request with the same parameters. The computation folders may also include
computations executed and shared by other users. Finally, the “Access to the Data Space” button
allows obtaining a list of the overall input and output datasets involved in the executed computations
(Figure 4-d), with provenance information attached that refers to the computation that either used
or executed the dataset.

4. RESULTS

In this section, we report the performance of DataMiner with respect to another mature system used
by the D4Science e-I for biodiversity computation experiments (Statistical Manager or StatMan,
abbreviated) and presented in [18]. A comparison between the two architectures is displayed in
Figure 5. In StatMan, a users’ request is queued until one of the master machines is ready to
process it. Further, the Cloud computing machines (Generic Workers) are separate services that
execute processes as standalone, compiled software. Thus, this system requires a process to be
prepared also in a standalone version. On top of the Cloud machines, a queue service hosts messages
corresponding to the chunks of a computation, which are consumed by the Generic Workers one at
time. This approach is common to several distributed computing systems [10, 44, 48], thus StatMan
may represent also other systems to a certain extent. For the comparison presented in this section,
we used the same hardware configuration for both the architectures (StatMan and DataMiner); this
approach ensures a fair comparison between the two. In particular, the master machines in both the
systems were Ubuntu 14.04.5 LTS x86 64 with 16 virtual CPUs, 16 GB of random access memory
and 100 GB of disk, and the Cloud computing machines were Ubuntu 14.04.5 LTS x86 64 with
2 virtual CPUs, 2 GB of random access memory, and 10 GB of disk. Software versions updated
to Nov. 2016 were used for StatMan (v. 2.2.0) and DataMiner (v. 1.4.0), both running within Java
Virtual Machines v. 1.7.0 80. The machines communicated with direct 1 Gbps connections in both
the compared systems and the machine provisioning mechanism was the one reported in Section
3.2).

We compared the performance of the two systems on the BiOnym taxonomic search process
[99]. This algorithm searches for the best transcription of a species scientific name in a copy of
the authoritative FishBase names repository [100] hosted by the D4Science DSS. This repository
contains taxonomic and biological information for 33,500 species with a size of ∼30GB (to Nov.
2016) and an increasing complexity and volume trend proper to Big Data. Each input species
name may contain misspelling errors and the process uses a combination of an expert system
(embedding taxonomic experts’ knowledge) with string matching algorithms (e.g. the Damerau-
Levenshtein distance [101]) to find the “best” transcription. In particular, given a species scientific
name, BiOnym produces suggestions of (i) the most likely corresponding transcriptions to the input
name, (ii) the related official taxonomic name authorships, and (iii) metadata of the found records
in the names repository (e.g. the creation date, the last modification date, the belonging specimen
collection etc.). We selected this process because it is very used by marine biologists with ∼30,000
requests per month [13]. BiOnym has a “Local” version, which searches for one scientific name
directly using a Master DM, and a “Cloud” version that uses Cloud nodes. The Cloud version
accepts a list of species as input, which is divided into several subsets that are possibly processed
by different machines. From a DM process perspective, this means that the Left set has size one and
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the Right set has size equal to the number of species names to process. The same rationale was used
by StatMan to partition the input.

In the comparison here reported, BiOnym was used to process 1024 species scientific names using
the process’ Cloud version on both StatMan and DataMiner. The input data file size was 100kB
and contained misspelled taxonomic names, whereas the output was a ∼150MB file containing full
taxonomic names suggestions. Default similarity threshold parameters [99] were used for all the
experiments. The differences in the computational times are reported in Figure 6-a using from 1 to
20 nodes. Overall, DM gets faster and faster with respect to StatMan as more nodes are used: with
20 nodes, the time reduction is ∼88%, whereas with one node it is ∼73%. The reason is explained
in Figure 6-b, which reports the time required by each step of the computational process in both the
systems. The average single-node computation is faster on DM, because the process is not executed
in a standalone fashion. Indeed, StatMan executes a Java process by instantiating a new Java Virtual
Machine in which the process is executed, whereas DM re-uses the same Java Virtual Machine of the
service. The DM post-processing phase is faster too, because the output is written on the D4Science
DSS directly, whereas the Workspace is used only after the computation and independently. Further,
the setup phase of the processes on StatMan first uploads the software with its dependencies on the
DSS and then engages the nodes using a Java SOAP-based client. Instead, by using WPS and pre-
installed software, DM skips this preparation phase and makes the nodes engaging phase faster
through lightweight REST interactions.

