
QoS-aware Genetic Cloud Brokering

Gaetano F. Anastasia, Emanuele Carlinia, Massimo Coppolaa, Patrizio Dazzia

aInformation Science and Technologies Institute, National Research Council (ISTI-CNR), Pisa, Italy

Abstract

The broad diffusion of Cloud Computing has fostered the proliferation of a large number of cloud computing providers.
The need of Cloud Brokers arises for helping consumers in discovering, considering and comparing services with different
capabilities and offered by different providers. Moreover, consuming services exposed by different providers may alle-
viate the vendor lock-in issue. While it can be straightforward to choose the best provider when deploying small and
homogeneous applications, things get more challenging with large and complex applications. In this paper we propose
qbrokage, a genetic approach for Cloud Brokering, aiming at finding Infrastructure-as-a-Service (IaaS) resources for
satisfying Quality of Service (QoS) requirements of cloud applications. Our approach is capable of evaluating such
requirements both for the single application service and for the application as whole. We performed a set of experi-
ments with an implementation of such broker, by considering three-tier applications and scientific application workflows.
Results show that our broker can find near-optimal solutions even when dealing with hundreds of providers, providing
optimized deployment solutions that includes data transferring cost across multiple clouds.

1. Introduction

Cloud Computing is nowadays one of the most popular
computational paradigms. It has been adopted by many
companies and considered by many more others for the
unquestionable benefits offered, such as potential cost re-
ductions offered by the pay-per-use model, flexibility and
scalability, fault-tolerance and increased availability due
to the geographic distribution of resources.

Many Cloud providers implicitly force their customers
to use proprietary interfaces, virtualization technologies,
and communication protocols, so that the cost of switch-
ing from that provider’s technology to another one would
be too high and the migration become materially unfeasi-
ble for the customer (i.e. the so called vendor lock-in). For
protecting themselves against vendor lock-in, some small
to mid-sized businesses (SMBs) may decide to under-invest
or simply hesitate to adopt Cloud Computing. Recent sur-
veys [1] also point out that some SMBs are forgoing Cloud
Computing because of security and trust reasons, being
afraid of losing control on their data, worrying about reli-
ability, integrity and compliance with data privacy laws.

Recently, the adoption of multiple clouds for running
cloud-based applications and services has been considered
as a mitigation factor towards the vendor lock-in issue.
In addition, a multi-cloud environment may be beneficial
to cloud-based applications in many other ways. For ex-
ample, some application services may have special func-

Email addresses: g.anastasi@isti.cnr.it (Gaetano F.
Anastasi), emanuele.carlini@isti.cnr.it (Emanuele Carlini),
m.coppola@isti.cnr.it (Massimo Coppola), p.dazzi@isti.cnr.it
(Patrizio Dazzi)

tional and/or non-functional demands that cannot be ful-
filled by a single target cloud. In this case, considering
a multi-cloud scenario is simply mandatory. Moreover,
the multi-cloud scenario can show its advantage in terms
of cost-saving for the users: since different services may
have different requirements, simply choosing the cheapest
provider by considering a single resource may not be cost-
effective.

Two orthogonal approaches are commonly exploited
for addressing deployments across multiple clouds: Cloud
Brokering and Cloud Federation [2]. Cloud Brokers can
leverage abstraction APIs, such as Apache Libcloud1 or
Delta Cloud2 for allowing users to exploit different providers
at the same time whereas Cloud Federations provide com-
mon platforms providers must be compliant with. Even if
Cloud Federation may subsume the Cloud Brokering ap-
proach, they can be considered orthogonal from the view-
point of the goals they pursue. In fact, if on the one hand a
Cloud Broker should always consider user profits neglect-
ing provider ones, on the other hands the Cloud Federa-
tion must operate a trade-off between these two apparent
discording objectives, for example ensuring fairness in ex-
ploiting resources belonging to the federated providers.

Additionally, such approaches can help to overcome the
trust problem that limits the adoption of Cloud Comput-
ing, for instance by selecting time by time providers that
are most suitable to fit the security needs of the users.
As an example, the user may want to choose a particular
provider location when submitting applications for ensur-
ing law compliance in data management. Recent advances

1http://libcloud.apache.org/
2https://deltacloud.apache.org/

Preprint submitted to Elsevier January 17, 2017

in this research field, designed and developed in the Con-
trail approach to Cloud Federation [3, 4, 5], treat security
needs by explicitly addressing Quality of Protection (QoP)
terms as a special case of Quality of Service (QoS).

One of the most relevant research challenges focuses on
the problem of scheduling complex applications by respect-
ing user constraints, that have to match the providers’ of-
fer. The related aspect to consider is the number of world-
wide providers. While it can be considered acceptable
to manually search for resources on handful of providers,
this task becomes unfeasible when the number of providers
grows up to hundreds.

To address this issue we conceived, designed and deve-
loped qbrokage, a Cloud Brokering approach that pro-
vides an optimized deployment solution for a cloud-based
application across multiple clouds. qbrokage exploits
only the information that commercial providers are likely
to made available for customers, such as Virtual Machine
(VM) costs and their features in term of storage, mem-
ory, etc. Let us consider a scenario in which customers
submit their applications to qbrokage requesting for a
deployment configuration that meets QoS requirements,
that could be formally expressed by Service Level Agree-
ments (SLAs). Such requirements may involve both non-
functional aspects, such as security capabilities of providers,
and functional aspects as coming from other specification
formats, such as the Open Virtualization Format (OVF [6]).
For example, application requirements may specify that
VMs require at least a certain amount of memory, and a
minimum number of physical CPUs, along with the exact
match of geographic location where to place specific parts
of the application. Such requirements are used as con-
straints by qbrokage for choosing a set of Cloud providers
that can host the services (appliances) and at the same
time guaranteeing the respect of the QoS negotiated for
the whole application.

In such context, qbrokage advocates the exploitation
of a Genetic Algorithm (GA) to match services and Cloud
resources. GA is a well-known heuristic approach that
permits to iteratively find near-optimal solutions for NP-
hard problems in large search spaces. Being an heuristic
approach, it usually has a computational advantage w.r.t.
optimal algorithms and thus it is suitable for being lever-
aged in an interactive service like our broker. Moreover,
our work leverages the GA approach because its model is
flexible enough to support multiple constraints at the same
time and the injection of additional constraints in the fu-
ture with minimal interventions on the algorithm. Clearly,
this is a crucial aspect for software reuse in the context of
Cloud Computing, where QoS models are continuously en-
riched as providers support QoS guarantees previously not
addressed, such as soft real-time guarantees for virtualized
services [7] or multi-user virtual environments [8].

1.1. Paper Contributions

The main contribution of this paper is the design and
implementation of a generic framework supporting cloud

brokering. Such framework embodies a genetic algorithm
driving the allocation of applications, which is designed
and implemented by considering the following software re-
quirements:

• meeting the heterogeneous QoS requirements of ap-
plications;

• finding near-optimal solution according to customers
preferences trying at the same time to mitigate ven-
dor lock-in;

• supporting providers with different cost models;

• scaling up with hundreds of providers, while main-
taining interactivity.

Several capabilities of qbrokage has been already pre-
sented in a previous paper [9]. With respect to that paper,
we advanced with the implementation of our prototype
and we extend our work with the following new contribu-
tions:

• we extend our conceptual framework by introduc-
ing QoS constraints with global scope i.e., constraints
that cannot be evaluated by considering VMs in iso-
lation;

• we add the capability of considering network char-
acteristics by implementing two types of QoS con-
straints with global scope, i.e., cost and bandwidth;

• we evaluate our approach in terms of network aware-
ness by setting up some experiments targeting well-
known scientific application workflows;

• we further study the scalability of qbrokage, pre-
senting an additional experiment to this purpose.

To foster further research in this field and to make our
results reproducible, we made the source code and dataset
publicly available [10].

1.2. Paper Outline

In Section 2, we present our work with respect to the
state of the art. The model proposed in this paper is pre-
sented in Section 3. The reference architecture for qbrok-
age and an insight on the algorithm are given respectively
in Section 3.3 and Section 4.1. This paper also provides an
experimental evaluation of qbrokage by means of sim-
ulations (Section 5), including a comparison with a state
of the art approach, the tuning of the genetic algorithm,
scalability performances, the capability of mitigating ven-
dor lock-in and the QoS evaluation of a scientific workflow
application when mapping it to multiple clouds.

