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Abstract

Mobile devices we carry with us routinely disseminate radio messages, as is
the case with Wi-Fi scanning and Bluetooth beaconing. Is it possible to examine
these digital crumbs and have them reveal useful insight on the presence of
people in indoor locations? The literature lacks any answers to this question.
We demonstrate the feasibility of using Wi-Fi probes to identify frequented
regions by experimenting in three different indoor environments with sniffing
devices produced by Cloud4Wi R©. The same process can be carried out using the
Wi-Fi access points already installed in the environment, allowing for operation
free of installation, calibration and maintenance.

Keywords: Passive indoor localisation; unsupervised fingerprinting;
interpolated fingerprinting; Wi-Fi probe eavesdropping; Wi-Fi fingerprinting

1. Introduction

Most mobile device we bring with us regularly send Wi-Fi packets called
probe requests to detect nearby Wi-Fi networks. The great majority of such
messages are discarded by networking devices that receive them, yet these digital
crumbs hide potential for revealing some aspects of human behaviour, such as
people mobility.

In this paper we analyse Wi-Fi probe request messages sent by mobile
devices, with the goal of estimating the device positions in indoor environments.
The purpose of this experiment is to demonstrate the feasibility of identifying
crowded regions by sniffing probe request, a task that can be performed byWi-Fi
access points already installed in the region of interest, without any additional
hardware installation and without the need for calibration or maintenance.

Wi-Fi devices emit probes to discover the existence of access points (APs).
This procedure is called active scan, in contrast with passive scans during which
devices passively listen for Wi-Fi beacons sent by APs. We use sniffing devices
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designed by Cloud4Wi 1, called FogSenses, which passively collect probes sent
by stationary and mobile devices and their received signal strength (RSS).

We study some meaningful statistics of the gathered data, such as the re-
ceived signal strength (RSS) distribution of the probes and how the number of
probes vary according to the periodic activities of people.

Using RSS, we then evaluate the accuracy of some range-free indoor localisa-
tion techniques, which are techniques that do not rely on the radio propagation
properties of the environment. Most of our experiments are concerned with fin-

gerprinting, a method based on RSS measurements made at a series of known
significant points in the environment.

Usually fingerprinting requires a time-consuming measurement campaign
to populate a fingerprinting database which is then used to perform localisa-
tion; instead, we adopt an unsupervised procedure to build the database, with
a twofold advantage. First, we can build and periodically rebuild the finger-
print database without any human intervention, and without any extra cost;
second, in case the number of Wi-Fi APs is too low, we can extend our sens-
ing architecture by adding FogSenses without any manual reconfiguration other
than registering the location coordinates of new FogSenses. Our work extends
the preliminary study proposed in [?potIpin], by considering additional data
collection campaigns in environments with different features, and by greatly ex-
panding the span of location estimating algorithms, which we then combine into
an ensemble estimator.

The goal of this analysis is to assess whether Wi-Fi probes are suitable
to identify sample locations of human presence in indoor locations. We speak
about sample locations because Wi-Fi devices emit probes only occasionally, so
probes cannot be used to track a device or to reliably identify its presence. Such
samples can be used for multiple purposes, for example as an aid to intrusion
detection system, which would work by spotting the presence of unauthorised
Wi-Fi devices in a given area. Another usage is as an activity heartbeat, by
assessing the presence and regular activity of a stationary device in a given area.
What we think is the most interesting is performing crowd localisation, that is
estimating crowded regions, areas where several devices are located for some
time. Our work does not perform any real-life experiments in crowd localisation;
rather, its purpose is to assess the feasibility of using Wi-Fi probes to this end.

The experimental results we obtain show a median localisation error below
5.5 m, which is in line with the state of the art in indoor localisation algorithms
based on Wi-Fi only, such as those participating to the EvAAL-ETRI off-site
competition at IPIN 2015 [?ipin2015]. It is worth noting that results obtained
during the IPIN competitions are generally worse than those claimed by au-
thors of indoor localisation papers, because they are measured in realistic and
controlled conditions, rather than the same environment where a given system
has been developed [?ipin2016].

