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Abstract

Carpooling, i.e. the sharing of vehicles to reach common destinations,
is often performed to reduce costs and pollution. Recent work on carpool-
ing takes into account, besides mobility matches, also social aspects and,
more generally, non-monetary incentives. In line with this, we present
GRAAL, a data-driven methodology for GReen And sociAL carpooling.
GRAAL optimizes a carpooling system not only by minimizing the num-
ber of cars needed at the city level, but also by maximizing the enjoyability
of people sharing a trip. We introduce a measure of enjoyability based
on people’s interests, social links, and tendency to connect to people with
similar or dissimilar interests. GRAAL computes the enjoyability within
a set of users from crowd-sourced data, and then uses it on real world
datasets to optimize a weighted linear combination of number of cars and
enjoyability. To tune this weight, and to investigate the users’ interest
on the social aspects of carpooling, we conducted an online survey on po-
tential carpooling users. We present the results of applying GRAAL on
real world crowd-sourced data from the cities of Rome and San Francisco.
Computational results are presented from both the city and the user per-
spective. Using the crowd-sourced weight, GRAAL is able to significantly
reduce the number of cars needed, while keeping a high level of enjoyabil-
ity on the tested data-set. From the user perspective, we show how the
entire per-car distribution of enjoyability is increased with respect to the
baselines.
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1 Introduction

Carpooling is a scheme in which people share a vehicle in order to reach common
or nearby destinations. Despite its clear advantages in reducing costs, pollution,
and time spent in finding a car park, there are still a few obstacles that prevents
it from being the preferred way to move: safety of passengers, sub-optimal
mobility matches, and time flexibility, among others.

A common underlying aspect across many such obstacles is a hidden psy-
chological barrier that makes carpooling less attractive. However, due to the
increasing popularity of online social networks in the last few years, there are
some social aspects that people intentionally decide to share with the outside
world, including strangers. In fact, sharing interests, pictures, and visited lo-
cations, are the basis of the success of services such as Facebook, Twitter, and
Foursquare. The availability of such information allows external services and
people to use this data for third party applications. As a result, such social
aspects can be now measured, and exploited to overcome this invisible psycho-
logical barrier in the context of carpooling.

Inspired by the literature on carpooling [35, 41, 11, 13, 27], and by the recent
work on data-driven analysis in urban networks [31] and data-driven optimiza-
tion of urban transit networks [30, 2], we present a mathematical formulation
of the carpooling problem taking into account the above factors, and a data-
driven methodology to automatically derive mobility and social matches to be
used as recommendations for the carpooling system. The main goal of our work
is to present a “what-if analysis” in which we measure, from sources available
online, how users would enjoy sharing a trip with other people, and to devise
a new methodology for carpooling driven by these measurements. Our contri-
bution is mainly methodological, rather than a carpooling system tested on the
field. Thus, we focus in this paper on the theoretical core of carpooling, i.e. the
data-driven multi-objective optimization problem.

In contrast with on-demand carpooling setting, where the user typically
opens a mobile application to select origin, destination and departure time, and
find matching drivers, we process data in temporal batches and focus on recur-
ring trips. In turn, well known results on human behavior analytics [17, 34] show
that our mobility is largely predictable, i.e. processing data in batches, rather
than in an on-demand basis, covers a large portion of our demand. Moreover,
this allows us to gain more room for optimization, as we treat space, time, and
interest patterns of users all at once.

Based on all the above, we build GRAAL, a methodology for GReen And
sociAL carpooling. GRAAL optimizes a carpooling system, at the city level,
not only by minimizing the number of cars needed, but also by maximizing the
enjoyability of people traveling together. Starting from the concept presented
by the authors in [21] we introduce a measure of enjoyability based on people’s
interests, social links, and tendency to connect to people with similar or dis-
similar interests. Specifically, our enjoyability measure takes into account two
factors: (i) what we call like-mindness, i.e. a topic similarity between any two
users; and (ii) what we define as homophily, i.e. the tendency of a person to
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group with similar ones. Previous attempts to use social context in carpool-
ing include putting together in a car people who are friends [8]. However, by
looking only at the direct (or even the two-hop) friends, we may loose other
good matches from the optimization model, as the set of potential drivers (or
co-passengers) is usually much larger than the typical number of friends pairs
in a social network.

In GRAAL, we introduce a multi-objective optimization based on a weighted
linear combination of two components: i) number of cars (which is minimized)
and ii) total enjoyability of the users in the system (which is maximized). In
our experiments, we vary this weight, which we refer to as α, between 0 and 1.
Moreover, we learn a crowd-sourced value for α by means of an online survey.
The survey has the double effect of both confirming the interest of potential
carpooling users to a more social solution, and providing us with a realistic
estimation of α to use in the optimization model. We present the results of ap-
plying GRAAL on real world crowd-sourced data from Twitter, geo-located in
the cities of Rome and San Francisco. Results are presented from both the city-
wide and the user perspective, and we compare them with different baselines:
a random model; a heuristic model aimed at maximizing the user enjoyability;
GRAAL model with a value of α equals to one that makes GRAAL minimize
only the number of cars (which is derived from the state of art of carpooling);
GRAAL model with α set to zero, such that only the maximization of enjoy-
ability is performed. Results show that with the crowd-sourced α, GRAAL is
able to reduce the number of cars needed compared to using private vehicles
(i.e., each user driving his/her own car), while keeping a high level of total en-
joyability. From the user perspective, we show how the per-car distribution of
enjoyability is increased with respect to our baselines. We also compare our
algorithm with the methodology described in [8]. Although the computational
results are based on real-data, however the outcome and the analysis are the-
oretical as they depend on the assumption that all users in the system would
accept our recommendations. In line with the literature of theoretical models
for carpooling, a field test with an evaluation involving the end users is out of
scope in this paper. To summarize, the main contributions of this paper are:

• we formulate the carpooling problem as a multi-objective optimization of
number of cars and enjoyability;

• we learn the weight for the multi-objective optimization by means of a
user study;

• we build a methodology extracting enjoyability and mobility demand from
data like Twitter;

• we show the results of the application of our methodology on real world
data, from the perspectives of the city, and the users, and we evaluate
against different baselines.

The paper is organized as follows: related work is presented in Section 2; we
define the carpooling problem and the formulation in Section 3; the methodology
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is described in Section 4; the user study is presented in Section 5; experiments
on Rome and San Francisco data are presented in Section 6; limitations and
future work are presented in Section 7; the conclusion is summarized in Section
8.