2

2. Related Work

2.1. Cloud Brokering

In the research community there is a wide consensus
on the importance that brokers can have on Cloud envi-
ronments for helping consumers in discovering, consider-
ing and comparing services with different capabilities as
offered by different providers [11]. The need of brokering
mechanism particularly arises in Cloud Federation archi-
tectures, such as Intercloud [2], the first approach going in
the direction of building a unified platform composed by
federated providers that can exchange information through
super-entities (e.g. the Contrail approach) or as peers (e.g.
the Sky [12] approach).

Recently, Cloud Brokering architectures are acquiring
importance as well, for dealing with providers that are
loosely-coupled or not coupled at all. STRATOS [13] is
a cloud broker service that permits to deploy and man-
age cloud applications on multiple providers, based on re-
quirements specified in higher level objectives. That work
shares many similarities with ours and they are compared
in Section 5 by considering a scenario that was possible
to reproduce. One of the most notable differences be-
tween the two works is the formalization of the problem,
STRATOS embodies a multi-criteria optimization prob-
lem, whilst our work is based on genetic algorithms. An-
other remarkable difference regards the application de-
scription: STRATOS uses a custom XML representation
for describing the application as a set of clusters and nodes,
whilst our broker accepts OVF [6] description as input
and constructs from it a graph representation of the ap-
plication, in terms of nodes and edges. Since OVF is a
promising standard description approach, we believe this
capability may help in the adoption of qbrokage. Fi-
nally, STRATOS supports elasticity allowing for adding
VMs to running applications, whilst our work does not
address this aspect.

Ngan and Kanagasabai propose a semantic cloud bro-
ker [14] based on ontology matching that can cope with
semantic interoperability issues caused by different non-
standard ways of exposing provider capabilities. Focusing
on the same approach, the authors propose a benchmark
framework for cloud brokers [15], based on five different de-
grees of difficulty. Our work does not use ontology match-
ing since we are focusing on QoS parameters that can be
quantifiable and uniformed quite easily. Nevertheless, we
believe that our work could be complemented with such
approach for considering semantic fuzziness in exposing
provider capabilities.

Another ontology-based approach that supports multi-
criteria optimization has been recently proposed by Zhang
et al. [16] for a cloud service recommendation system. This
approach shares some similarities with qbrokage: for in-
stance it considers QoS parameters for respecting SLAs
and it takes into account user preferences for giving priori-
ties to parameters. However, the work by Zhang et al. uses
Analytic Hierarchy Process (AHP) as inner mechanism for

comparing different criteria and proposing an ordered list
of suitable offers. The AHP method uses thresholds only at
the end of the process, after operating a pair-wise compar-
ison between criteria. Thus, there is no fine-grain control
on each QoS constraint to be satisfied. This is the main
difference with our approach: as qbrokage uses thresh-
olds for each parameter, each solution can respect all the
constraints and at the same time it can take into consider-
ation a QoS parameter more than another for proposing a
preference order. Moreover, our work supports QoS spec-
ification on a per-VM basis, whilst the work by Zhang et
al. seems to support QoS specification on a per-application
basis only.

2.2. Genetic Algorithms in Cloud Computing

Several works employs genetic algorithms to place VMs
in cloud computing environments. Genetic approach are
fairly used in cloud scheduling, in which the problem is
to place VMs within a single datacenter. In this context,
the work by Pop et al. [17] focuses on the scheduling of
independent tasks based on the reputation of resources.
Although their model is quite different from ours, their in-
sight into genetic operators could be leveraged in our work
for boosting performances in terms of evolutionary steps
for population convergence. Another relevant work has
been done by Zheng et al. [18] who address the problem
of resource scheduling in Infrastructure as a Service (IaaS)
Cloud. They focus on parallel genetic algorithm for speed-
ing the resource allocation process and improving the uti-
lization of system resources. By comparison, qbrokage is
considered as a service that requires user interaction and
thus optimizing execution times of the broker is not our
primary goal. However, we do not exclude to explore par-
allel genetic algorithm in the future. The work of Mark et
al. [19] considers a genetic algorithm to place VM into a
datacenter that has two different cost models: reservation
and on-demand. Their work mostly focuses on the predic-
tion of resources usage, while qbrokage focuses on the
multi cloud environment.

In multi-cloud brokering, genetic algorithms have been
exploited by a few of approaches. In particular, Iturriaga
et al. [20] and Heilig et al. [21] employ genetic algorithms
for the placement of VMs in multi-cloud environments.
These proposals mostly focus on the optimization of the
execution time of the broker, for instance by leveraging
parallel genetic algorithms [20]. Although these works
present some similarities with our proposed solution, un-
like qbrokage they do not consider network dependencies
as one of the requirements when placing VMs on different
cloud providers. Jrad et al. [22] propose a genetic-based
broker targeting services composition in healthcare work-
flows. Their work share several similarities with qbrok-
age, such as the ability to take into consideration QoS
constraints in complex applications. The main difference
with our approach is that they explicitly target service
composition and thus they evaluate a solution by consid-
ering the application as a whole, without caring about the

3

fitness of the placement of a single VM in isolation. In
the terminology used in this manuscript for presenting our
work, that would mean to consider only the global fitness
of a solution, rather than considering both global and local
fitness as we do.

Wen et al. [23] focus on partitioning workflows over fed-
erated clouds for optimising monetary costs and leverage
genetic algorithms for this purpose. Authors design the
problem as a bi-objective optimisation problem (security
and costs), however they solve it as a single objective op-
timization by pre-constructing a candidate list composed
by those clouds that respect constraints. Thus, the main
difference with our approach is that QoS requirements are
not part of the genetic model nor they are used in the
genetic algorithm itself.

2.3. Workflow computation in Cloud Computing

As part of the evaluation of our Cloud broker, we refer
to a scientific workflow application as a case study. Cloud
Computing is gaining momentum in both academia and
industry and thus there is a growing interest in applying
scientific workflow systems over the Cloud [24, 25]. As
Zhao et al. identify in their work [24], one of the major
benefits of managing and running scientific workflows on
top of the Cloud is the opportunity to improve the per-
formance/cost ratio, by trading-off between the workflow
requirements and the system resources offered by Cloud
providers. A study in this direction has been conducted
by Deelman et al. [25], that used the Amazon Cloud as
reference for examining the cost of running an astronomy
workflow application with different resource provisioning
plans.

This paper differs from the described work in study-
ing the performance/cost tradeoff by exploring the possi-
bility of using different providers for the application de-
ployment. There are several works studying multi-cloud
workflows [26, 27, 22, 23, 28, 29]. Jrad et al. [27] leveraged
WorkflowSim [30] for simulating workflow executions and
evaluating cost and performance gains of running work-
flows on a multi-cloud environment. Their work resembles
qbrokage for considering QoS values coming from the
user in the brokering process. However, their work does
not consider network and storage costs, as instead we do
in qbrokage. This aspect, combined with the fact that
they have not described datacenter costs nor published
their complete dataset, make that work hardly compara-
ble with ours. To foster future research on this topic, we
publish the dataset used in this work along with the source
code of qbrokage.

Another related work has been done by Coutinho et
al. [28] that developed GraspCC-fed, an approach aiming
at dimensioning the amount of VMs to allocate for work-
flow execution in both single cloud provider and federated
clouds. That authors also compare their approach with a
genetic algorithm-based approach in a single provider sce-
nario. However, their approach has a different goal with

Table 1: Comparison of selected work

QBrokage [22] [23]

User requirements

Cost X X X

Performance/QoS X X -

Dynamism - - X

Application Requirements

Workflow size Large Very large Very large

VM Number Large Medium Small

Infrastructure

Provider Number Large Medium Small

Provider VM Types Large Small Small

respect to our approach. We do not aim at dimension-
ing the VM number because in qbrokage the number of
VMs to allocate is chosen by tenants. Instead, qbrokage
has been conceived for choosing the VMs that best fit the
user QoS requirements among the different provider con-
figurations in multi-cloud environments, including cloud
federations. In our current implementation, the number
of VMs remains fixed during the workflow execution, as
GraspCC-fed does. However, we plan to extend our work
allowing tenants to dynamically adjust the number of VMs
during the execution.