1”the industry’s leader in service platforms for advanced guest Wi-Fi”, http://cloud4wi.
com/
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This is the first time that accurate measurements of probe-based localisation
performance are done; they give a strong indication that it is indeed possible
to implement and deploy practical systems that use only Wi-Fi probe detection
to perform crowd localisation in areas such as a shop inside a mall or an open
space office.

The remainder of this paper is organised as follows. Section II covers related
work in the field of Wi-Fi probes used for localisation purposes. Section III
describes our sensing architecture based on the FogSenses. Section IV describes
the data gathering campaigns with an analysis of the quality of the obtained data
set. Finally Section V introduces our localisation framework with a comparative
analysis of the different techniques used. Section VI draws some conclusions.

2. Related work

Few works concentrate on sniffing Wi-Fi probes. Even less do so with the
aim of localising people.

The main technical difficulty is that probes are sent only occasionally, as
discussed in [?Freudiger:2015:TYM:2766498.2766517], with an experimental
study of several factors that influence the number and the frequency of the
probes sent by the popular smartphones. There are two major factors deter-
mining the behaviour of devices, namely the Operating System (OS) and the
existence of known Wi-Fi networks. As an example, devices based on Android
5.0.1 are observed to emit about 1500 probes per hour in general, while for iOS
devices (iOS 8.1.3) the number drops to 120 per hour. Devices usually send
bursts of probes, the frequency of bursts strongly depends on the existence of
known networks. The observed frequency of bursts ranges from one every 66 s
(Android 5.0.1) to one every 330 s (iOS 8.1.3).

As a consequence, it is only possible to get sparse samples of people’s po-
sitions. Our goal is to study whether Wi-Fi probes are usable to identify the
presence of unspecified people in a given indoor area, without any attempt at
tracking or identifying specific devices. Specifically, our work focuses on the
accuracy of the position samples through experimentation in a static environ-
ment.

In [?Musa:2012:TUS:2426656.2426685], Wi-Fi probes are used to estimate
the trajectory of devices, which is a tracking task. This is made possible by
instrumenting an arterial road 2.8 km long with 7 Wi-Fi monitors. The authors
manage to track some individual devices with a median error of about 50 m with
monitors placed on average 460 m apart. They use a hidden Markov model of
possible trajectories and make the final estimate using the Viterbi algorithm.
They do not only sniff for Wi-Fi probes spontaneously sent by mobile devices,
but use several additional techniques to elicit response packets from devices
and increase the length of packet bursts sent by each device, thus improving
tracking performance once the device radio is on, but can do nothing when the
device turns off the radio or anyway decides to not transmit anything. Accu-
racy performance of this approach is very good, considered how much far apart
are the monitors, but it is only achievable in an environment with where two
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requirements are simultaneously satisfied: few well-defined possible trajectories
and device tracking. Our work instead is aimed at being applicable in wide
unstructured indoor areas such as a mall where a great number of trajectories
are possible and configuring a Markov model would be a complex and long task,
which contradicts our aim of simple setup. Moreover, many modern devices’
operating system use some form of probe anonymisation which prevents track-
ing, unless the device is associated with a Wi-Fi network, which is generally not
true.

The only other paper we found that exploits Wi-Fi probe messages for local-
isation purposes is [?PedMonitoring], where the authors track pedestrians in an
outdoor environment using triangulation. The final figures indicate a 1 m mean
positioning error on a single experiment without any details on the number of
samples taken. While it is possible to observe this high accuracy in a small
outdoor environment with few obstacles, the adopted triangulation method is
not generally usable in an indoor environment, where reflections from ceiling
and floors are strong and no line of sight from the device to the monitor is a
common situation, leading to a generally weak relationship between received
signal strength and distance, which makes triangulation unreliable.