2 Related work

Our presneted work is positioned within the theoretical framework of human
mobility and recommendations for carpooling, and finds motivation in the work
focusing on psychological barriers of carpooling [13]. The method proposed ex-
ploits systematic behaviors in human daily travels to produce carpooling recom-
mendations. With the increasing availability of data, several research directions
started in this area. Using fine mobility data, [40] and [22] extract not only pat-
terns of presence in locations, but also systematic routes, from GPS trajectories.
These routes are used to find user-to-user matches and to provide ride-sharing
recommendations. In [24], a methodology working on GPS data that organizes
trajectories in a tree to speed up geographical carpooling queries, is developed.

Mobility has been used in conjunction with other types of information to im-
prove recommendations. For example, [7] proposes a location prediction model
that combines users movements with a social network structure, highlighting
how the social dimension may improve significantly the performances. Geo-
social data is used in [14], recommending individuals to join their friends during
trips by using home location models and users’ similarities. In [8] the authors
derive home and work locations using Twitter and Foursquare data, then social
ties are used to develop an algorithm for matching users with similar mobility
patterns. Twitter data is used also in [15] as a complementary source of in-
formation for urban planning applications. Similarly, [10] proposes a model to
find compatible matches for traditional groups of users and also to find rides
in alternative groups. In [3] the authors develop an application for car sharing
by exploiting a clustering algorithm applied to labeled trajectories. Finally, [6]
introduces a Facebook-based carpooling, with Twitter-based traffic monitoring
and Flickr-based incident reporting applications.

Carpooling is often modeled as an optimization problem [16], where it finds
several solutions. In [9], the problem is reduced to the chairman assignment
problem [38], while [29] use an instance of the transportation problem. In [42],
the authors propose a carpooling based on taxicab. That is, they analyze the
reduction of circulating taxis in presence of ride sharing. In [26], a dynamic
ride-sharing problem is proposed to efficiently serve real-time requests sent by
taxi users and to generate ride-sharing schedules that reduce the total travel
distance. The authors of [23] present an algorithm that provides carpooling
advises by maximizing the expected value for negotiation success. Other related
work [37, 19, 20], study the impact of using network analysis for better matches
in location-based services and applications. With a spirit similar to GRAAL,
[33] proposed a journey planner that maximizes (a different concept of) the
enjoyability of the journey. Besides solving a different problem (route planning,
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as opposed to carpooling), their concept of enjoyability differs from ours, as it is
based on characteristics of the journey itself (presence of trees, landscape, etc.),
rather than on the relation among users.

3 Problem formulation

The objective of the carpooling optimization problem proposed in this paper is
the minimization of the total number of cars in the system, together with the
the maximization of the enjoyability experienced by the users traveling together.
Our goal is to follow the main advantage of the carpooling idea, i.e. lowering
the number of cars on the road, while ensuring that the passengers will enjoy
traveling together. We believe this may serve as an additional, non-monetary,
incentive to motivate people to share a car. Our user study presented in Section
5 shows how the potential users that we polled are actually sensitive to these
two functions. This section presents the needed preliminaries and definitions
to formulate the model in Section 3.1, while the optimization model itself is
presented in Section 3.2

3.1 Preliminaries

Enjoyability. We define a measure of enjoyability that takes into account not
only whether two users share the same interests, but also whether they tend to
connect to people with similar or dissimilar interests. Let U be a set of users.
Every user i ∈ U may consider other users in U as friends, or interesting in
general, and we denote such set of users as Fi. Each user i generates, or is
interested in, a set of articles or documents Di. Given i and Di, we can build
a vector of topics ~ti,where each topic is weighted by its relative importance,
i.e. frequency, within the documents. We define a measure, which we call like-
mindness, of how much two users are interested in the same topics, as follows.

Definition 1 (Like-mindness) Given two users i, j we call their like-mindness
the number:

lmij = 2
~ti · ~tj
‖~ti‖‖~tj‖

− 1

We say i and j are like-minded, i.e. they share a set of interests, if lmij ≈ 1,
not-like-minded if lmij ≈ −1. We want to take into account two different
categories of people: those who are more prone to be in contact with other
people with similar interests (homopilous people), and those who tend to connect
with people with dissimilar interest (heterophilous people). For this reason we
evaluate a user’s tendency to connect with people with whom he/she has a high
or low like-mindness. In social networks, the concept of homophily is well known
[28].
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Definition 2 (Homophily) Given a user i we compute his/her homophily as
the median of the like-mindness between i and other users in Fi:

hi = median
j∈Fi

lmij

If hi ≈ 1, we say that i tends to be homophilous, while if hi ≈ −1 we say
that i tends to be heterophilous. Our objective is to relate the like-mindness
of a pair of users with the homophily/heterophily of the single user. Thus, we
define the enjoyability as:

Definition 3 (Enjoyability) Given two users i, j, their like-mindness lmij

and their homophily values hi, hj, we define the enjoyability of them being to-
gether as:

eij =
lmijhi + lmijhj

2
We denote the set E to be the set of the enjoyabilities computed between each
pair of users. Note that eij ≈ 1 if either: i) both i and j are homophilous
and like-minded; or ii) i and j are heterophilous and not like-minded. In the
other cases, eij ≈ −1. The added value of social diversity has been studied in
social science, and finds applications also in the scientific community. Socio-
cultural diversity is often considered fundamental [32] to make people enjoying
a discussion.

The objective function presented in Section 3.2 is a linear combination of
two components: number of cars and total enjoyability. As we minimize the
number of cars, we take into account the unenjoyability of the system, rather
than the enjoyability, to minimize this as well. The unenjoyability is computed
as ēij = 1− 1

2 (eij + 1) .

Mobility demand. Another important step when considering carpooling is
the analysis of the users’ mobility demand. To avoid lack of generality, we
define a location l as any geo-referenced format. Depending on the available
data, a location may be a pair of (lat, lon) GPS coordinates, a geo-hashed area
belonging to a geo-index, or any shape with associated geographical information
used in a GIS system. In our experiments, we divide the areas of interest in a
grid of cells of either 500m or 70m of width. Each user i can have a different
location l over time. We call time-stamped location a pair tsl = (l, ts) where
l is a location and ts is an associated relative time-stamp. Two time-stamped
locations are defined to be close in space and time as follows:

Definition 4 (Close time-stamped locations) Given two time-stamped lo-
cations tsl1 = (l1, ts1) and tsl2 = (l2, ts2), we say that tsl1 is close to tsl2
(tsl1 'δ,τ tsl2) iff

space-dist(l1, l2) ≤ δ and time-dist(ts1, ts2) ≤ τ

where space-dist(·, ·) and time-dist(·, ·) are two functions of spatial and temporal
distance.
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The choice of the specific functions is left for the specific application. Examples
for distance calculation include the euclidean, spherical, or Manhattan, and for
time function one can consider simply the time difference. In this work, we
use the spherical distance between two cells of the grid defined above, and the
time difference for computing the time. If ts1 or ts2 are undefined, then the '
operator considers only space-dist(l1, l2) ≤ δ. We refer to a trajectory as the
sequence tr = {tsl1, . . . , tsln} of time-stamped locations. We associate, to each
user i, a set of trajectories, which constitutes the mobility demand Ti = {tr} for
that user. We indicate with TU = {Ti} the mobility demand of all the users.