2.4. Comparison of selected work

For the reader’s convenience, the proposed approach is
further compared with selected work [22, 23] that most re-
sembles qbrokage, both for leveraging genetic algorithm
over federated clouds and for using workflow applications
in the experimental system evaluation. In particular, the
difference between this work and the related one is empha-
sized by focusing on the system evaluation and comparing
the different experimental setup parameters. Table 1 sum-
marizes such differences by leveraging the scale defined in
Table 2. It can be seen that the proposed approach focuses
on matching application VMs over Cloud providers when
both are characterized by an high level of variability for
the specific parameters. Related work [22, 23] focuses on
the workflow size in terms of task numbers, however such
tasks are mapped into a lower number of VMs w.r.t. the
proposed approach. Finally, the work by Wen et al. [23] is
the only one that currently deals with the dynamic nature
of the Cloud – we left such aspect as future work. How-
ever, the presentation of the work by Wen et al. [23] do
not focus on performance and cloud configuration but only
covers cost minimization. In addition, although the con-
ceptual framework described by Wen et al. [23] seems to
support local and global specification, such aspect is not
analyzed in that work. Instead, the proposed approach
examines in-depth the tradeoff between local and global
optimization for allocating VMs over federated clouds.

4

Table 2: Scale definition

Value Range

Small 1-9
Medium 10-99

Large 100-999
Very Large 1000

3. Model and Architecture

In this section we initially present our reference model
of applications and resources. This model is partially de-
rived from a previous work of the same authors [31]. Sub-
sequently, the reference architecture of our broker is pre-
sented.

3.1. Applications

An application α is represented as a Direct Acyclic
Graph (DAG) 〈 GN , EM 〉, where G represents the set of
N vertices and E represents the set of M edges connecting
the vertices. Each vertex gi ∈ G embodies an appliance
each one potentially providing different services, e.g. one
appliance provides a firewall and another one provides a
back-end database. Each appliance can be composed by
multiple correlated Virtual Machines (vm1..K ∈ gi) but
for the sake of simplicity and to ease the presentation we
assume that each appliance is composed by only one VM,
and thus the terms appliance and VM can be used in-
terchangeably. We have released this assumption in the
experiments in Section 5. Each edge ei,j ∈ E represents
a communication path connecting vertices gi and gj and
directed from gi to gj . For each vertex gi we define its ad-
jacency list adji as the unordered list containing all edges
coming out from gi, i.e. adji = {ei,k|gk ∈ G}.

3.2. Resources

In this work we consider as resources what IaaS cloud
providers offer to their customers. Each provider is mod-
eled with a datacenter pi composed by a set of hosts, that
can run one or more VMs depending on their availability
of resources. The resources of each datacenter are inter-
connected by a network characterized by a specific set of
features, such as bandwidth, latency and security capa-
bilities. Depending on its performance capabilities each
datacenter can run a different number of applications, i.e.
set of VMs. Each datacenter is characterized by a set of
resources and exposes its limits, i.e. the maximum amount
of resources that can be assigned to a VM in order to be
run on that provider.

To catch the heterogeneity of current pricing models
adopted by cloud providers, we consider both providers
adopting a per-resource cost model and providers adopting
a per-VM cost model. In the per-VM case, we model cloud
providers as capable of running predefined type of VM
provided by customers and charging them for the whole
VM used over time. In the per-resource case, we model

Mapping

Application Queue

Allocator

Providers

Monitoring and
Net estimator

QBrokage

OVF

OVF Parser

OVF

Figure 1: Architecture of qbrokage Cloud Broker

cloud providers as capable of running each type of VM
provided by customers (up to the datacenter limits) and
charging them per unit of used resources over time.

3.3. Architectural Model

Figure 1 depicts an high-level representation of the
qbrokage architecture. In this section we give an insight
on it, although an in-depth description of each module is
not in the scope of this paper, which instead focuses on the
exploitation of a genetic approach to drive the allocation
of cloud applications.

An actor submitting its applications to qbrokage is
represented on the left of Figure 1. Applications are rep-
resented by means of the OVF, that permits to describe
applications in terms of their building blocks, the appli-
ances. Each appliance is composed by a set of VMs, inter-
connected by Virtual Networks. The OVF allows to asso-
ciate requirements both to VMs and Virtual Networks.

The module that receives such OVF is the OVF Parser,
depicted on Figure 1 inside the box representing qbrok-
age. This is the component responsible of parsing OVFs
given in input, for constructing an application graph as de-
fined in Section 3. A sophisticated OVF Parser, support-
ing a configurable behavior and custom XML tags to drive
a proper transformation of OVF-based representations to
graph representations of applications, is a key module for
our Cloud Broker. The OVF Parser we adopt in our archi-
tecture is the one provided by the OVF Toolkit. The OVF
Toolkit software is a standalone library that we developed
and can be used to parse, validate, manage and render
OVF files. Essentially, it aims at organizing the infor-
mation on applications described in OVF files, making it
easily available to others software modules through an API
and a set of functionalities. A more in-depth description
of the OVF Toolkit, including the Parser component, can
be found in a dedicated paper recently presented [32].

Once transformed in a graph, a representation of the
input application is then enqueued on the Application
Queue, as depicted in Figure 1. In this way it is possible
to host applications that need to be mapped onto one or
more cloud providers among the ones managed by qbrok-
age. In principle, many different behaviors and structur-

5

ing can be applied to this queue, however in our work, for
the sake of simplicity, we adopted only a M/M/1 queue.
After their transition through the queue, application map-
ping requests are delivered to the Mapping component.

Quite straightforwardly, the goal of the Mapping mod-
ule is to compute a set of valid mappings for each applica-
tion. To this end, it considers the information that charac-
terize both the datacenters and the applications. The in-
formation exploited by this component can either be static
or dynamic. Static information can be easily stored by
qbrokage and accessed when needed. For instance the
hardware description of the resources, the size of datacen-
ters, etc. Additional information may come to the Map-
ping component from the Monitoring and Net estima-
tor component, which provides a view on (i) the features
associated with the network connecting the datacenters as
well as (ii) on the state of the providers. The Mapping
module computes the associations between resources and
applications by exploiting:

• the representation of applications,

• the information related to datacenters,

• QoS properties.

This compound set of data is built according to the model
presented in Section 3. This approach allows for achieving
an high degree of flexibility and the ability to compute
complex plans without dealing with burden of contacting
datacenters every time an application needs to be mapped.

Once one or more mapping plans are computed, those
are passed in input to the Allocator module. The Alloca-
tor tries to allocate Virtual Machines onto Cloud providers
by considering a single mapping plan at time. Note, that
differently to the Mapping component, the Allocator effec-
tively connects to the Cloud providers for allocating VMs.
As a consequence, its activity can lead to failures or excep-
tions, which are managed directly by the module. Indeed,
when an allocation defined by the mapping fails, the Al-
locator can: (i) de-allocate all VMs allocated so far and
starts over with another plan, or (ii) try to allocate failing
VMs by exploiting the next plan on the list, leaving al-
ready allocated VMs in place. The first approach requires
longer allocation time than the second one, but it is needed
when the application has functional dependencies among
its components. In both cases, the user is contacted only
when all mapping plans were considered but none of them
succeeded.

3.4. Research challenges

The contribution of this paper deals with the design
and the implementation of the Mapping module in the
above mentioned architecture. The main task of such com-
ponent is the design of the algorithm to map the appli-
cation graph to the available providers, according to the
following requirements: (i) the module must consider op-
timal or near-optimal solutions in term of satisfaction of

the QoS, while using different providers when the situa-
tion allows it; (ii) the module must be agnostic with re-
spect to the submitted application, i.e. it should be able to
deal with different kind of QoS modelling when mapping
a give application; (iii) it shall be fast, allowing a quasi-
interactive response from the submission to the definition
of a plan;

We tackled these challenges by providing the design
of the mapping module according to a genetic algorithm,
able to map different kind of QoS constraints of application
over the consider resource modelling. Such design, as well
as some details on its implementation, is presented in the
next section.

4. Genetic Brokering

GA can be formulated in many flavors, that differ for
the selection of new population, the structure of genetic
operators, their combination and so on. In Section 4.1
we explain the proposed algorithm, in which the problem
solution is the allocation mapping of appliances to Cloud
providers.

In employing GA, a key point is the evaluation of dif-
ferent solutions for choosing the better one(s) that is can-
didate for solving the problem. Our brokering can be de-
fined QoS-oriented and thus we formulate in Section 4.2
the QoS constraints used for the evaluation. Such formu-
lation is leveraged by the fitness function we conceived and
present in Section 4.3.1 and Section 4.3.2.

4.1. Algorithm

In the proposed algorithm, each solution (chromosome)
c is a vector of length N , representing the allocation map-
ping of each appliance, i.e. a single VM (see Section 3),
to a cloud provider. In other words, if c(i) = j then the
appliance gi will be allocated on provider j. For exam-
ple, Figure 2 shows a chromosome representation where
appliance g2 is allocated on provider p1 and thus c(2) = 1.