In summary, to the best of our knowledge there is no direct comparison for
our work in the literature and no measurement campaigns, whether extensive
or not, have been published on the positioning accuracy that one can obtain by
eavesdropping Wi-Fi probe request packets using APs or sniffing devices.

3. The probe sensing architecture

Devices with an enabled Wi-Fi network periodically emit Wi-Fi probe re-
quests. Their purpose is to actively scan the network searching for available
Wi-Fi access points or for a previously accessed access point. This discovery
phase usually prepares an association phase through which a device establishes
a connection to a specific network. Devices send probes with frequency depend-
ing on several factors, including the Wi-Fi device driver and decisions made by
the operating system. For example, some devices do not perform any Wi-Fi
scanning when they are connected to a wired network, while other devices still
emit Wi-Fi probes even if they are connected. Probes are sensed by all APs
in the area as part of their normal activity, as the IEEE 802.11 standard man-
dates. Using them for different purposes can be done internally to the APS or
externally by a server to which APs send the collected probes. For simplicity of
experimental set-up, we collect the probes emitted by Wi-Fi-enabled devices by
means of a network of sniffing devices, namely FogSense devices distributed by
Cloud4Wi. FogSenses are plug-and-play Wi-Fi sensors provisioned with a USB
port as well as a mini-USB port for configuration. (figure ??). The Wi-Fi mod-
ule is a Broadcom WICEDTM from USI, supporting IEEE 802.11 b/g/n Wi-Fi
standards. A FogSense logs Wi-Fi probes emitted by nearby Wi-Fi-enabled de-
vices and sends the logs to a server at intervals of 15 s. The data stored by the
server includes information extracted from the captured probes: (i) reception
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Figure 1: A FogSense Wi-Fi sensor used in the measurement campaign.

time stamp, (ii) MAC address of the sending device, (iii) ID of the receiving
FogSense and (iv) RSS (dBm) measured by the FogSense.

4. Experimental setting

We perform our experiments in three scenarios characterised by different
layouts, sizes and number of sniffers needed to cover the area. Analysis of
probes presented in this work are based on anonymised data. Maps of the three
scenarios are shown in figure ??.

In a real deployment scenario probes are normally gathered by already
installed APs, and FogSenses are only deployed if the number and positions of
APs is not sufficient to obtain good accuracy performance. In our experiments,
however, we only work with FogSenses, for simplicity of set-up.

The CNR area in Pisa (from now on CNR) covers about 350 m2 and it
is characterised by a straight corridor with offices located on both sides. The
sensing region includes 12 offices where we deployed 4 FogSenses as shown in
figure ??. The Cloud4Wi Italian office (from now on C4WIT) covers about
250 m2 and is located in an old historical building with 9 offices of irregular
shape, where we deployed 8 FogSenses (figure ??). Finally, the Cloud4Wi San
Francisco headquarter (from now on C4WUS) is an open office covering about
500 m2 with 3 small offices and a meeting area (on the right and on the top left
side of figure ??) where we deployed 5 FogSenses.

It is apparent from the maps that the three scenarios are quite different.
C4WUS is an open space, with no obstructions. This is not very dissimilar
from CNR, where the walls are part gasbeton and part drywalls, both of which
are not a serious obstacle to Wi-Fi signals. On the other hand, C4WIT is quite
different: this is an ancient building with many brick and stone walls up to
60 cm thick. We expect this scenario to produce more accurate results, because
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Table 1: Scenario characteristics

Scenario FogSenses Unique
MACs

Duration Known
devices

Probes Size

CNR 4 24000 70 days 16 2.2e6 350 m2

C4WIT 8 130000 60 days 18 2.3e6 250 m2

C4WUS 5 34000 30 days 12 1.6e6 500 m2

different FogSenses generally receive very well differentiated signal strengths
from devices.

We installed different number of FogSenses in the three areas, specifically a
higher number is needed in the C4WIT location, because the effect of the walls
is similar to significantly increasing the distances.