For the sake of carpooling, we have to define a match between two trajec-
tories, i.e. the trajectory of the user who will be the candidate driver, and one
who will be the candidate passenger. Several options are possible here, but we
chose to force a matching of the two initial time-stamped locations of the two
trajectories, and allow for a match of the final time-stamped location of the tra-
jectory of the candidate passenger with any of the locations of the trajectory of
the candidate driver, including (where possible) the final time-stamped one. In
carpooling terms, this means that the driver-passenger pair should depart from
their initial locations (the first on their trajectories), but the driver is allowed
to drop the passenger on any of the locations along the associated trajectory
which are close enough. More formally, we define the following condition.

Definition 5 (Trajectory containment) Given two trajectories tr′ = {tsl′1,
. . . , tsl′n̄} and tr′′ = {tsl′′1 , . . . , tsl′′m̄}, we say that tr′ contains tr′′ (tr′ vδ,τ tr′′)
iff

tsl′1 'δ,τ tsl′′1 and ∃n, 1 < n ≤ n̄ s.t. tsl′n 'δ,τ tsl′′m̄
Note that this definition can be extended to any origin and destination, if re-
quired by the final application. In practice we fix the maximum walking distance
from the passenger’s departure/arrival locations to pick-up/drop-off points (set
by the driver) as δ and the maximum time difference in departure and arrival
times as τ . Given the above definition, two users i and j having trajectories tri
and trj in their mobility demand, respectively, generate a recommendation for
carpooling if tri is contained in trj or viceversa. More formally, we define the
recommendation as follows.

Definition 6 (Recommendations) Given a set of users U , we define RU
as the set of recommendations with respect to the users in U . RU = {rij}
where i, j ∈ U are users and rij = (i, j, tri, trj) denoting that passenger j is
recommended to driver i because

∃ trj ∈ Tj and tri ∈ Ti s.t. tri vδ,τ trj

where Ti and Tj are the mobility demands of i and j, and j is the passenger
and i is the driver.

By Definition 5, a passenger has to walk no more than δ, and wait no more
than τ . We can group all the recommendations in a set RU , containing all
the possible recommendations between any pair of users in U . Following the
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recommendations in RU we call D the set of possible drivers and P the set
of possible passengers. For each recommendation we define the variable mij

that is computed as the sum of the walking distances for pick-up and drop-off
point and then normalized by the maximum. This is referred to as normalized
distance between trajectories. Note that mij exists within the interval [0, 1] only
if a recommendation between i and j exists

Given all the definitions above, the objective of the optimization method is
to find a set ARU

of assignments containing a subset of recommendations of
RU , such that the total number of cars required to satisfy TU is minimized and
the total enjoyability of the system is maximized and the following constraints
are satisfied: i) no user is both passenger and driver; ii) each vehicle holds no
more than γ passengers; iii) each user can be found in only one vehicle.

3.2 Optimization problem

Given the enjoyability and mobility patterns described above we formulate the
problem using an integer linear program. We start from a set of users that
can be potentially grouped together into cars. Within each car only one of the
users is a driver while the other ones are defined as passengers. The number of
drivers in the system indicates the number of cars allocated by the algorithm
for the entire set of users. The grouping process is regulated by two aspects: i)
trajectory containment; ii) enjoyability between users. The optimization proce-
dure takes as input the enjoyability values and the set of recommendations and
generates the optimal assignment ARU

. From the recommendation set RU we
can build three sets: D, the set of candidate drivers in the system; P, the set
of candidate passengers (D and P may overlap in the recommendations, but
not in an assignment); C, the set of possible couples (i, j) driver-passenger. We
define the following parameters:

• a parameter mij describing the normalized trajectory distance, with mij ∈
[0, 1] if driver i can give a ride to passenger j. We set mij > 1 otherwise.
We call M the set of all mij with i, j ∈ U ;

• a parameter ēij that describes the unenjoyability of two users traveling
together, ēij ∈ [0, 1] where 1 indicates that users i and j are not prone
to travel together and 0 indicates that users i and j are prone to travel
together. Further, ēii = 1 so as to indicate that a user will not enjoy
traveling alone.

Additionally, we also define the following variables:

• a binary variable xij that describes the assignments between drivers and
passengers, specifically xij = 1 if i is the driver of passenger j, xii = 1 if
i is a driver and zero otherwise;

• a binary variable yjki indicates whether two passengers share the same
car, specifically yjki = 1 if passengers j and k share the same car with
driver i, and zero otherwise;
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The optimization model finds the minimum, over xij , of the following ob-
jective function:

αρ
∑
i∈D

xii + (1− α)(
∑

(i,j)∈C

ēij · xij +
∑
i∈D

∑
(i,j)(i,k)∈C,j 6=k

ējk · yjki) (1)

where the parameter ρ is the cost of adding a new car to the system. The
purpose of the scale factor ρ is to sum the two objectives and have a comparable
scale. Furthermore, the weight α is used to give a preference for minimizing the
number of cars and minimizing the total unenjoyability in the system. The
data-driven method to compute α and ρ, and is explained in Section 6.

The optimization is subject to:∑
j∈P

xij ≤ γxii,∀i ∈ D (2)

where the maximum number of passengers per car is set to γ.∑
i∈D

xij = 1,∀j ∈ P (3)

where one driver has to be assigned to only one car.

mij · xij ≤ 1,∀(i, j) ∈ C (4)

a limit different than 1, within [0, 1] may be taken instead, to restrict the set
of recommendations to take into account. For the sake of broader optimization,
we take them all.

yjki ≤ xij (5)

yjki ≤ xik (6)

yjki ≥ xij + xik − 1 (7)

∀i ∈ D, j ∈ P, k ∈ P : (i, j) ∈ C, (i, k) ∈ C, j 6= k

that are used to linearize the relation yjki = xij · xik.
The algorithm proposed aims at minimizing the number of cars jointly with

maximizing the enjoyability of the system (formulated as minimization of the
unenjoyability for convenience here). The output is to group passengers in cars
and at the same time ensure that they will enjoy the ride in each car.