One DM can concurrently manage up to a pre-configured number of processes (four by default).
The other requests are queued using the thread pool of the Tomcat server that hosts the DM
application. One “Local” BiOnym computation (i.e. not using the Cloud nodes) requires ∼10
seconds to finish. Thus, running 20 simultaneous BiOnym “Local” requests on DM requires: ∼12s
to manage the first 4 computations; ∼24s for the second 4 requests (that have waited 12s for the
first group to finish); ∼36s for the third group (12 overall computations); ∼48s for the fourth group
(16 overall computations); ∼60s for the fifth group (20 overall computations). It is notable that the
concurrency introduces some delay due to the use of shared machine resources.

The advantages brought by DM with respect to StatMan are mainly due to its architecture and to
the full exploitation of the WPS standard. One major advantage is that all the DM services publish
their capabilities using a standard, which enhances the interoperability with other external services
and software with respect to using custom clients. Further, the Master and the Worker clusters are
managed by fast load balancers that are able to dynamically add machines and to ignore them when
offline. The Cloud nodes are exact replicas of the Master nodes with less computational resources.
This allows using the Worker cluster directly from clients and fosters alternative usages of the Cloud
computing system [102]. For example, external users of the e-I (authorised with proper tokens) may
also implement their own Cloud computations by invoking the Worker cluster in custom workflows.
Further, the Worker cluster can be used instead of the Master cluster to support a community of
practice (i.e. a VRE), when low computational power is required but the number of requests is high.
Thus, the DM architecture maximises the reuse of the machines, which is particularly useful for
small e-Infrastructures.

5. CONCLUSIONS

In this paper, we have presented a peculiar computational system that goes towards the requirements
of modern Science paradigms, especially because it blends together Cloud computing and e-
Infrastructures. Our system adopts a collaborative approach, standards to describe both the hosted
methods and the executed processes, and a flexible provisioning of resources. With respect to other
distributed computing systems, it satisfies additional requirements brought by e-Infrastructures,
and the benefits are many. First, the usage of a process is improved, thanks to the possible
interoperability with data preparation and harmonisation services (e.g. [103, 104, 105]), which
speed up the typical time-consuming phase of data preparation for an experiment. Further, providing
a shared DSS and an experimentation Workspace area allows reusing the results of processes
and also fosters multi-disciplinary experiments. Users could also be services or external machines
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(e.g. sensors) that produce experimental data at different frequencies and time scales, while other
processes analyse these data and take decisions. In other words, it would be straightforward to
build a blackboard-like system [106] using DataMiner. The same facilities are automatically offered
to desktop software supporting WPS. Further, generating and storing provenance information
improves the possibility to repeat and reproduce an experiment executed by other scientists. Finally,
since processes and service installation is fully automatic, it is easy to deploy DataMiner on a
number of machines providers.

Currently, DM is hosted by virtual machines of the European Grid Infrastructure (EGI), the
Slovak Academy of Sciences (IISAS), the Göttingen University and the Max Planck Society
(GWDG), the Supercomputing Center of Galicia (CESCGA), the Universitat Politècnica de
València (UPV-GRyCAP), the University of Bari (ReCaS), the National Italian Institute of
Nuclear Physics (INFN), the National Research Council of Italy (CNR), and the University of
Athens. DataMiner is used in several European projects (e.g. BlueBRIDGE [107], ENVRIPlus
[108], Parthenos [109], SoBigData.eu [110]) and by international organisations (e.g. the Food
and Agriculture Organisation of the United Nations and the National Oceanic and Atmospheric
Administration) in appropriate Virtual Research Environments, also for educational purposes. DM
hosts ∼200 processes and serves overall 55 VREs in D4Science†, exploited by more than 2500
scientists in 44 countries. The hosted processes are written with the Java, R, Fortran, C, Octave, and
Python programming languages and have been provided by developers with heterogeneous expertise
(e.g. biologists, mathematicians, agronomists, physicists, data analysts etc.).