To evaluate the performance of the proposed methods, we noted the position
of some known stationary devices, e.g. workstations, laptops, smartphones and
other Wi-Fi-equipped devices present in each location. The positions of known
devices is the ground truth of our experiment: accuracy is measured by compar-
ing their real position with the one estimated by different localisation methods.
All devices are stationary: this is strictly true for workstations and laptops,
and almost always true for the smartphones. Given office working habits, we
estimate that each smartphone, during the whole experiment, is located into its
known position for about 90% of the time it is found inside the measurement
area.

Note that experimenting with stationary devices, as we did, implies no gen-
erality loss with respect to experimenting with moving devices. The localisation
procedure, in fact, relies on fixed sniffers to receive a packet sent by the device,
at moving speeds that have no influence on radio propagation. Additionally, the
prospected usage of the methods described in this paper is to gather samples
of people’s position, rather than tracking them, so the movement pattern of
probe-emitting devices is largely irrelevant in this scope.

Among the known devices we could not include any that uses MAC ran-
domisation techniques, such as those based on recent iOS operating systems,
because randomisation makes it impossible to identify which device is sending
the Wi-Fi probe. While this is a limitation as far as our experiment is concerned,
it does not impose any constraints for the intended usage of our technique which,
again, does not involve tracking.

The data gathering campaigns have different duration, ranging from 30 days
at C4WUS to 70 days at CNR, and different number of FogSenses installed in
each scenario. The different numbers of unique MACs observed are due to the
proximity of offices to roads. Table ?? summarises the features of the three
scenarios.

Since this paper is concerned with assessing whether Wi-Fi probes can be
used for the purpose of localisation, and since no other measurement campaign
of this kind is available, we try here to give an idea of the numbers we are
working with.
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(a) Map of site CNR. Map width is 22 m.

(b) Map of site C4WIT. Map width is 25 m.

(c) Map of site C4WUS. Map width is 24 m.

Figure 2: Maps of the scenarios selected for the experiments. Blue dots show the FogSense
positions, red crosses indicate the reference devices.
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Figure 3: Top 10 known devices by number of probes.

Figure ?? shows number of probes gathered by the most talkative known
devices. Note how the number of probes produced can vary considerably be-
tween devices, as already discussed. We account for this difference in number of
collected probes when measuring performance, in order to avoid weighting one
device more than others.

Figure ?? illustrates the RSS distribution for the known devices. The three
distribution have different width, as highlighted by their standard deviation
(shown in the figure). This is consistent with our previous observations on the
difference of the three scenarios and is one more confirmation that C4WIT is
the scenario where the FogSenses gather the most information.

Future work may investigate the usage of this information to assist the de-
ployment in different environments, especially for deciding whether the already-
installed APs are sufficient as sniffing devices to gather probe requests. In
principle, adding FogSenses in the area to improve localisation accuracy could
make sense unless this addition makes the standard deviation too narrow.

Finally, figure ?? shows the number of probes received in 25-minute intervals
as time series covering one week. It is apparent that, in CNR and C4WIT, the
number of captured probes increases during the working hours and it drops down
during off-work hours and weekends. In fact, the known devices are laptops and
smartphones owned by employees at the three locations, the probes they emit
well reproduce their working rhythms. At C4WUS such pattern is less clear for
two reasons. First, most of the known devices are static and always connected to
a local stable Wi-Fi network, which reduces the number of probes sent. Second,
they are not owned by the employees, and are therefore working also during
off-hours and weekends.
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Figure 4: Probability distribution of RSS values of known devices.
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Figure 5: Time series of captured probes in a week’s time, 25-minute intervals.
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5. Performance of localisation algorithms with Wi-Fi probes

We experiment with some localisation algorithms, in order to find the ones
with best performance in terms of accuracy and robustness to changing en-
vironmental conditions. Our purpose is investigating whether we can find an
algorithm with performance sufficient to be used as a basis for crowd localisa-
tion.