4 Methodology

In this Section, we present the GRAAL methodology (as well as some baselines),
to derive an optimal assignment starting from Twitter data, to come-up with
the relevant parameters. While the problem formulation was intentionally left
generic and agnostic to the real dataset used, this methodology assumes Twitter
as sole source of data, although we discuss the applicability of GRAAL to other
types of data in Section 7.
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4.1 Assumptions

Twitter may be not the perfect source of data for any of the three dimensions
(text, trajectory, and co-presence) that we need for the optimization model.
However, it is among the few public ones providing some information in all of
three areas. We tackled the problems arising from not having ideal data as
follows:

• Co-presence: we estimate the co-presence of two users in a cell at the same
time, and thus the mobility demand of users, by aggregating several days
of data.

• Trajectory: as geo-tagged tweets are too sparse to track users between
origin/destination pairs, we assume every user is following the best path
between them, which we compute by running the same journey planner
for every pair of user locations.

• Topic mining: tweets are short, and the typical usage of Twitter include
typos, abbreviations and slang. However, topic extraction via Latent
Dirichlet Allocation [4] is typical on documents, and is shown to provide
insightful results also from Twitter [43].

Moreover, we work under the following assumptions, most of which are com-
mon in this context: i) we assume all the users in the system travel by car; ii)
we assume all the cars moving from A to B follow the trajectory returned by a
journey planner (the same planner is used by all the cars); iii) we assume users
accept the recommendations; iv) we assume to be working on frequent, recur-
ring mobility, rather than solving the on-demand carpooling problem; v) having
divided the space into a grid of cells, we perform the geo-match on the center
of the cells. Section 7 discusses some limitations arising from our assumptions.

4.2 Algorithm

Algorithm 1 shows the steps performed by our methodology to solve the socially-
optimal carpooling problem. The algorithm takes five parameters as input, and
we explain in Section 6 how to tune the last two: i) the bounding box where
to perform carpooling, ii) a spatial threshold δ, iii) a temporal threshold τ to
define the time-stamped locations, and to compute trajectory containment, iv)
α, to balance enjoyability and number of cars, and v) ρ, the cost of adding a car
to the system. Lines 1 − 3 are used to get a geo-tagged corpus of tweets from
the bounding box, to derive a set of users from it, and to filter those users with
poor data. Namely, we remove users with an average tweet per day ratio below
a certain threshold (see Section 6 for details), and with a ratio between average
number of distinct words and number of tweets below 1. This last step aims at
removing automated tweets, and spammers. In lines 4 − 10, for each user, we
get his/her tweets (not necessarily geo-located) to build a larger corpus (geo-
located tweets constitute a small fraction of the entire set of tweets), which we
clean by removing stopwords and performing stemming. Then we get the users’
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friends list, i.e. the other users that the user is following. In line 7 we compute
the vector of most visited (systematic) time-stamped locations of a user, given
δ and τ . In particular, we define a spatial grid over the boundingbox, consisting
in cells of width δ, while we slice time in non overlapping slots of duration
τ . From this set, in line 8 we query a journey planner to derive trajectories
connecting any two time-stamped locations in each users’ Lu. Finally, in line
11, we compute the vector of topics contained in the users’ documents. This is
done by running a Hierarchical Dirichlet Process (HDP) [36] on the users’ tweets
texts. HDP is a parameter-free version of Latent Dirichlet Allocation (LDA) [4]
that automatically infers the number of topics. Lines 12− 13 compute the like-
mindness between any two users, and then, for each user, use the median value
of it to compute the homophily in lines 14 − 15. In lines 16 − 18, we compute
the enjoyability values between any two users. In lines 19− 21 we generate the
recommendations from the set of mobility demands. In line 22, we build the
matrix of mobility matches from the recommendations. Finally, we solve the
multi-objective optimization in line 23 to find a set of assignments minimizing
the objective function described in Section 3.

To clarify what happens to each user in the system, we consider the user’s
perspective: assuming the user has passed the filter in line 3 (i.e. we have
enough data about this user - this filter may be applied once for all, and could
be lifted for different input data like mobile phone records, user-generated input,
etc.), spatio-temporal as well as social and topic analytics are performed in line
4-18 and the computed parameters are associated to this user. In lines 19-22
an implicit “labeling” of users as possible passengers and drivers is done. In
fact, we review all the trajectories mined above, and we find matches between
them. If, for a given user, there are no matches at all, this user will not be
in the RU set, and will be driving a single occupancy vehicle on his/her own.
These users are not considered in the optimization at all, as no recommendations
are possible for them. For every other user, generally speaking, it is true that
they may be considered as either passengers or drivers. For instance, if user
A has a trajectory including one of the trajectories of user B, and user B has
a trajectory including one of the trajectories of user C, then A can potentially
become a driver, B can potentially become either a driver or a passenger, and
C can potentially become a passenger. However, the optimization in line 23
takes all these possibilities into account, and a user is finally either labeled as a
passenger, or a driver, but cannot be both. In other words, we do not pre-select
who are the drivers, and who are the passengers, but this is rather automatically
discovered by the optimization model.

4.3 Complexity

The complexity of GRAAL is dominated by the optimization step. Optimiza-
tion problems involving discrete decision variables are NP-Hard in general [39].
However, as this may be optionally replaced by heuristic approaches, and for the
sake of completeness, we report also the complexity of the other relevant steps:
computeTimeStampedLocations and computeTrajectories are linear in the num-
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Algorithm 1 GRAAL (boundingbox, δ, τ, α, ρ)

1: G ← getTweets(boundingbox)
2: U ← getUsers(G)
3: U ← filterUsers(U)
4: for i ∈ U do
5: Di ← getTweets(i)
6: Fi ← getFriends(i)
7: Li ← computeT imeStampedLocations(Di, δ, τ)
8: Ti ← computeTrajectories(Li)
9: TU ← T ∪ Ti

10: DU ← D ∪Di

11: {~ti} ← computeTopics(DU )
12: for i, j ∈ U do
13: lmi,j ← computeLikemindness(~ti, ~ti)

14: for i ∈ U do
15: hi ← computeHomophily(i, Fi)

16: for i, j ∈ U do
17: ei,j ← computeEnj(lmi,j , hi, hj)
18: E ← E ∪ ei,j
19: for tri, trj ∈ T do
20: if tri vδ,τ trj then
21: RU ← RU ∪ (i, j, tri, trj)

22: M ← computeMobilityMatches(RU )
23: ARU

← optimize(α, ρ,E,M)
24: return ARU

ber of locations; regarding HDP, with large amounts of data, the time to process
individual documents increases due to increased density, leading in the worst
case to a super-linear increase (cubic in the number of terms) [25]; compute-
Likemindness is constant, but it is executed in lines 12−13 which are quadratic
in the number of users; in the same way, the computation of homophily in line
15 is constant but is repeated linearly in the number of users; lines 16 − 18,
computing the enjoyability which takes constant time for each pair of users, is
quadratic in the number of users; line 21 is executed in a nested for loop which
is quadratic in the number of trajectories.