E-Infrastructures are valid Computer Science systems that may solve issues brought by Big Data
and new Science paradigms if properly implemented. The DataMiner system goes in this direction,
although further development is required to improve crucial points that do not depend on DataMiner
only, e.g. native interoperability with services developed by other providers, management of many
standards to access and retrieve data, staging Big Data on the computing machines and managing
near-real time processing.

The focus on interoperability and standards makes DataMiner interesting also for industrial
processes, e.g. for the fully automatic and interconnected processes of the smart cities and factories
of the Industry 4.0 trend [111]. These systems could benefit from the domain-specific, expert-
provided and state-of-the-art processes (e.g. Artificial Neural Networks, Support Vector Machines,
Deep Learning processes, Monte Carlo methods etc. [112]) hosted by DataMiner and executed in
short-time. Indeed, as also suggested by the modern Science paradigms, it is more and more evident
that the isolation of Computer Science systems and domain experts is no more sustainable with
respect to the complexity of modern scientific problems.
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38. Nativi S, Mazzetti P, Saarenmaa H, Kerr J, Tuama ÉÓ. Biodiversity and climate change use scenarios framework
for the geoss interoperability pilot process. Ecological Informatics 2009; 4(1):23–33.

39. Coro G, Pagano P, Ellenbroek A. Comparing heterogeneous distribution maps for marine species. GIScience &
Remote Sensing 2014; 51(5):593–611.

Copyright © 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe



WPS CLOUD COMP. IN E-INFRA 15

40. Coro G, Magliozzi C, Ellenbroek A, Kaschner K, Pagano P. Automatic classification of climate change effects
on marine species distributions in 2050 using the aquamaps model. Environmental and ecological statistics 2016;
23(1):155–180.

41. Coro G, Large S, Magliozzi C, Pagano P. Analysing and forecasting fisheries time series: purse seine in indian
ocean as a case study. ICES Journal of Marine Science: Journal du Conseil 2016; :fsw131.

42. Yang C, Huang Q, Li Z, Liu K, Hu F. Big data and cloud computing: innovation opportunities and challenges.
International Journal of Digital Earth 2017; 10(1):13–53.

43. Yang C, Yu M, Hu F, Jiang Y, Li Y. Utilizing cloud computing to address big geospatial data challenges.
Computers, Environment and Urban Systems 2017; 61:120–128.

44. Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the condor experience. Concurrency and
computation: practice and experience 2005; 17(2-4):323–356.

45. Laure E, Edlund A, Pacini F, Buncic P, Barroso M, Di Meglio A, Prelz F, Frohner A, Mulmo O, Krenek A, et al..
Programming the grid with glite. Technical Report, CERN 2006.

46. Foster I, Kesselman C. Globus: A metacomputing infrastructure toolkit. International Journal of High
Performance Computing Applications 1997; 11(2):115–128.

47. Mell P, Grance T. The nist definition of cloud computing. National Institute of Standards and Technology 2009;
53(6):50.

48. Apache Software Fundation. Apache hadoop. Online publication: http://hadoop.apache.org 2011; .
49. Worldprogramming. Wps configuration for hadoop 2016. https://www.

worldprogramming.com/docs/wps/documentation/3.2/07%20interop_for_hadoop/
WPS-Configuration-for-Hadoop.pdf/WPS-Configuration-for-Hadoop-en.pdf.