Generally speaking, RSS-based localisation techniques can be divided into
range-based and range-free methods. Range-based techniques estimate a user’s
position by considering the received signal strength of that user’s device and
exploiting a Wi-Fi signal propagation model. They are prone to errors due to
reflection of waves over the walls, floor and ceiling, especially in the presence
of obstacles obstructing line of sight between transmitter and receiver. On the
other hand, range-free techniques do not rely on the radio propagation properties
of the environment. We only consider range-free algorithms.

Each algorithm we use has several parameters to be tuned. Choosing an
algorithm and a set of parameters gives rise to a different localisation method.

All algorithms are based on k-NN classification, so each algorithm gives rise
to different methods based on the value of k, which in our experiments varies
from 1 to 3. Given the target application, we expect that each device is seen by
a low number of FogSenses, so we have not experimented with higher values of
k. The final estimate is the centroid of the k estimates.

The simplest algorithm, which we call strongest, estimates that the observed
device is in the same location as the FogSense which has observed the highest
RSS (Received Signal Strength), among those that have received the probe.
When k is greater than 1, estimates are additionally considered for the second
strongest up to the k-th strongest. Since we use k from 1 to 3, the strongest

algorithm gives rise to 3 methods.
All the algorithms apart from strongest are based on fingerprinting. Finger-

printing is a technique commonly used for indoor localisation, which is composed
of an installation off-line phase followed by a run-time on-line phase. During
the off-line phase, one takes measurements of the RSS of Wi-Fi packets received
from the APs (Wi-Fi Access Points), as observed at a number of reference points.
These reference observations are collected into a fingerprint database. During
the on-line phase, when an agent needs localisation, it makes a new observation,
by measuring the RSS it gets from the visible APs at the location. This new
observation is compared with those present in the fingerprint database. The
entry in the database that is closest to the new observation is selected, and the
agent’s estimated position is set to that of the closest entry in the database, or
the centroid of the k closest entries when k-NN is used. Fingerprint methods
have been first proposed many years ago [?radar] and are still being actively
investigated [?fundamental-limits], since they are at the base of most indoor
localisation systems. For example, all competitors in the EvAAL-ETRI off-site
competition at IPIN 2015 used some form of fingerprinting [?ipin2015].

Fingerprints observed during the on-line phase are variable in length, because
the number of FogSenses receiving a given probe from a device is variable: in

10



fact probes are lost for a variety of reasons, including collisions, interference
and insufficient transmitting power. Generally speaking, the higher the number
of FogSenses receiving a probe, the higher the accuracy of estimation we can
possibly obtain, but the lower the number of probes we can consider as valid
samples. The trade-off between accuracy and number of usable probes depends
on the FogSense positioning, the number of devices expected in the area, the
presence of other Wi-Fi networks, the expected accuracy of the results obtained
and should be decided for each scenario, on a case-by-case basis. In this work,
we use a threshold of 3 for all scenarios; in other words, we only consider probes
which have been received by at least 3 FogSenses.

5.1. Interpolating the fingerprint database

Usually, building a fingerprint database starts with selecting several calibra-
tion points. The purpose is to measure, at each point, what is the RSS observed
from each of a number of APs in the area. In our case, we need the opposite:
we should measure the RSS observed by the FogSense when a probe is sent
by a device located at the calibration points. From a conceptual and practical
point of view, this change of perspective is unimportant, and all the procedures
commonly used for fingerprinting stay the same.

The RSS values associated with each access point are collected at the calibra-
tion points over a certain period of time and then stored in fingerprint database
together with the location coordinates. During the on-line phase, the person
or object of interest is localised by comparing its observed fingerprint to those
stored in the database, looking for the most similar ones. Building a fingerprint
database is a time-consuming task, especially for large areas that may contain
thousands of calibration samples.