4.4 Baselines

We compared GRAAL to a number of baselines, which we briefly describe in the
previous section. We compared with a random approach, a heuristic approach
maximizing the enjoyability, and against GRAAL used with two particular val-
ues of α. Additionally, we used an approach based on the same rationale behind
[8], maximizing the number of friends in a car. However, as the goal of the latter
is different, and as their method also solves a different version of the carpooling
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problem, we present different types of results for it in Section 6.
All the baselines start from a set of recommendations RU computed as de-

scribed in this Section. Then, they each return a (potentially different) subset
of it, together with the recommendations on the single occupancy vehicles that
constitute different sets of assignments ARU

. To describe the first two base-
lines, consider the set of recommendations RU as a directed graph GRU

built
by having a directed edge (i, j) if j can get a ride from i. Then:

• Random: we rank randomly the edges of GRU
, then we take the first edge

(i, j) in the rank and, if i has not been already selected as a passenger and
there are less than γ = 4 assignments (see Sec. 3) with i as driver, then
we flip a coin: with probability 0.5, we thus remove all the edges linked to
j and produce the assignment (i, j). Otherwise, we proceed to the next
edge, and repeat the procedure for all subsequent edges in the ranking.
If, at the end of the procedure, there are nodes (passengers) for which no
final recommendation was made, they become drivers of single-occupancy
vehicles.

• Heuristic: we maximize the enjoyability with a greedy approach. We
proceed like in random with the only difference that the edges of GRU

are
ranked by descending enjoyability eij .

• Social : this is basically GRAAL with α = 0, i.e. we optimize only for
total enjoyability (which is maximized).

• Green: this is basically GRAAL with α = 1, i.e. we optimize only for
total number of used cars (which is minimized).

Lastly, we compare also with [8] in terms of user impact, in Section 6. We
additionally present results for: i) GRAAL with α varying from 0 to 1 with 0.05
increments (this thus include the Social and Green baselines); ii) GRAAL with
a particular value for α as learned as described in Section 5; iii) all the baselines
as described above. The experiments were conducted for two possible values for
δ (500m and 70m), and two possible values for τ (60min and 30min).

5 User study

In order to assess the effect of enjoyability in carpooling compared to other
factors like sustainable mobility, we conducted a survey with potential end-users.
The goal of this user study is to learn a crowd-sourced value for the weight α, and
to better understand the potential impact of a carpooling system based on the
GRAAL methodology, if this were to be implemented. This study, hence, is not
meant to replace an on-field validation of the proposed carpooling methodology
but rather to obtain an estimate of the weight (i.e., the user preference) of the
two objective functions for the multi-objective optimization model of Section
3.2. This section presents the design of the study, while Section 6 presents the
numerical results obtained.
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The survey was sent via direct Twitter messages, other social networks (e.g.
Facebook, LinkedIn, etc., including dedicated carpooling groups), and direct
e-mail and mailing lists. The webpage containing the survey is shown in Figure
1. To generate the landing page, we picked a user i ∈ U from our data, and
computed which cars he/she would be assigned to using the two approaches (one
minimizing the number of cars and the other maximizing enjoyability). The
two solutions presented contain the following: i) a bar indicating the average
enjoyability among the occupants of the car; ii) a bar indicating the “greenness”
of the solution, computed as the global amount of cars saved by the city-wide
system if all the users were to click on this choice. The two cars were presented
in random order, to minimize the probability of clicks performed on a given
column. The two presented solutions are referred to as “social choice” and
“green choice”. The first one is the car with higher enjoyability but lower
greenness value (obtained by Social), while the second choice is the car with
lower enjoyability but higher greenness value (obtained by Green). Note that,
while the enjoyability is a local property of the car, the greenness is a global,
city-wide, property. That is, there are only two values of greenness for a city:
the one obtained if every user were to click on the social choice, and the one
obtained if every user were to click on the green one. After this step, the users
were directed to a subsequent set of general questions on carpooling, including
the following: “which of the following would make carpooling more attractive
to you? Savings, sharing the car with interesting people, or sustainability of the
solution?”

We collected 237 answers, with 39% in favor of a social solution. After
collecting the answers, the values are exploited to learn the weight α in the
multi-objective optimization model which represents how much the users are
more likely to prefer the Social car with respect to the Green one. As mentioned,
the page presents two cars with their enjoyability values of eS (the enjoyability
of the Social car) and eG (the enjoyability of the Green car). If their difference

Figure 1: Part of the landing web page of the survey
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(eS − eG) is high, meaning that the social car has a high value of enjoyability,
while the green car has a low value for it, we may expect the user to be tempted
to click on the social car, rather than the green one. As the greenness values of
the Social and Green car for a given city are fixed (i.e., they do not change if
a different pair of solutions is displayed), we do not take them into account in
the learned weight. Instead, we consider the difference of enjoyabilities between
the green and the social car, which depends on the pair of solutions displayed.
We define the following two values: for the Green car, the value vG is given as:

vG = eS − eG

while for the Social car, the value vS is computed as:

vS = 1− (eS − eG).

Given S, the set of the social choices that were obtained from the survey and
G the set of the green choices, the values vS and vG are computed on their
elements and the weight α is defined as the following ratio:

α =

|G|∑
j=1

vGj

|S|∑
i=1

vSi
+

|G|∑
j=1

vGj

(8)

6 Experiments

This Section presents the results of running GRAAL and the baselines on real
Twitter data, using different sets of parameters. We present here the data and
tools used, the parameter tuning (this includes the results from the user study),
the results of computing the social measures, and the results of GRAAL and
all the baselines. The results of optimization were assessed from a city-wide
perspective (i.e. looking at the total values of the components of the objective
function), and from a user perspective (i.e. looking at the distribution of the
enjoyability of single cars, and impact on the user).