The qbrokage algorithm follows the canonical GA,
hence we do not introduce any novelty from the algorith-
mic point-of-view. However, as discussed in the rest of
this section, we provide our novel contribution in codify-
ing the problem solution and the search in state space,
by modeling a novel fitness function. For the reader’s
convenience, we detail the canonical GA of qbrokage
in Algorithm 1. In particular, the initial population of
SP individuals is randomly generated and each individual
is evaluated by considering better individuals with those
having higher fitness values. The population selected for
mating, is randomly chosen with a rate Rcross among the
total and the crossover strategy is the random one-point
crossover. Thus, a number of SP ∗Rcross crossover opera-
tions are performed for each generation and each operation
produces 2 individuals. Then, mutation is applied with a
probability of Pmut to each gene in each individual. Af-
ter applying mutation, an elitist selector is used to select

6

chromosome

g1 g3 g4 g5g2

P1 P3P2P3P1

Vm4

provider 2

Vm3 Vm5

provider 3

Vm1 Vm2

provider 1

Figure 2: Chromosome representation in qbrokage

creating initial population();
while termination condition = false do

population evaluation();
selection for mating();
one-point crossover();
random mutation();
elitism selection new generation();
termination condition eval();

end

Algorithm 1: Canonical GA of qbrokage

the top percentage Etop of the population size, whilst the
remaining is obtained by cloning the best selected up to
reach the population size. A discussion on the numeric
values to be used for Rcross, Pmut and Etop is deferred to
the experimental evaluation described in Section 5.

4.2. QoS Modeling

We consider a set of QoS attributes Q = {q1, . . . , qS}
that can be classified in three categories, as defined in the
work of Ye et al. [33]:

• ascending QoS attributes, in which higher values are
better than lower ones;

• descending QoS attributes, in which lower values are
better than higher ones;

• equal QoS attributes, in which only equality or in-
equality is meaningful.

When these attributes are considered in specifying the
application, they turn into constraint values to be respected
by the infrastructure. Thus, for each attributes we denote
as γji the constraint value related to appliance gi for the

QoS attribute qj . Instead, we denote as βj
i the actual

value considered for the cloud provider pi and related to
the same attribute qj . For the sake of simplicity we may
omit the index i when it will not be strictly necessary to
the comprehension, as happens in the following.

For checking the adherence of constraint values com-
ing from the application to actual values coming from
the infrastructure, a set of inequality constraints QC =
{QC1, . . . , QCS} is built, whose cardinality is the same of
set Q. In particular, we have the following cases:

• QCj = γj − βj ≤ 0 in case of ascending attributes

• QCj = βj − γj ≤ 0 in case of descending attributes

• QCj = |γj − βj | − ε ≤ 0 in case of equal attributes
(the small constant ε is the tolerance range).

When QCj ≤ 0 the constraint is respected, otherwise it
is not respected. Moreover, the following −1 ≤ QCj ≤ 1
holds by design, as βj and γj are normalized values with
respect to the maximum value for qj (computed among
the set of all providers).

Also, a weight ωj is associated to each attribute qj

for modeling a search guided by user preferences and/or
implementation of particular policies for some attributes.
It is out of the scope of this paper to find a user-friendly
way for allowing customers to express such preferences.
For simplicity we assume that customers can specify an
input vector V = (v1, . . . , vS) of relative values and each

ωj is calculated by equation ωj = vj

|V | where |V | is the

unitary norm of vector V .

4.3. Local and Global Constraints

In the context of the genetic broker defined so far,
we consider two different flavors of constrains, local and
global. Local constraints are considered in isolation, on a
per-gene basis. This means that the matching of a parti-
cular allocation with a given constraint is evaluated inde-
pendently from the other constrains. Rather, global con-
straints are consider on a per-chromosome basis, which
means that whether or not a particular allocation respect
a given constraint depends also on the whole allocation.
These concepts lead to the definition of the local and global
fitness functions, that are detailed in the next sections.

This diversification is very useful for the purposes of al-
locating applications in a multi-cloud environment. Some
constraints, such as ram, core numbers, etc., have meaning
only as a local scope and are not meaningful when con-
sidered in global scope. However, some other constraints
are meaningful in both local scope and global scope. In
particular, the constraints related to the network can be
identified as having local and global scope. For instance, if
we consider the cost constraint as local, we calculate such
a cost of running a VM by only considering the computing
requirements and the provider costs for that capabilities.
Instead, considering the cost constraint as global, the net-
working costs of a VM must be also calculated and added
to the computing ones. To this end, we need to know the

7

allocation of the connected VMs for an accurate estima-
tion of that cost. In fact, many providers do not charge
intra-provider communication but only the inter-provider
one. According to these considerations, we compute the
networking costs of a VM by summing up the cost for each
link specified in its adjacency list.

In general terms, the global fitness function should pro-
vide better results in terms of cost, as the allocation as a
whole is considered. However, this may result in a longer
brokering time, due to the additional complexity of the
constraint. This tradeoff is studied experimentally in Sec-
tion 5.5.

4.3.1. Local fitness function

When evaluating a solution, our algorithm first con-
siders each gene g by defining a column vector Dg =
(d1g, . . . , d

S
g) as the distance of an allele from constraint sa-

tisfaction. For each QoS constraint in the set {q1, . . . qS},
such a distance dg is computed by using inequalities intro-
duced in Section 4.2. According to the problem formula-
tion, we consider values −1 ≤ QCj

g < 0 as those satisfying
the constraint j for gene g, with better solutions in min-
imizing the gradient direction. We recall that each QoS
attribute j has associated a weight ωj .

Since fitness functions are usually modeled as maxi-
mization problems, we define the fitness of a gene g as

l(·) = ADg (1)

where A is a square matrix

A =

a1,1 0
. . .

0 aS,S


with each element in the diagonal defined as

ajj =

{
−ωj if QCj < 0;
0 if QCj > 0.

Finally, the fitness function of each chromosome c is
defined as

F (c) =

N∑
i=1

l(·) ∗K (2)

with N being equal to the number of genes of c and K
being equal to a constant defined for awarding those chro-
mosomes with an high number of genes that correspond to
allocations respecting constraints.

4.3.2. Global fitness function

With respect to our previous formulation [9], we ex-
tended the framework for evaluating genes having mutual
relationship among them e.g., a gene may represent a VM
that communicates with another VM and there is a QoS
constraint on that communication link. To this end, we
characterize each constraint qi with a scope sc that may
assume values in the set {global, local}. If sci = local, the

distance dig for a generic gene g will be calculated by con-
sidering that gene in isolation i.e., using only information
regarding the mapping of g on the provider represented
by the allele c(g). Instead, if sci = global the distance dig
for a generic gene g will be calculated by considering not
only that gene in isolation but also information regarding
all the genes connected with g. We define this information
as the adjacency list adj of g, in analogy with the DAG
representation of the application α represented by each
chromosome. The introduction of the scope notion for a
constraint qi only affects the way its distance di is com-
puted and thus values for Dg are likely to change but the
formulation given in Eq.1 remains still valid, along with
the definition of the matrix A.

Clearly, if ∃qi ∈ Q, sci = global then the fitness l(·) of
that gene g is a function f(g, adjg) depending in input by g
and all the genes in its adjacency list. Please note that the
framework allows for combining different constraints with
different scope in the set Q. In fact, the adjg information

is simply discarded when computing the distance dig for

a local constraint qi. The only obvious limitation is that
a constraint qi cannot have both global and local scope
at the same time. Finally, the comprehensive formulation
of the fitness function when considering the scope of a
constraint can be given by refining Eq.2 with the following:

F (c) =

N∑
i=1

l(gi, adji) ∗K (3)

Clearly, if ∀qi ∈ Q, sci = local we fall back to the for-
mulation given in our previous work [9], since adji is empty
for each gene gi.

4.4. Implementation details

qbrokage is implemented in Java and leverages the
JGAP framework [34] for performing the described genetic
algorithm. The JGAP framework is flexible enough for our
purposes, since it allows us to specialize some parts of the
framework and at the same time using built-in methods
for performing common genetic operations. For instance,
by referring to the algorithm of Listing 1, the classic “one-
point crossover” operator has not been re-implemented, as
it is already present in the JGAP framework and can be
used by instantiating an object of the CrossoverOperator
class. Similarly, the “random mutation” operator can be
used by instantiating an object of the MutationOperator

class and the elitist selector can be used by instantiating
an object of the BestChromosomesSelector class.