In order to be commercially viable, the proposed method should require
very little or no installation and maintenance measurements. To this aim, we
profit from the probes sent by the FogSenses themselves, which are connected
to a server via Wi-Fi, and therefore occasionally send a probe request which
is collected by the other FogSenses. This is enough to build a self-updating
database composed of fingerprints relative to the positions of the FogSenses.
When using APs instead of FogSenses, we can profit from the probes sent by
APs during routine neighbourhood scanning.

A database obtained with this unsupervised procedure, however, is too
sparse for obtaining a satisfying positioning accuracy, because the typical den-
sity of FogSenses in the environment should be low. In order to get a denser
database, we resort to interpolation on a square grid, an idea already proposed in
the indoor localisation literature [?interpolation,?interpkriging]. In partic-
ular, we further refine the solution proposed in [?potIpin] by exploiting several
2-D interpolation strategies.

5.1.1. Off-line phase: building the fingerprint database

The fingerprint database is automatically built without human interven-
tion thanks to interpolation, which in real deployment scenarios allows for
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installation-free systems when the number and position of APs allows it, and for
automatic fingerprint update when additional FogSenses are needed to improve
positioning accuracy.

The first interpolation strategy we use is based on linear interpolation over

Delaunay triangulation whose vertices are the known points, that is the FogSense
positions. Note that this strategy does not provide extrapolation, which means
that it provides no estimates for unknown points that lie outside of the convex
hull of the known points.

The second interpolation strategy is inverse distance. At each unknown
point, the estimate is the mean of the values at the known points, each weighted
by the inverse of their distance to the unknown.

The third interpolation strategy is based on Kriging [?interpkriging].
Kriging is an interpolation strategy originally adopted in the mining industry.
Suppose that one can draw scalar samples from an unknown function of points
belonging to a given domain. In our case, the samples are RSS measurement and
the points in domain are the locations in the area where we take measurements.
Kriging is based on the assumption that the variance of the difference of the
samples taken at two different points is only dependent on the distance of the
two points. The function that relates the variance to the distance is called var-

iogram. We speak of simple Kriging when the mean of the samples is a known
constant. Ordinary Kriging can work with an unknown constant mean. If we
need to drop the constraint that the mean is constant, we resort to universal

Kriging, where one can impose a trend on the mean of samples as a function
of distance. This is our case, because the RSS expressed in dB can be mod-
elled, as a first approximation, as a linearly decreasing function of distance. We
assumed the same parameters adopted by [?interpolation]: spherical model

with a range of 6 m, sill set to 31 dBm2 and nugget set to 9 dBm2 and linear
trend. Our experiments have shown that these choices are in fact good enough
in our scenarios.

By interpolating the measured cross-FogSense fingerprints over a regular
grid, we obtain an interpolated set of fingerprints, that is, our final fingerprint
database. Figure ?? shows some interpolated RSS radio maps. For illustration
purposes, the maps are computed on a very small grid width of 10 cm. Each
map is seen from the point of view of one FogSense, whose position on the map
is the point where the RSS value is highest (the red point).

5.1.2. On-line phase: using the fingerprint database

During the on-line localisation phase, the fingerprint of the probe request
sent by a mobile phone is compared with the RSS fingerprints stored in the
database, an operation which requires a measure of distance to be defined. Fin-
gerprints are N -D arrays, where N is the number of probes that are received.
As stated above, we worked with N ≥ 3. We experimented with several mea-
sures of distance: 1- and 2-norm distances, differential 1- and 2-norm distances,
cosine distance and FreeLoc distance.

Given two fingerprints A and B of dimension N , the most usual distance is
the Euclidean distance:
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Figure 6: Examples of fingerprint maps generated with inverse distance interpolation.
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Generalising the Euclidean distance brings us to the p-norm distance:

||x||p = (

n∑

i=1

xp
i )

1

p . (2)

Setting p = 2 produces the Euclidean distance, p = 1 is the Manhattan
distance. A variation on the p-dist is the differential p-dist, where only the dif-
ferences between the measured values of each vector are considered. Specifically,
ND vector A is converted into an(N − 1)D vector Ad:

A = x1, x2, · · · , xN , Ad = x2 − x1, x3 − x2, · · · , xN − xN−1 (3)

We call differential p-norm distance of vectors A and B the p-norm distance
of vectors Ad and Bd. The purpose of differential p-norm distances is to re-
move the bias given by different devices possibly sending probes with different
transmitting power.