6.1 Data

We used the Twitter’s Streaming API1 to obtain two large datasets of geo-
tagged tweets. We queried the API using two bounding boxes on the area of
Rome (Fig. 2(a)), and the bay of San Francisco, hereafter referred to as San
Francisco (Fig. 2(b))2, for 50 days from the beginning of October 2014. As a
result, we collected 558,000 geo-tagged tweets from 17,600 users in Rome, and
3,286,000 geo-tagged tweets from 113,000 users in San Francisco. We chose

1https://dev.twitter.com/docs/streaming-apis
2GPS coordinates bounding box: Rome (12.234498, 41.655642, 12.85576, 42.141028), San

Francisco (-122.667, 36.8378, -121.2949, 38.0771)
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(a) Rome Area. (b) San Francisco Bay Area

Figure 2: Geographical areas analyzed.

Rome as it is the city with the largest population in Italy, while San Francisco
was chosen for its popularity in carpooling studies [7, 12, 1]. By applying user
and tweet filtering, we ended up with the statistics reported in Table 1. We
wanted to consider around 1000 users in each city. We then filtered out the
users in Rome having less than 40 tweets, and users in San Francisco having
less than 300 tweets. This resulted in 1106 users in Rome, and 1052 users in
San Francisco.

6.2 Tools

GRAAL was written in Java and C, making use of external libraries for some
specific tasks. We used a publicly available Java implementation of HDP3, to
perform non-parametric topic modeling. To execute route planning we used
OpenRouteService4, a public Java library. As space-dist and time-dist we used
the geo-spherical distance and the absolute difference respectively. Finally, to
perform the optimization steps, we used the C APIs of IBM CPLEX 5.

6.3 Parameters

To run GRAAL on our data, besides the parameters of Algorithm 1, we had
to choose a sample of the data (in number of days) and a number of topics to
put in the topic vectors. We decided to leave the bounding box, and the spatio-
temporal parameters δ and τ as choices available to the analysts to conduct
different analyses. This allows to run the optimization model with different
input parameters as a function of different temporal and spatial resolutions. In
our experiments, we report results for δ set to 500 and 70 meters, and for τ set
to 30 or 60 minutes. Note that the combination δ = 500m and τ = 30min agrees
with common sense, or best practice, in journey planning: users are typically
willing to walk distances up to 500 meters, and have a flexibility of waiting up
to 30 minutes to find a means of transport [18]. In terms of number of most
frequent locations, we chose three as it typically covers home, work, and the so

3https://github.com/arnim/HDP
4http://openrouteservice.org/
5http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Dataset Rome San Francisco

Users 1,106 (06.53%) 1,052 (00.93%)
Tweets 237,351 (42.19%) 681,597 (20.74%)

Table 1: Users and tweets statistics after filtering. Numbers in brackets are the
percentages over the initial unfiltered data.

called “third place”. Home and work place detection were out of the scope for
this paper. To decide the number of days of data to take, we saw that the ratio
of people which have at least one change in their top three locations if we take
more than x consecutive days drops dramatically after x = 40. We thus chose
to take 40 consecutive days of data in our sample.

Next, we describe how we learned a suitable number of topics, α and ρ.

6.3.1 Number of topics

As stated above, we used a nonparametric HDP algorithm to estimate the num-
ber of topics automatically. Since HDP is nondeterministic, we ran it 2,000
times on our data, obtaining on average 25.48 topics (σ = 1.56) on Rome and
25.61 (σ = 1.54) on San Francisco. According to this, we selected the results
relative to a number of topics of 25, to construct our vectors ~ti.

6.3.2 Tuning ρ

The ρ parameter is defined as the cost of adding a car to the system within the
optimization model. We studied the effects of varying this parameter, in terms
of number of cars saved while keeping α fixed to 0.5 (i.e., there is no preference
between minimizing the number of cars and enjoyability). We varied ρ from 0 to
10, and observed that ρ = 2 had the largest impact on the number of cars saved
(see Figure 3 for the case of Rome). The results were both similar in Rome
and San Francisco. Hence, ρ = 2 is used to scale the first part of the objective
function (i.e., minimizing the number of cars) to have an objective function with
comparable scales which is critical in multi-objective optimization.
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Figure 3: Plot of ρ vs number of cars.
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6.3.3 Tuning α

The α parameter was learned looking at the results of the user study conducted
as described in Section 5. We collected 237 responses coming from three differ-
ent sources: 2% came from direct messages sent via Twitter; 12% came from
sharing the survey in other social networks; 86% came from direct e-mail or
mailing lists sharing. In total, 39% of people clicked on the social choice. This
is encouraging, as it confirms the need for a social-aware carpooling system.
Another encouraging result was provided by the answers to the additional sur-
vey question: 24% of the people were more attracted by sharing the car with
interesting people, while 41% by the savings provided by carpooling, and 35%
considered the sustainability to be the most attractive aspects of carpooling.
We consider these numbers as a measure of the potential impact of a carpooling
system that takes into account the enjoyability of a car as an additional factor,
rather than just minimizing the number of cars. Based on Equation (8), the
final value obtained for α is 0.36 which is an estimate of the preference of the
number of cars saved compared to that of enjoyability as given by the users.
This value is used for balancing the two objectives in the optimization model.

6.4 Results on Social Measures

Figure 4 presents the distributions of like-mindness (top left), homophily (top
right) and enjoyability between pairs of users (bottom row) for all the users. We
report no significant differences in like-mindness and homophily between Rome
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Figure 4: Social measures for all the couples of users.
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δ τ
Rome San Francisco

|RU | |S1| |S2| |Z| |RU | |S1| |S2| |Z|
500 60 6, 883 81.56% 76.04% 18.44% 2, 298 68.63% 57.41% 31.37%
500 30 5, 870 79.84% 73.51% 20.16% 1, 106 54.37% 36.88% 45.63%
70 60 349 26.85% 15.46% 73.15% 245 16.73% 9.60% 83.27%
70 30 309 24.68% 13.92% 75.32% 250 16.44% 9.79% 83.56%

Table 2: Statistics on user recommendations by δ and τ for GRAAL. S1 ⊆ U
is the set of users with one or more recommendations, S2 ⊆ U is the set of
users with two or more recommendations, Z ⊆ U contains the users with no
recommendations.

and San Francisco. As we can see from the first plot, computing a similarity
based only on the like-mindness may end up recommending connections in a
limited number of pairs of users. On the other hand, from the second plot,
we learn that most of the people are heterophilous. If we combine the two
things into the enjoyability, we see, in the third plot, that there is broader space
for recommendations based on this measure, rather than the like-mindness.
Moreover, the combination of the first two measures produces two different
distributions for Rome and San Francisco, highlighting that the enjoyability is
capturing a different phenomenon as opposed to just like-mindness.