50. Amazon Inc. Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute Cloud (Amazon EC2) 2010;
.

51. Google Inc. Google cloud platform 2016. cloud.google.com.
52. Microsoft Inc. Microsoft azure platform 2016. azure.microsoft.com.
53. Hull D, Wolstencroft K, Stevent R, Globe C, Pocock M, Li P, Oinn T. Taverna: a tool for building and running

workflows of services. Nucleic Acids Research 2006; 1(34):729–732.
54. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y. Galaxy: a platform for interactive

large-scale genome analysis. Genome Research 2005; 10(15):1451–1455.
55. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B. Knime-the konstanz

information miner: version 2.0 and beyond. AcM SIGKDD explorations Newsletter 2009; 11(1):26–31.
56. 52North. The 52north wps service 2016. http://52north.org/communities/geoprocessing/

wps/.
57. Zoo-Project. Zoo open wps platform 2016. www.zoo-project.org.
58. Steiniger S, Hunter AJ. Free and open source gis software for building a spatial data infrastructure. Geospatial

free and open source software in the 21st century 2012; :247–261.
59. Degree. Open source software for spatial data infrastructures 2016. www.deegree.org.
60. QGIS. A free and open source geographic information system 2016. http://qgis.org/en/site/.
61. Pollock N, Williams R. E-infrastructures: How do we know and understand them? strategic ethnography and the

biography of artefacts. Computer Supported Cooperative Work (CSCW) 2010; 19(6):521–556.
62. Chapman A, Russell R. Jisc shared infrastructure services synthesis study: A review of the shared infrastructure

for the jisc information environment. Online Publication: http://opus.bath.ac.uk/17890/ 2006; .
63. Hey T, Trefethen AE. Cyberinfrastructure for e-science. Science 2005; 308(5723):817–821.
64. Redkar T, Guidici T, Meister T. Windows Azure Platform, vol. 1. Springer, 2011.
65. Apache Software Fundation. Apache tomcat 2016. http://tomcat.apache.org/.
66. National Research Council of Italy. Smartgears - gcube system. java libraries to turn servlet-based containers

and applications into gcube resources transparently 2016. https://wiki.gcube-system.org/gcube/
SmartGears.

67. National Research Council of Italy. The d4science information system 2016. https://wiki.
gcube-system.org/gcube/Information_System.

68. Dimakis AG, Godfrey PB, Wu Y, Wainwright MJ, Ramchandran K. Network coding for distributed storage
systems. IEEE Transactions on Information Theory 2010; 56(9):4539–4551.

69. Lakshman A, Malik P. Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems
Review 2010; 44(2):35–40.

70. Banker K. MongoDB in action. Manning Publications Co., 2011.
71. Gilbert S, Lynch N. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services.

ACM SIGACT News 2002; 33(2):51–59.
72. National Research Council of Italy. The d4science distributed storage management system 2016. https:

//wiki.gcube-system.org/gcube/Storage_Management.
73. Assante M, Candela L, Castelli D, Coro G, Lelii L, Pagano P. Virtual research environments as-a-service by gcube.

PeerJ Preprints 2016; 4:e2511v1.
74. Groot R, McLaughlin JD. Geospatial data infrastructure: concepts, cases, and good practice. Oxford university

press Oxford, 2000.
75. Trumpy E, Coro G, Manzella A, Pagano P, Castelli D, Calcagno P, Nador A, Bragasson T, Grellet S, Siddiqi G.

Building a european geothermal information network using a distributed e-infrastructure. International Journal of
Digital Earth 2016; 9(5):499–519.

76. Shekhar S, Xiong H. Web coverage service. Encyclopedia of GIS. Springer, 2008; 1255–1255.
77. Cornillon P, Gallagher J, Sgouros T. Opendap: Accessing data in a distributed, heterogeneous environment. Data

Science Journal 2003; 2:164–174.
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Figure 1. Architecture of the gCube DataMiner system. On the right side, the architecture of the
computational system is reported, with two clusters of machines used for Local and Cloud computations
respectively. Also, a number of clients is indicated that are able to natively interact with the system, i.e. Java,
R, QGis, Web browser, HTML pages through an OpenCPU service instance. On the left side, e-Infrastructure
resources are reported, which are indexed on the Information System (IS) along with the DataMiner services
and other possible external WPS services. All the DataMiner services are able to write data on a Distributed

Storage System and to organize/share the data through the D4Science e-Infrastructure Workspace.
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<?xml v e r s i o n="1.0" encoding="UTF-8"?>
<wps:ExecuteResponse xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance" xmlns:ows="http://www.opengis.net/ows/1.1" xsi:schemaLocation="
http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response
.xsd" serviceInstance="http://dataminer2-p-d4s.d4science.org:80/wps/WebProcessingService"

xml: lang="en-US" service="WPS" v e r s i o n="1.0.0">
<wps:Process wps:processVersion="1.1.0">
<ows:Identifier>org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.