Instead, we need to specialize all the classes related to
the fitness function and the genetic representation of the
model. For instance, regarding the model we need to ex-
tend the IntegerGene class of JGAP, which represents a
Gene implementation that supports integer values for its
allele and provides upper and lower bounds to restrict the
range of legal values allowed by that Gene instance. In
fact, since our model represents each gene gi as an appli-
ance and its allele as the index of the provider, we need

8

to carry out for each gene specific information such as the
allocation cost of the appliance on that provider and the
local fitness.

Regarding the fitness function, we need to extend the
abstract class FitnessFunction and override the evaluate
method for implementing the qbrokage fitness function
as presented in Sec. 4.3.1 and Sec. 4.3.2. The main im-
plementation idea is that we have a class for each QoS
constraint qi and each class expose its methods for calcu-
lating the distance dg according to scopes and attributes.
The implemented evaluate methods have access to a con-
tainer of constraints, specified in the configuration phase,
for calculating the fitness of each gene and the whole chro-
mosome. Interested readers can further investigate our
implementation by referring to the metascheduler Java
package of our code [10].

5. Experimental Evaluation

This section presents a set of experiments performed
for evaluating our broker, both quantitatively and qual-
itatively. We designed the experiments to focus on the
validation, tuning, and scalability of the genetic approach.
For simplicity we assume that interconnections between
providers have the same network capabilities, i.e. the
placement can be conducted by considering each VM in
isolation. In future experiments we plan to relax this
assumption for reflecting more realistic scenarios. This
should be straightforward since our conceptual framework
already support the specification of different network re-
quirements/characteristics at both the application and in-
frastructural level respectively (see Section 3).

We first compare our broker against a state of the
art approach. Then, we analyze how the parameters of
the genetic approach affect results when dealing with an
higher number of providers and VMs. After experimen-
tally tuning our broker, we evaluate it when coping with
hundreds of providers and we finally measure the number
of providers used in acquiring resources, for giving an esti-
mation of the vendor lock-in degree when using our imple-
mentation. The experiments were run in an environment
that simulates Cloud Federation and/or Inter-Cloud sce-
narios. Such environment is provided by SmartFed [31], a
cloud simulator we built upon CloudSim [35]. We extended
SmartFed functionalities in order to run the presented sce-
narios described in this section. All simulations have been
run on a machine equipped with Java 7, 16GB of RAM,
an Intel i5-2550 quad core @3,30 GHz. Unless differently
specified, presented results are obtained by averaging the
output of 20 independent runs of simulation.

Presented experiments in Section 5.1, Section 5.2, Sec-
tion 5.3 and Section 5.4 share the same common setup for
the QoS attributes of applications. The considered set is
the following Q = {costPerV m, ram, storage, location}.
In this case costPerV m is a descending QoS attributes
(lower values are better), ram and storage are ascending
attributes and location is an equal attributes.

Table 3: STRATOS Application Description

#VM CPU RAM (GB) Disk (GB)

Load Balancer 1 1 1 160
Web Server 2 1 1 160
Database 1 6 4 160

Table 4: Provider Costs for STRATOS Scenarios ($ per hour)

EC2 Rackspace Aruba.it

SmallVertex 0.085 0.240 0.093
LargeVertex 0.680 0.240 0.238

In addition, the experiment described in Section 5.5 ex-
ploits two more QoS constraints characterized by a global
scope, that are the CostPerV m Global – cost per VM in-
cluding networking – and Network Global – the network
bandwidth required by a VM for communicate with the
others. Such constraints are able to discriminate between
intra-provider communication and inter-provider commu-
nication for adopting a different cost and use model as
commonly real cloud providers do. In order to show the
potential of such kind of constraints, we simulated the al-
location of a computation workflow over different cloud
resources. However, it is worth noticing that our broker
aims to be a general solution, effectively handling any kind
of application formalized in the OVF format (see Section
3).

In all experiments, we are interested to minimize cost
for the user and thus we leverage the weight mechanism
already presented in Section 4.2 for going in the direction
of cost minimization.

5.1. qbrokage Comparison

qbrokage is compared with the state of the art by
considering and extending a scenario defined by the au-
thors of the STRATOS broker service [13]. Such scenario,
briefly recalled here for the reader’s convenience, consider a
typical three-tier application composed by a loadbalancer,
a web server and a database – 4 VMs in total. In our
model, such application can be represented by three ver-
tices, as described in Table 3, where the number of VMs
and the desired characteristics of the corresponding VM
are indicated for each vertex. As the loadbalancer and the
web server have the same requirements, their configuration
will be denoted as Small, whilst the database one will be
denoted as Large. In the former experiment, the authors
of STRATOS consider two providers, Amazon EC2 and
Rackspace (RS), which charge customers on a VM basis,
at costs indicated in the first two columns of Table 4.

They show that up to 48% are realized when using
the broker, reaching the optimum cost value of 0.495 for
the whole application. We repeated such experiment with
qbrokage and we obtained the optimum cost value at
the first evolution step with a population SP = 20, as
described in the first row of Table 5.

9

Table 5: qbrokage results for STRATOS Scenarios

Optimal QBrokage Alg.
Cost Cost Steps

FormerScenario 0.495 0.495 1
ExtendedScenario 0.493 0.493 3

Table 6: Vertex requirements and providers cost and characteristics

min max

Vertex requirements and providers characteristics

memory 512 MB 16 GB

bandwidth 10 KB 10 MB

disk 4 GB 10 TB

cores 1 8

mips per core 1000 25000

Provider cost (in currency per hour)

memory (per GB) 0.01 0.1

storage (per GB) 0.0002 0.0020

In addition, we extend this scenario with another provider,
for leveraging the qbrokage capability of considering also
providers applying a pricing model that charges customers
on resource basis, rather than on VM basis. For this exper-
iment we consider Aruba.it an Italian provider that allows
customers to create VMs by specifying the desired quan-
tity for each resource and thus applies a per-resource pric-
ing model. For obtaining prices indicated in last column
of Table 4, we use the following prices expressed in dollars
per hour (for simplicity we assume that the euro/dollar ex-
change rate is 1 euro equal to 1.3 dollars – see http://www.
cloud.it/en/cloud-computing/pricing.aspx): 0.026 for
1 CPU, 0.005 for 1 GB of RAM, 0.0039 for 10 GB of Hard
Disk. When considering the three providers in conjunc-
tion, qbrokage finds the optimal result for cost mini-
mization, which is 0.493 as resumed in the second row of
Table 5.

5.2. qbrokage Tuning

Granted that our broker is able to cope with a small
number of VMs and providers, we increased the size of the
problem and contemporary studied how different parame-
ters affect the behavior of qbrokage, in order to properly
tune the genetic allocator. In particular, our purpose is to
experimentally find reasonable values for Rcross and Pmut,
which are the main parameters characterizing the genetic
algorithm described in Section 4.1. To this end, we con-
sider a case study in which an application is composed
by 3 vertex (12 VMs in total) and desired resources must
be found among a set of 50 providers, assuming that each
provider is capable of accepting an infinite number of VMs.

The requirements for each application vertex and the
provider characteristics have been generated by following a
uniform distribution, in the ranges defined in Table 6. For

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 20 30 40 50 60 70 80 90 100 110 120

d
is

ta
n
c
e
 t
o
 o

p
ti
m

u
m

number of steps

Pmut=1/22
(default) Pmut=1/12

Pmut=1/6
Pmut=1/10

Figure 3: Distance to optimum with Rcross = 0.35 and different
values for Pmut by varying number of genetic steps

simplicity, in this case we only use the per-resource cost
model for providers, with cost presented in Table 6. Please
note that the generation of providers has been performed
such to conveniently build a baseline optimal cost alloca-
tion. In particular, we generated first the set of providers
able to satisfy the QoS with a certain cost, and then we
added to the set of available providers either more expen-
sive or unsuitable for QoS requirements. We computed
the optimal baselines in this way even for the subsequent
experiments, if not explicitly stated otherwise.

In this particular experiment the optimal solution in
terms of cost, i.e. the less expensive allocation that con-
temporary satisfies the QoS requirements, is 58.67. Then,
starting from default configuration of JGAP – Rcross =
0.35, Pmut = 1/12, Etop = 0.9 – we first vary mutation
probability and then crossover rate, studying how solu-
tions are distant to optimum for an increasing number of
evolution steps.

Figure 3 shows the distance to optimum (where 1 is
the maximum distance calculated in the positive space)
with Rcross = 0.35 and Pmut = {1/6, 1/10, 1/12, 1/22}.
Although all the configurations reach the optimum within
120 steps, it can be seen that the curve relative to Pmut =
1/10 is very close to the optimum starting from 90 steps,
much earlier than the other configurations. Further incre-
ments of Pmut does not yield better performances, as seen
with 1/6.