6.5 Results on Recommendations

Table 2 reports some statistics for the recommendations using different com-
binations of spatio-temporal resolutions. The first column reports the number
of recommendations, in column S1 we see the percentage of users with one or
more recommendations, in column S2 we see the percentage of users with two
or more recommendations, (for which the optimization has more impact), while
in column Z we report the percentage of users with no recommendations (these
will end up being drivers of single occupancy vehicles in all the models). From
this table, we see the clear effects of taking the same number of users in the two
cities having very different geographical structure. In particular, San Francisco
Bay Area is a much larger area than Rome. As carpooling in San Francisco
works actually across the entire area, it would not make much sense to keep the
same user density per area and reduce the area over San Francisco, we decided
not to take any corrective actions. In this way, we could also assess the effects
of having different recommendation densities on the performances of the opti-
mization model. Thus, we report a larger room for optimization in Rome in
general, and for δ = 500m in general as well. In San Francisco, only δ = 500m
provides significant room for optimization. We expect this to be seen in the
results we have, at the city level.

6.6 City-wide perspective

All the parameters tuned and the recommendation calculated as explained in
previous sections are used as an input to the optimization model. We consider
the results as applied to a single day of trips. The results are here presented
at the city level, i.e. at the level of the entire optimization model. GRAAL
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with α = 0.36, as learned from the user survey, theoretically saves up to 57%
of the cars needed in Rome and 40% in San Francisco for the subset of users
under consideration as compared to users taking their private cars, while having
a high level of total enjoyability. In addition to α = 0.36, we studied the effects
of varying α ∈ [0, 1] (with steps of 0.05), on the total number of cars saved and
the total enjoyability of the system. We compared GRAAL for α = 0.36 with
all the baselines.
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Figure 5: Cars saved (top row) and total enjoyability (bottom row), in Rome
(left column) and San Francisco (right column) by running GRAAL with 20
values of α and different values of δ and τ . For all the plots, higher is better.

Figure 5 reports the number of cars saved (in the top row) and the total
enjoyability (in the bottom row) for Rome (in the left column) and San Francisco
(in the right one). As we can see, the best performance are reached for the city
of Rome with δ = 500m and for any values of τ . In all the other cases (and in
San Francisco as well) we see a mostly flat behavior, which means that with less
room for optimization, α can not make a big difference in the results. Moreover,
δ = 70 provides the lowest number of cars saved and the lowest enjoyability in
both cities. This agrees with the lowest numbers in the S column of Table 2.
Moreover, where the Z column of Table 2 is very high, we see negative values
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of enjoyability. This is due to the large number of people going alone, for which
we assign an enjoyability score of −1, as described in Section 3.

Figure 6 shows the percentage of cars saved (in the top row) and total
enjoyability (in the bottom row), in Rome (left column) and San Francisco (right
column) by running GRAAL with α = 0.36 and all the baselines. As expected,
the highest number of cars is saved by the Green approach. One encouraging
result is that Social saves a significantly higher number of cars with respect to
Random and Heuristic. This is due to the choice of assigning −1 as enjoyability
to a person traveling alone. As a consequence, even if Social does not directly
minimize the number of cars, it tends to put more people together anyway. The
GRAAL approach with α = 0.36 is a trade-off between Social and Green (which
are basically GRAAL with the two possible extreme values for α).

Consider now the bottom row of Figure 6, with δ = 500m. The negative total
enjoyability confirms that in those cases there is a significant number of people
going alone. This is avoided by GRAAL with all alpha values (as reported
in Figure 5). In accordance with Table 2, reporting a high number of single
occupancy vehicles for δ = 70m, we have only negative total enjoyability for all
models for this value of δ.
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Figure 6: Cars saved (top row) and total enjoyability (bottom row), in Rome
(left column) and San Francisco (right column) by running GRAAL with α =
0.36 and all the baselines. For all the plots, higher is better.
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Finally, we report the results of comparing GRAAL with the Green model
minimizing the number of cars, in terms of two KPIs: additional cars used, and
additional km traveled by the cars in the system. Table 3 reports these values
for each city and combination of δ and τ . In the “% cars” cell, we report the
percentage of additional cars used by GRAAL with respect to Green, normalized
by the number of cars needed if all the users were taking a car. In the “% km”
cell, we report the percentage of additional km traveled by the GRAAL drivers
with respect to Green, normalized by the total amount of km traveled if all the
users were taking a car. The first column can be seen as a way to measure
the cost of adding a car to the system (for example, in terms of parking slots
needed), while the second column can be seen as a way to measure the overall
cost of the system (for example, in terms of CO2 emissions). As we see, although
we add up to 13% of cars into the system with GRAAL, they are typically used
to cover short distances, as the additional km traveled, in percentage, are well
below the percentage of cars added. We note that in our model, drivers are not
allowed to detour to pick up passengers. That is, giving a lift to someone will
always reduce the total distance traveled.

δ τ
Rome San Francisco

% cars % km % cars % km
500 60 12.23 3.67 2.63 0.02
500 30 13.70 4.39 0.70 0.43
70 60 2.26 0.35 0.02 0.01
70 30 2.15 0.38 0.10 0.32

Table 3: Percentages of additional cars and additional km needed by GRAAL
with respect to the Green solution.

6.7 User perspective

We assess the results from the user perspective, in terms of enjoyability in
the single cars. As aggregates, we report minimum, maximum, average, 90th,
75th, 50th, 25th, and 10th percentiles of the distribution of the enjoyability
across vehicles, in order to understand the improvement introduced for a user,
as shown in Figure 7. For this assessment, we considered only the users who
received a recommendation. That is, we remove most of the effects of considering
an enjoyability equal to −1 for a high number of people in these plots. The
first clear result is that there is a globally higher enjoyability in San Francisco,
compared to Rome. This is coherent with the results on the distribution of the
enjoyability per city reported in Figure 4, which shows both a higher negative
tail in Rome for the enjoyability, and a higher positive tail for San Francisco.
Despite the globally higher enjoyability, there is again the problem of the results
being more flat. Consider now the results in Rome, with δ = 500m. In the Green
model, where the optimization disregards the enjoyability, the results are inline
with Random, while Heuristic does a better job. This is also true for the other
value of δ, although less evident.