generators.FEED_FORWARD_A_N_N_DISTRIBUTION</ows:Identifier>
<ows:Title>FEED_FORWARD_A_N_N_DISTRIBUTION</ows:Title>

</wps:Process>
<wps:Status creationTime="2016-11-16T15:20:53.965+01:00">
<wps:ProcessSucceeded>Process successful</wps:ProcessSucceeded>

</wps:Status>
<wps:ProcessOutputs>
<wps:Output>

<ows:Identifier>OutputTable</ows:Identifier>
<ows:Title>Output table [a http link to a table in UTF-8 ecoding following this

template: (TESTSET) http://goo.gl/LZHNXt]</ows:Title>
<wps:Data>

<wps:ComplexData mimeType="text/csv">
a,b,tvalue
1,0,0.06122341
0,1,0.056781072
0,0,0.00084975874
1,1,0.96765828
</wps:ComplexData>
</wps:Data>

</wps:Output>
<wps:Output>

<ows:Identifier>non_deterministic_output</ows:Identifier>
<ows:Title>NonDeterministicOutput</ows:Title>
<wps:Data>

<wps:ComplexData schema="http://schemas.opengis.net/gml/2.1.2/feature.xsd" mimeType="
text/xml; subtype=gml/2.1.2">

<ogr:FeatureCollection xmlns:ogr="http://ogr.maptools.org/" xmlns:gml="http://www.
opengis.net/gml" xmlns:d4science="http://www.d4science.org" xsi:schemaLocation=
"http://ogr.maptools.org/ result_8751.xsd">

<gml:featureMember>
<ogr:Result fid="F0">
<d4science:Data>http://data.d4science.org/

RlNPc1lKS3R6ME5GZXRTa2prN1d2UnZRNmYrNzltNTJHbWJQNStIS0N6Yz0-VLT</
d4science:Data>

<d4science:Description>Output table [a http link to a table in UTF-8 ecoding
following this template: (TESTSET) http://goo.gl/LZHNXt]</
d4science:Description>

<d4science:MimeType>text/csv</d4science:MimeType>
</ogr:Result>

</gml:featureMember>
</ogr:FeatureCollection>

</wps:ComplexData>
</wps:Data>

</wps:Output>
</wps:ProcessOutputs>

</wps:ExecuteResponse>

Figure 2. Output of a DataMiner process that reports the results of an Artificial Neural Network projection
of the inputs (a,b) of an AND port. The results are reported both as an in-line WPS complex data and as a
public HTTP link pointing to the D4Science Distributed Storage System and embedded in a GML document.
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<?xml v e r s i o n="1.0" encoding="UTF-8"?><prov:document xmlns:d4s="http://d4science.org/#"
xmlns:prov=http://www.w3.org/ns/prov#

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">

<prov:activity prov:id="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER_ID_ba09841f-6656-4f6d-b6f1-
b8fd532d32e9">

<prov:startTime>11/11/2016 15:05:53</prov:startTime>
<prov:endTime>11/11/2016 15:05:55</prov:endTime>
<prov:type xsi:type="xsd:QName">d4s:computation</prov:type>
<prov:softwareAgent prov:id="d4s:dataminer.d4science.org"/>
<prov:person prov:id="d4s:gianpaolo.coro"/>
<prov:entity prov:id="d4s:operator_name">

<prov:value xsi:type="xsd:string">FEED_FORWARD_NEURAL_NETWORK_TRAINER</prov:value>
</prov:entity>
<prov:entity prov:id="d4s:operator_id">

<prov:value xsi:type="xsd:string">org.gcube.dataanalysis.wps.statisticalmanager.
synchserver.mappedclasses.

transducerers.FEED_FORWARD_NEURAL_NETWORK_TRAINER</prov:value>
</prov:entity>
<prov:entity prov:id="d4s:operator_description">