The cosine similarity between two vectors A and B is a value in the interval
[−1, 1] defined as:

A ·B

||A|| × ||B||
. (4)

Since we need a measure of dissimilarity, we (improperly) call cosine distance
the complement to 1 of the cosine similarity.

The FreeLoc distance is inspired by [?FreeLoc]. The idea is that one should
not rely on exact RSS values when comparing two fingerprints, but the only
significant information comes from deciding whether the signal received by one
FogSense is significantly higher, significantly lower or about the same as the
signal received by another FogSense. This information is ternary, and coded as
-1, 0 and +1 values. A threshold p is used to decide whether two signals are
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Figure 7: Generation of localisation algorithms.

nearly equal (|x− y| < p), giving rise to a 0 or not, giving rise to a +1 or a -1.
In our computations, we used for p one of the three values 3 dB, 5 dB, 8 dB
(the latter being the value used in [?FreeLoc]).

Each fingerprinting vector A of length N is thus converted into a new Af

ternary vector of length (N × (N − 1)/2, that is the number of pairs of the N
dimensions. Comparing the ternary vectors is just a matter of obtaining their
scalar product:

N × (N − 1)

2
(Af · · ·Bf ) (5)

5.2. Creating ensemble estimators

Using the above-described building blocks, we define parametric algorithms
for localisation, and for each we evaluate its performance in terms of accuracy.
Once this is done, we turn our attention to performance in terms of robustness
across varying scenarios. We start with definitions, we proceed to illustrating
accuracy performance, and then we the consider trading some accuracy for
robustness.

An algorithm is either the strongest algorithm or a fingeprinting algorithm.
Fingerprinting algorithms are defined by the choice of an interpolator and a
measure of distance. The choice of the interpolator, used in the off-line phase,
affects the creation of the fingerprint database, while the distance is used in the
on-line phase to identify the k fingerprints in the database which are closest to
the measured fingerprint. Each algorithm is associated with several parameters
to produce a set of methods.

For each algorithm, the parameters we consider are the interpolation grid
size (not significant for strongest, which is not based on interpolating) and the k
value. By varying the parameters, as shown in figure ??, we produce a spectrum
of alternative methods. In summary, we have used 3 different interpolators and
8 different distances, which give rise to 144 methods based on fingerprinting, to
be added to 3 more methods based on the strongest algorithm.

In order to compare the 147 methods, we choose the error median as an
accuracy performance measure. We obtain an error median for each method
applied to each of the three scenarios. Given a method and a scenario, the error
median is computed by first obtaining the error distribution for each device
of that scenario, and then merging together those distributions. This way the
results are not dependent on the number of samples per device, which in fact
are quite different, as shown in figure ??.

Table ?? shows the performance of the 25 best methods for each scenario.
Some methods that are used in the following discussion are marked with a letter
id, whose meaning is listed in table ??.

We don’t want to choose the best method for each scenario. Rather, we
want to find a way to select methods that have good performance overall. To
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this end, we resort to the concept of ensemble estimator, which is employed
in [?ensemble] for a similar case. Ensemble estimators (ensembles for short)
are useful when dealing with optimisation on many discrete parameters. For
example, in our case varying the parameters creates a total of 147 methods.
Just choosing the method having the best performance would lead to overfitting.
Overfitting, which means tuning the parameters to the specific case that is being
analysed, can produce brittle methods, that is, methods that perform well only
in a specific situation. In order to increase the robustness of the choice, and
possibly the performance too, we select a set (an ensemble) of methods. Once
the set is chosen, the position estimated by the ensemble estimator is defined
as the centroid of the positions estimated by each method in the ensemble.
To define an ensemble estimator, a criterion is needed to select the methods
composing the ensemble. For example, a simple criterion would be to just
choose the N best accuracy performers among all the considered methods and
use those as elements of the ensemble. More complex criteria are possible to
select the methods that are part of an ensemble, see [?Hayashi2016,?ensemble]
for more in-depth discussion.