Given this result, we try different crossover rates by
using configuration with Pmut = 1/10. Figure 4 shows the
distance to optimum with different values forRcross. It can
be seen that for Rcross = 0.2 the distance to optimum is
significantly higher than the other configurations, at least
up to 60 evolution steps. After that point, all the curves
converge to the optimum. The bottom curve, correspond-
ing to Rcross = 0.80, is the one which yields a measurable
advantage with fewer steps. However, increasing Rcross

leads to longer execution times, for the higher number of
operations to be performed. In fact, by measuring the
execution times for Rcross = 0.80 and Rcross = 0.35, we

10

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 20 30 40 50 60 70 80 90 100 110 120

d
is

ta
n
c
e
 t
o
 o

p
ti
m

u
m

number of steps

Rcross=0.20
(default) Rcross=0.35

Rcross=0.60
Rcross=0.80

Figure 4: Distance to optimum with Pmut = 1/10 and different
Rcross by varying number of genetic steps

found that the latter is always completing around 400ms
early. As an example, in the case of 100 evolution steps,
we obtained, on average, an execution time of 903.05ms
for Rcross = 0.35 and 1290.35ms for Rcross = 0.8, with a
difference on the distance-to-optimum that is quite negli-
gible. For this reason, we decided to operate a trade-off,
using the configuration with Rcross = 0.35.

To resume, as a consequence of the result shown in Fig-
ure 3 and 4 and results gathered for execution times (not
completely shown for brevity), we choose Rcross = 0.35,
Pmut = 1/10 as default configuration for qbrokage, to
be used in the following experiments. For simplicity, when
considering the elitism parameter Etop in this experiment
and in the following, we stick it to 0.9, meaning that we
select the top 90% of the population size. However, please
consider that lowering such value may further benefit the
performance of qbrokage in some cases (e.g. a relative
low number of evolution steps).

5.3. Scalability

In this experiment we study how qbrokage scales in
terms of distance-to-optimum and computation time when
increasing the number of providers up to 500. This exper-
iment was run with Rcross = 0.35, Pmut = 1/10, SP = 50
and 120 evolution steps. Figure 5 shows the results for
the computation time. It can be noticed that the time
grows linearly with the number of providers. Consider-
ing the gathered results, qbrokage takes from 1.05 (50
providers) to 1.25 (500 providers) seconds to compute the
mapping. In our opinion, this increment is not due to the
genetic algorithm itself but it is due to the sorting per-
formed on providers and thus requiring more time when
increasing provider number. Although not extremely fast,
it can considered still a tolerable delay for an interactive
service. The computation time could be reduced by using
less evolution steps and thus sacrificing precision (see Sec-
tion 5.2) and/or by exploiting a parallel genetic algorithm.

The distance-to-optimum obtained for different num-
ber of providers has been plotted in Figure 6a. When

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 50 100 150 200 250 300 350 400 450 500

m
a
p
p
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

number of providers

qbrokage

Figure 5: qbrokage computation time in seconds, population size
50, up to 500 providers

changing the number of providers, we regenerate the appli-
cation and providers by using ranges described in Table 6.
Thus, the same generation of provider is used for each of
the 20 runs regarding a certain number of providers. We
refer to this generation mode as lazy mode. The plot seems
to suggest that the considered configuration of qbrokage
scales up to 400 providers. Indeed, until 400 providers
the distance is always below 0.78% (worst case of 350
providers).

To further investigate this issue, we changed the provider
generation mode, by using a different generation of providers
for each of the 20 runs regarding a certain number of
providers. We refer to this generation mode as non-lazy
mode. The results, plotted in Figure 6b, show that the
distance-to-optimum is always below the 1%, even for the
maximum number of providers. When compared to the
lazy mode experiment of Figure 6a, this may suggest that
those spikes obtained when the number of providers as-
sumes values {450, 500} are more likely related to those
particular datacenter generations, rather than to a scal-
ability issue of qbrokage. Even in the non-lazy mode,
the time trend for compute a mapping is very similar to
the one depicted in Figure 5. In this case the maximum
average time is always obtained with 500 providers and its
equal to 1.34s with a deviation standard equal to 87.29.

5.4. Vendor Lock-in

In this experiment, we compare qbrokage with a naive
approach in term of resilience to the vendor lock-in. The
naive approach narrows down the provider number by con-
sidering those that meet the given QoS and then tries to
map the application by only considering cost minimiza-
tion. We measure the dispersion of the application by
averaging the number of used providers in 20 independent
runs, for a different number of suitable providers. In this
experiment the providers and the costs are generated in
the range described by Table 6, whilst the application is
always generated by considering min values of such range,

11

 0

 0.005

 0.01

 0.015

 0.02

 0.025

5 50 100 150 200 250 300 350 400 450 500 550

d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

number of providers

qbrokage

(a) Distance to optimum, population size 50, up to 500
providers

 0

 0.002

 0.004

 0.006

 0.008

 0.01

5 50 100 150 200 250 300 350 400 450 500 550

d
is

ta
n

c
e

 t
o

 o
p

ti
m

u
m

number of providers

qbrokage

(b) Distance to optimum when generating providers in non-
lazy mode

Figure 6: Distance to optimum comparison for different number of providers

Table 7: Lock-in Degree

QBrokage Naive

Suitable Cost in Used Cost in Used
providers currency providers currency providers

50 0.082 1.50 0.081 1.0
100 0.078 2.35 0.077 1.0
150 0.082 3.20 0.080 1.0
200 0.075 3.50 0.073 1.0

in order to have all the providers as suitable for choice.
Results can be seen in Table 7.

It can be noticed that qbrokage trades cost-effectiveness
for the ability to use multiple providers. The increment of
cost is limited, as the maximum difference in cost is +2.6%
when considering 200 providers. However, this yields to an
increment of +75% (still with 200 providers) in the number
of used providers.

5.5. Global vs Local Fitness

In this experiment we consider scientific workflows that
may benefit in different ways from running in a multi-cloud
environment. For example, some tasks of the workflow
application may have special demands in terms of QoS
and/or QoP, which cannot be fulfilled by a single target
Cloud. The same reasoning can be done in terms of per-
formances. For these reasons, considering a multi-cloud
scenario can be mandatory for running a workflow appli-
cation. Moreover, the multi-cloud scenario can show its
advantage in terms of cost-saving for the workflow users.
In fact, since different tasks may have different require-
ments, simply choosing the cheapest provider for a certain
resource cannot be cost-effective. This is the rationale be-
hind the experiment reported in this section, where we
show that placing VMs by only considering the cheapest
providers for memory and storage lead to more expensive
solutions w.r.t. considering also the network cost for the

communication between VMs that can be placed in differ-
ent providers.

In particular, we focus on the Montage [36] workflow
because it is a well-known astronomy application, allowing
for constructing custom image mosaics of the sky. Mon-
tage is characterized by a certain number of input files
with relative large input size and a discrete computational
load at each node, thus it is very suitable for studying
the performance/cost ratio of a Cloud application, coming
out by trading-off between the application requirements
and the system resources offered by Cloud providers. The
application is constructed starting from the so-called DAX
representation produced by the WorkflowGenerator soft-
ware3. A parser for this file type already exists and it is
provided by WorkflowSim4. Thus, in this case we substi-
tute our OVF parser with the WorkflowSim one, rather
then customize it for dealing with such representation.

In any case, qbrokage needs a DAG representation of
the application for computing network requirements and
we create the application graph as depicted in Figure 7.
To each node we associated a VM dedicated to execute the
computational load – each VM is characterized by 6502.18
MIPS, 1 core, 1.7 GB of RAM and 160GB of storage. In
particular, Figure 7 shows a Montage application charac-
terized by 25 nodes and indicates the computation length
of each vertex (in millions of instructions) inside each node,
whilst the message size (in MB) transmitted on a commu-
nication link has been depicted on oriented edges connect-
ing vertices. In order to highlight the benefit of consider-
ing the network, we consider three different version of the
workflow, characterized by 25, 50 and 100 nodes.

We consider a node of the Montage workflow as the
minimum allocation unit, thus in the context of the ge-
netic brokering we represent each workflow node as a gene.