Table 4 is used to compare our approach with the method described in [8],
which tries to put friends (i.e., direct Twitter links) together, as their concept
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Figure 7: Enjoyability per cars (min, max, 10th, 25th, 50th, 75th, 90th per-
centiles, and average across all cars), for Rome (left) and San Francisco (right).
Higher is better.

of enjoyability. We evaluate against [8] in terms of impact on users, reported
in Table 4, which contains the same columns as Table 2. To produce this
table, we first ran Green, then we applied a brute force approach to optimize
according to friendship (friends are put together in a car). As we clearly see,
the number of recommendations between friends is much smaller than what we
can achieve in GRAAL reported in Table 2, due to the sparsity of the friendship
connections in Twitter (and in the real world, too), as opposed to the fact
that we could compute the enjoyability between any two users in GRAAL.
Thus, the room for optimization here is much smaller, with numbers in S2 not
reaching two digits. We include the S1 column in the two tables to give more
chances to this approach. In fact, even if we can optimize less, with at least
one recommendation we can still put friends together. Nevertheless, numbers
go up to slightly more than 11%. We did not compare with the same approach
ran with a 2-hop network for the following reason: 2-hop friends (i.e., friends
of friends), when they are not direct friends, are people with whom we can not
give any guarantee on the enjoyability from a topic perspective, and neither
they are direct friends. On the other side, 2-hop friends could be at least
more trustworthy than unknown (but enjoyable) people. However, neither our
methodology, nor the one in [8] are meant to be seeking a higher trust in the
system, which is then left as future work.

δ τ
Rome San Francisco

|RU | |S1| |S2| |Z| |RU | |S1| |S2| |Z|
500 60 189 11.36% 7.42% 88.64% 148 7.57% 4.89% 92.43%
500 30 183 11.12% 7.02% 88.88% 120 7.50% 4.23% 92.50%
70 60 53 9.37% 4.40% 90.13% 46 5.82% 2.31% 94.18%
70 30 51 9.40% 4.32% 90.60% 45 4.35% 2.25% 95.65%

Table 4: Statistics on user recommendations by δ and τ for [8]. S1 ⊆ U is the set
of users with one or more recommendations, S2 ⊆ U is the set of users with two
or more recommendations, Z ⊆ U contains the users with no recommendations.
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6.8 Running times

GRAAL ran in around 2 minutes with each of the α values under each of the δ
and τ combinations, for both cities. Exceptions were δ = 500m in Rome, where
a higher number of recommendations brought the running times up to 1 hour.

7 Limitations and future work

Here, we discuss some limitations of our methodology, hints for how to overcome
them, and possible future work.

Customized optimization. GRAAL optimizes at the level of the city, not
of a single user. This means we use one single value for α for all the users, under
the assumption that, with this, we can achieve good performances at the level
of the entire system. However, different people may have different preferences.
Taking into account this would require a different model, which was out of the
scope of this paper, as we were looking for a system-wide perspective. Along
these lines, future work will include: customized optimization; traffic-dependent
optimization (i.e. higher cost of adding a car during peak hours); distance-
dependent optimization (i.e., relaxing the optimization model for shorter trips).

On-demand carpooling. We worked under the assumption that GRAAL
may be the basis for a system which can run once in a while, to support sys-
tematic mobility. However, nothing prevents us from setting up the system
using historical data in batches, then satisfying requests for rides on demand. A
real-time, on-demand carpooling will be within the future work to investigate.
However, it would be hard to reach the same levels of system-wide total enjoy-
ability with the same model, as the room for optimization might be smaller.

Applicability to, and comparison with, other data. The choice for
Twitter data was supported by a number of considerations. One could easily
replicate our experiments on Call Detail Records (CDR) data used in conjunc-
tion with phone calls transcripts. This mix would improve the data quality and
quantity in all the dimensions of our problem: better location data, better tex-
tual content, weighted friendship information. However, this type of data is not
public. Alternative public data includes Flickr (whose typical usage is tourism
[5]), Foursquare (for which we would need to find an external source for textual
data for the same users), or Facebook (whose APIs do not expose the same type
or amount of data. In addition, we used only one estimation of the mobility
demand: the top three locations computed on the geo-located tweets. Other
data (like the above mentioned CDR, or ride-sharing data, taxi-sharing data,
journey planner request logs) may be used to estimate the mobility demand as
well. However, we only needed one estimation to assess feasibility, while accu-
racy against a better demand estimation was out of scope for this paper. Future
work will include such comparisons.

Field test. Although the user study gave us good input and motivation
for this work, a field study, with the system put at work, has not been im-
plemented. We are exploring the possibility of partnership with the mobility
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agencies of a few cities, to test this solution with end users. The scope of this
paper was to devise a theoretical, data-driven, methodology, starting from data
available online, and ending at the recommendations. This is inline with the
other theoretical carpooling papers presented in Section 2.

Extension to other objectives. As mentioned in Section 1, we acknowl-
edge that there may be several obstacles for a larger adoption of carpooling:
safety of passengers, mobility mismatches, social incompatibility, and so on.
GRAAL aims at analyzing only one of them, and under only one definition of
enjoyability. More possibilities will be investigated in the future, together with
the inclusion of other factors like gender match, trust, network similarity, and
others.

8 Conclusions

We have described GRAAL, a multiobjective model that optimizes carpooling
recommendations for a weighted linear combination of number of cars used
(which is minimized) and total enjoyability (which is maximized). GRAAL takes
Twitter data in input, as this contains information on spatio-temporal, text, and
social dimensions of geo-located user tweets. We conducted a survey to tune
the weight of the linear combination in the optimization function. We received
237 answers, 39% of which were in favor of the Social solution, motivating
this work, and providing the needed weights of the objectives for the multi-
objective optimization model. We have then presented the theoretical results
of the multiobjective optimizationin terms of cars saved and enjoyability for
a subset of users in Rome and San Fransico. We have presented the results
from the city and the user perspective. With the crowd-sourced α of 0.36,
GRAAL has the potential of saving a significant number of the cars needed,
while keeping a high level of the total enjoyability. From the user perspective,
we have shown how the entire per-car distribution of enjoyability is increased
with respect to the baselines. Future works include: customized optimization,
on-demand optimization, the usage of different data for demand estimation
and comparison, a field test with mobility agencies in different cities, and an
extension of the optimization function to include also other factors like trust,
safety, or network-based similarity.
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