<prov:value xsi:type="xsd:string">The algorithm trains a Feed Forward Artificial
Neural Network using an online Back-Propagation

procedure and returns the training error and a binary file containing the trained network<
/prov:value>

</prov:entity>
<prov:entity prov:id="d4s:VRE">

<prov:value xsi:type="xsd:string">/d4science.research-infrastructures.eu/gCubeApps/
RPrototypingLab</prov:value>

</prov:entity>
<prov:entity prov:id="d4s:status">

<prov:value xsi:type="xsd:string">100</prov:value>
</prov:entity>
<prov:entity prov:id="d4s:inputTable_[FEED_FORWARD_NEURAL_NETWORK_TRAINER_ID_ba09841f

-6656-4f6d-b6f1-b8fd532d32e9].csv">
<prov:value xsi:type="xsd:string">http://data.d4science.org/

Tm5UMkwyellGY0tEa2RCMXpYd3JUZmdyWXYyb2NubjdHbWJQNStIS0N6Yz0</prov:value>
<prov:activity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER_ID_ba09841f-6656-4

f6d-b6f1-b8fd532d32e9"/>
<prov:entity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER"/>
<prov:entity prov:id="d4s:data_description">

<prov:value xsi:type="xsd:string">inputTable</prov:value>
</prov:entity>
<prov:type xsi:type="xsd:QName">d4s:IMPORTED</prov:type>
<prov:type xsi:type="xsd:QName">d4s:text/csv</prov:type>

</prov:entity>
<prov:entity prov:id="d4s:learningRate">

<prov:value xsi:type="xsd:string">0.5</prov:value>
<prov:activity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER_ID_ba09841f-6656-4

f6d-b6f1-b8fd532d32e9"/>
<prov:entity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER"/>
<prov:entity prov:id="d4s:data_description">

<prov:value xsi:type="xsd:string">learningRate</prov:value>
</prov:entity>

</prov:entity>
<prov:entity prov:id="d4s:TrainedNeuralNetwork">

<prov:value xsi:type="xsd:string">http://data.d4science.org/
STlYeDRwWDFIYnlEa2RCMXpYd3JUY0JNWHZNTmN5VDlHbWJQNStIS0N6Yz0</prov:value>

<prov:activity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER_ID_ba09841f-6656-4
f6d-b6f1-b8fd532d32e9"/>

<prov:entity prov:ref="d4s:FEED_FORWARD_NEURAL_NETWORK_TRAINER"/>
<prov:entity prov:id="d4s:data_description">

<prov:value xsi:type="xsd:string">Trained Neural Network</prov:value>
</prov:entity>
<prov:type xsi:type="xsd:QName">d4s:COMPUTED</prov:type>
<prov:type xsi:type="xsd:QName">d4s:application/d4science</prov:type>

</prov:entity>
</prov:activity>

</prov:document>

Figure 3. Provenance of a DataMiner process that trained an Artificial Neural Network. The computation
is modelled as an “activity” and “entities” are associated to inputs and output. The “entity” of the complex
input (QName equal to d4s:IMPORTED) and output (QName equal to d4s:COMPUTED) have internal links
to the “activity” so that they can be separated from the provenance document while keeping a reference to

the computation that either used or produced them.
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Figure 4. Web interface of the gCube DataMiner system in a D4Science VRE (BiodiversityLab): (a) a
training algorithm for an Artificial Neural Network is displayed; after the computation, the result (a
trained network binary file) is reported under the completion bar, for downloading; (b) in the “Check the
Computations” panel, the list of executed computations is displayed with the associated metadata; (c)
by pressing the “Show” button, the metadata associated to a computation are reported in a user-friendly
structured way, where inputs and outputs can be downloaded; (d) the “Access to the Data Space” panel
allows retrieving the overall list of input and output data used in the computations, with medatata pointing

to the associated computation.
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Figure 5. Comparison of the architectures of the (a) D4Science Statistical Manager (StatMan) and (b)
DataMiner.
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Figure 6. Difference in the performance of the same process (BiOnym [99], applied to 1024 species scientific
names) running on DataMiner with respect to the Statistical Manager reported (a) at the variation of the

number of a computational nodes and (b) per step of the computational process.
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