3See https://github.com/pegasus-isi/WorkflowGenerator for
more information

4See also https://github.com/WorkflowSim/WorkflowSim-1.0

12

1 3 3 9 0

1 0 5 9 0

7.95MB7.95MB

10 8 1 0

7.95MB

10 3 9 0

7.95MB

13 8 3 0

7.96MB7.96MB

10 8 8 0

7.96MB

10 4 9 0

7.96MB

10 5 1 0

7.96MB

10 6 2 0

7.96MB

10 6 4 0

7.96MB

13 3 6 0

7.93MB 7.93MB 7.93MB

10 8 3 0

7.93MB

13 6 0 0

7.96MB7.96MB

10 3 7 0

7.96MB

10 9 3 0

7.96MB

13 7 8 0

7.92MB 7.92MB

10 7 6 0

7.92MB7 2 0

399.10KB 307.10KB 223.52KB172.49KB 228.26KB 245.58KB265.16KB 306.05KB 290.55KB

1 4 2 0

1.84KB

0.26KB 0.26KB 0.26KB 0.26KB 0.26KB

1 3 9 0

7.94MB 7.94MB 7.98MB 7.96MB 7.93MB

30 3 0

1.56KB

3 8 6 0

88.71MB

4 5 0

1.77MB

Figure 7: The Montage workflow with 25 nodes. The labels on edges represent volume of communication; The labels on vertexes represent
computational time.

Its allele represents the provider used for the mapping.
Please consider that we are interested to investigate our
broker w.r.t. commercial Cloud providers (public clouds)
where each provider has infinity capacity, i.e. we assume
that each provider can always provide a worker node with
the exposed capability for scheduling the task. Instead,
for applying our approach to hybrid or private clouds,
proper workflow scheduling and resource allocation algo-
rithms should be used on the bottom level [37, 38]. For the
same reason, in our experiment we make the assumption
that each task on a particular level will run as soon as the
tasks of the previous level complete their jobs, i.e. there
is no scheduling delay.

We compared the mapping of the three Montage ver-
sions with two flavors of qbrokage. The base is our base-
line version and it includes the following set of QoS at-
tributes Q = {costPerV m, ram, storage, location}, thus
it does not consider the network, neither in terms of link
bandwidth nor cost. The networked version instead con-
siders in addition the cost and the bandwidth require-
ments when VMs are placed in different providers, i.e.
they set-up an inter-provider communication. For intra-
provider communication we make the realistic assumption
that providers charge no cost and offer unlimited network
bandwidth.

The base version employs only local constraints, which
means that the local fitness function (see Section 4.3.1) is
exploited during the brokering phase. The networked ver-
sion employs global constraints in addition to the local one,
exploiting the global fitness function (see Section 4.3.2)

during the brokering phase, in order to consider network
links in the evaluation, both in terms of costs and func-
tional requirements. For fairly comparing the two qbrok-
age flavors, regardless of the workflow nature the cost is
weighted more than the other parameters during the fit-
ness evaluation, since it is modeled in both local and global
versions.

To compare these two flavors of qbrokage we consid-
ered four metrics:

• the completion time (Tc), which counts the second
a workflow needs to be completed. This value is
influenced both by the capabilities of the host used
for the tasks, and from the links among providers;

• the workflows per hour (w/h), which gives an esti-
mation of the number of a workflows that is possible
to run in an hour given its Tc;

• the cost per hour (c/h), which is computed by con-
sidering the cost of single run, in terms of host re-
sources and network, multiplied by w/h;

• the brokering mapping time (Tm), as the time in
millisecond necessary to qbrokage to provide the
allocation plan.

We run experiments with 3 Montage DAGs, each com-
posed respectively of 25, 50 and 100 nodes, by keeping the
number of providers fixed to 100. The providers character-
istics and costs were generated according to Table 6, with
the addition of the network cost in the range of [0.05, 0.15]$
per GB.

13

Table 8: Workflow applications: comparison of the base and net-
worked qbrokage

Base Tc w/h c/h Tm

Montage 25 8.0 452.5 28.1 3642
Montage 50 9.5 378.5 51.1 6839.5
Montage 100 11.9 302.7 83.0 13770.2

Networked Tc w/h c/h Tm

Montage 25 8.1 446.8 18.4 3675.2
Montage 50 9.6 375.0 38.0 8707.1
Montage 100 12.0 300.3 70.6 18789.0

The results of the comparison are presented in Table
8 (each result is the average of 10 independent runs). Re-
sults show that the networked version of qbrokage yields
advantages in terms of cost per hour. Indeed, in spite of a
slightly Tc (and consequently a lower number of w/h) the
gain in terms of cost is evident. With 25, 50 and 100 tasks
the c/h is reduced respectively by the 35%, 25% and 15%.
The reduction decreases with the number of tasks since we
keep fixed the number of providers and thus the gaining
space for the networked version to find better solution is
reduced.

Further, the networked version yields longer mapping
time than the base version, respectively by the 1%, 24%
and 30%. This is explained by the fact that computing
the fitness of a possible allocation (i.e. chromosome) with
the networked version takes more time with respect to the
base version. This is also confirmed by the fact that the
difference in mapping time grows with the size of the ap-
plication, and hence with the length of the chromosome.

From the analysis of the results, it is visible a tradeoff
cost/mapping time between the base and networked ver-
sions. According to the data, larger Montage instances
(roughly when number of nodes and providers of the same
order of magnitude) benefit from the base version. Rather,
smaller instances achieve lower costs and negligible incre-
ment in mapping time when employing the networked ver-
sion.

6. Conclusion and Future Work

As Cloud Computing becomes a predominant trend,
a growing amount of Cloud providers is joining the mar-
ket, increasing heterogeneity and assortment of offered re-
sources. Therefore, customers may find it hard to select
the most suitable set of providers for acquiring resources
needed by complex applications. In this paper we de-
scribed qbrokage, a cloud broker that explores a large
number of candidate solutions and choose those that meet
the QoS requirements of the application. We proposed a
genetic approach to the problem, because in our opinion
it provides the adequate level of flexibility for support-
ing multiple and heterogeneous QoS constraints. Our pro-
posal can deal with hundreds of providers, by preserving

at the same the interactivity of the service. Moreover, it
is capable of mitigating vendor lock-in risks by design. In
addition, our architecture is capable of building graph rep-
resentation of cloud applications and qbrokage is able to
fully exploit such representation, by considering costs and
capabilities of communication among providers. This en-
ables to evaluate a wider-range of application-level QoS
terms, such as throughput and response time.

While qbrokage performs well with static applica-
tions, some of them may require the ability to adjust the
amount of computational resources during their life time,
for instance by acquiring more resources at run time. Even
if qbrokage is able to deal with custom-sized applica-
tions, its current version does not support elasticity for
applications that have been already deployed. Such sup-
port is deferred to future work.

Acknowledgment

The authors acknowledge the support of the Project FP7-
257438 Contrail (Open Computing Infrastructures for Elastic
Services) and FP7-256980 NESSoS (Network of Excellence on
Engineering Secure Future Internet Software Services and Sys-
tems). This work has been also partially funded by the follow-
ing research projects: InGeoCLOUDS (no. 297300), MIDAS
(no. 318786), E-CLOUD (no. 325091).

References

[1] Microsoft, Small and midsize businesses cloud trust study:
U.S. study results, http://www.microsoft.com/en-us/news/

download/presskits/security/docs/twcjune13us.pdf.
[2] R. Buyya, R. Ranjan, R. N. Calheiros, Intercloud: Utility-

oriented federation of cloud computing environments for scaling
of application services, Algorithms and Architectures for Paral-
lel Processing 6081/2010 (LNCS 6081) (2010) 20.

[3] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, G. Righetti, Cloud
federations in contrail, in: Euro-Par 2011: Parallel Processing
Workshops, Vol. 7155 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2012, pp. 159–168.

[4] G. Anastasi, E. Carlini, M. Coppola, P. Dazzi, A. Lazouski,
F. Martinelli, G. Mancini, P. Mori, Usage control in cloud feder-
ations, in: Cloud Engineering (IC2E), 2014 IEEE International
Conference on, 2014, pp. 141–146. doi:10.1109/IC2E.2014.58.

[5] M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, P. Mori,
J. Jensen, I. Johnson, P. Kershaw, The contrail approach to
cloud federations, Proceedings of the International Symposium
on Grids and Clouds (ISGC’12).

[6] Open Virtualization Format Specification, Version 1.1, Specifi-
cation, DMTF (Jan. 2010).

[7] T. Cucinotta, G. Anastasi, L. Abeni, Respecting Temporal Con-
straints in Virtualised Services, in: Computer Software and Ap-
plications Conference, 2009. COMPSAC ’09. 33rd Annual IEEE
International, Vol. 2, 2009, pp. 73–78.

[8] H. Kavalionak, E. Carlini, L. Ricci, A. Montresor, M. Cop-
pola, Integrating peer-to-peer and cloud computing for mas-
sively multiuser online games, Peer-to-Peer Networking and Ap-
plications 8 (2) (2015) 301–319.

[9] G. F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, QBROKAGE:
A Genetic Approach for QoS Cloud Brokering, in: Cloud Com-
puting (CLOUD), 2014 IEEE 7th International Conference on,
IEEE, 2014, pp. 304–311.

[10] Smartfed, https://github.com/ecarlini/smartfed, Accessed
2015-12-8.

14

[11] I. Petri, M. Punceva, O. Rana, G. Theodorakopoulos, Broker
Emergence in Social Clouds, in: Cloud Computing (CLOUD),
2013 IEEE Sixth International Conference on, 2013, pp. 669–
676. doi:10.1109/CLOUD.2013.38.

[12] A. A. Falasi, M. A. Serhani, S. Elnaffar, The Sky:
A Social Approach to Clouds Federation, Proce-
dia Computer Science 19 (0) (2013) 131 – 138.
doi:http://dx.doi.org/10.1016/j.procs.2013.06.022.

[13] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, S. Mankovski, In-
troducing STRATOS: A Cloud Broker Service, in: Cloud Com-
puting (CLOUD), 2012 IEEE 5th International Conference on,
2012, pp. 891–898. doi:10.1109/CLOUD.2012.24.

[14] L. D. Ngan, R. Kanagasabai, OWL-S Based Semantic
Cloud Service Broker, in: Web Services (ICWS), 2012
IEEE 19th International Conference on, 2012, pp. 560–567.
doi:10.1109/ICWS.2012.103.

[15] L. D. Ngan, S. Tsai Flora, C. C. Keong, R. Kanagasabai,
Towards a Common Benchmark Framework for Cloud Bro-
kers, in: Parallel and Distributed Systems (ICPADS), 2012
IEEE 18th International Conference on, 2012, pp. 750–754.
doi:10.1109/ICPADS.2012.121.

[16] M. Zhang, R. Ranjan, M. Menzel, S. Nepal, P. Strazdins,
W. Jie, L. Wang, An infrastructure service recommenda-
tion system for cloud applications with real-time qos require-
ment constraints, IEEE Systems Journal PP (99) (2015) 1–11.
doi:10.1109/JSYST.2015.2427338.

[17] F. Pop, V. Cristea, N. Bessis, S. Sotiriadis, Reputation guided
genetic scheduling algorithm for independent tasks in inter-
clouds environments, in: Proceedings of the 2013 27th In-
ternational Conference on Advanced Information Network-
ing and Applications Workshops, WAINA ’13, IEEE Com-
puter Society, Washington, DC, USA, 2013, pp. 772–776.
doi:10.1109/WAINA.2013.206.

[18] Z. Zheng, R. Wang, H. Zhong, X. Zhang, An approach for
cloud resource scheduling based on Parallel Genetic Algo-
rithm, in: Computer Research and Development (ICCRD), 2011
3rd International Conference on, Vol. 2, 2011, pp. 444–447.
doi:10.1109/ICCRD.2011.5764170.

[19] C. C. T. Mark, D. Niyato, T. Chen-Khong, Evolutionary opti-
mal virtual machine placement and demand forecaster for cloud
computing, in: Advanced Information Networking and Appli-
cations (AINA), 2011 IEEE International Conference on, IEEE,
2011, pp. 348–355.

[20] S. Iturriaga, S. Nesmachnow, B. Dorronsoro, E.-G. Talbi,
P. Bouvry, A parallel hybrid evolutionary algorithm for the opti-
mization of broker virtual machines subletting in cloud systems,
in: P2P, Parallel, Grid, Cloud and Internet Computing (3PG-
CIC), 2013 Eighth International Conference on, IEEE, 2013,
pp. 594–599.

[21] L. Heilig, E. Lalla-Ruiz, S. Voß, A biased random-key genetic al-
gorithm for the cloud resource management problem, in: Evolu-
tionary Computation in Combinatorial Optimization, Springer,
2015, pp. 1–12.

[22] F. Jrad, J. Tao, I. Brandic, A. Streit, Sla enactment for large-
scale healthcare workflows on multi-cloud, Future Generation
Computer Systems 43 (2015) 135–148.

[23] Z. Wen, R. Qasha, Z. Li, R. Ranjan, P. Watson, A. Romanovsky,
Dynamically partitioning workflow over federated clouds for
optimising the monetary cost and handling run-time failures,
IEEE Transactions on Cloud Computing PP (99) (2016) 1–1.
doi:10.1109/TCC.2016.2603477.

[24] Y. Zhao, Y. Li, I. Raicu, S. Lu, C. Lin, Y. Zhang, W. Tian,
R. Xue, A service framework for scientific workflow manage-
ment in the cloud, Services Computing, IEEE Transactions on
PP (99) (2014) 1–1. doi:10.1109/TSC.2014.2341235.

[25] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The
cost of doing science on the cloud: The montage example, in:
High Performance Computing, Networking, Storage and Analy-
sis, 2008. SC 2008. International Conference for, 2008, pp. 1–12.
doi:10.1109/SC.2008.5217932.

[26] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algo-

rithms for cost-and deadline-constrained provisioning for sci-
entific workflow ensembles in iaas clouds, Future Generation
Computer Systems 48 (2015) 1–18.

[27] F. Jrad, J. Tao, A. Streit, A broker-based framework for multi-
cloud workflows, in: Proceedings of the 2013 International
Workshop on Multi-cloud Applications and Federated Clouds,
MultiCloud ’13, ACM, New York, NY, USA, 2013, pp. 61–68.
doi:10.1145/2462326.2462339.
URL http://doi.acm.org/10.1145/2462326.2462339

[28] R. de C. Coutinho, L. M. Drummond, Y. Frota,
D. de Oliveira, Optimizing virtual machine allocation for
parallel scientific workflows in federated clouds, Future
Generation Computer Systems 46 (0) (2015) 51 – 68.
doi:http://dx.doi.org/10.1016/j.future.2014.10.009.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X14002027

[29] Y. C. Lee, H. Han, A. Y. Zomaya, M. Yousif, Resource-efficient
workflow scheduling in clouds, Knowledge-Based Systems 80
(2015) 153–162.

[30] W. Chen, E. Deelman, Workflowsim: A toolkit for simulating
scientific workflows in distributed environments, in: E-Science
(e-Science), 2012 IEEE 8th International Conference on, 2012,
pp. 1–8. doi:10.1109/eScience.2012.6404430.

[31] G. F. Anastasi, E. Carlini, P. Dazzi, Smart cloud federation
simulations with cloudsim, in: Proceedings of the First ACM
Workshop on Optimization Techniques for Resources Manage-
ment in Clouds, ORMaCloud ’13, ACM, New York, NY, USA,
2013, pp. 9–16. doi:10.1145/2465823.2465828.
URL http://doi.acm.org/10.1145/2465823.2465828

[32] G. F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, M. Distefano,
An ovf toolkit supporting inter-cloud application splitting, in:
Cloud Networking (CLOUDNET), 2014 IEEE 1st International
Conference on, 2014.

[33] Z. Ye, X. Zhou, A. Bouguettaya, Genetic Algorithm Based QoS-
Aware Service Compositions in Cloud Computing, in: J. Yu,
M. Kim, R. Unland (Eds.), Database Systems for Advanced
Applications, Vol. 6588 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2011, pp. 321–334.

[34] Jgap: Java genetic algorithms package,
http://jgap.sourceforge.net/, Accessed 2015-12-8.

[35] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya,
Cloudsim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning al-
gorithms, Software: Practice and Experience 41 (1) (2011) 23–
50.

[36] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-
H. Su, K. Vahi, Characterization of scientific workflows,
in: Workflows in Support of Large-Scale Science, 2008.
WORKS 2008. Third Workshop on, 2008, pp. 1–10.
doi:10.1109/WORKS.2008.4723958.

[37] P. Hoenisch, S. Schulte, S. Dustdar, Workflow scheduling and re-
source allocation for cloud-based execution of elastic processes,
in: Service-Oriented Computing and Applications (SOCA),
2013 IEEE 6th International Conference on, IEEE, 2013, pp.
1–8.

[38] P. Hoenisch, S. Schulte, S. Dustdar, S. Venugopal, Self-adaptive
resource allocation for elastic process execution, in: Cloud Com-
puting (CLOUD), 2013 IEEE Sixth International Conference
on, IEEE, 2013, pp. 220–227.

15