The criterion we choose in the following is quite simple: we select the meth-
ods that appear among the best performers in all three scenarios, that is, a set of
methods which is the intersection of the three sets whose accuracy performance
is listed in table ??. The selected methods compose the intersection ensemble;
they are marked with upper-case letters, defined in table ??.

In order to better evaluate the performance of the intersection ensemble,
we compare it against three additional reference ensembles, each tuned on a
different scenario. We create the CNR ensemble using the 4 methods having
the best accuracy performance in the CNR scenario, and similarly for C4WIT
and C4WUS. The methods composing these 3 scenarios are marked with lower-
case letters in table ??. Note that the top performer methods are different in
each scenario. For example method a is the best for scenario CNR and the
second best for the C4WIT, but it is not even among the top 25 methods for
C4WUS. Similar considerations apply for method b, which is the best in scenario
CNR, but not in the top 25 methods for C4WIT and C4WUS.

5.3. Experimental results

Table ?? shows the accuracy performance of the three reference ensemble
methods, each specialised for a different scenario; on the diagonal we show the
median localisation error of ensemble CNR, ensemble C4WIT and ensemble
C4WUS applied respectively to CNR, C4WIT and C4WUS scenarios. As ex-
pected, the results shown on the diagonal are not worse than the top method for
each scenario that are listed in table ??, which confirms the effectiveness of the
ensemble approach in terms of accuracy performance. For example, the error
of ensemble CNR applied to scenario CNR is 4.3 m, while the best method in
scenario CNR has error 5.1 m, and similarly for C4WIT and C4WUS.

However, when we apply the reference ensembles to scenarios in which they
are not specialised, performance drops significantly. Taking scenario CNR as
an example, the error grows from 4.3 m when using the specialised ensemble
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CNR to 5.3 m and 5.6 m when using the other reference ensembles, as shown in
table ??. We take this as indication that the reference ensembles are not robust
across scenarios.

We finally analyse the performance of the ensemble of choice, the intersection
ensemble, which is built with the purpose of being robust across scenarios, that
is, of giving reasonably good results in all scenarios. The intersection ensemble

is the intersection of the three sets of the 25 best-performing methods in each
scenario. Its member methods are marked with upper-case letters A–D in table
??. The last row of table ?? shows the performance of the intersection ensemble
applied to the three scenarios CNR, C4WIT and C4WUS. We observe that, as
expected, while the results of the ensemble of choice (in bold) are worse than
those of each reference ensemble for its own specialised scenario (underlined),
they are generally good overall.

Moreover, and most importantly, the performance of the ensemble of choice
can be considered satisfactory for the intended purpose of this work, meaning
that it is indeed feasible to use the experimented strategy for crowd localisation.
In fact, median errors ranging from 3.7 m to 5.5 m are acceptable for crowded
areas such as a shop inside a mall, the space in front of a shop window, a waiting
room, a bathroom area, a reception desk.

A more detailed overview of the numeric results in table ?? is given in
figure ??, where the cumulative density distribution of error is depicted for all
ensembles applied to all scenarios.

Results are consistent with the characteristics of the three scenarios: as
expected, accuracy is higher for C4WIT. This can be explained by looking at
??: RSS varies a lot between different areas in the C4WIT map, while the
picture of RSS in the other two scenarios is more homogeneous. In other words,
we have more information to exploit in C4WIT than in the other scenarios, and
this is reflected in a higher accuracy for C4WIT.

Another interesting observation is that the accuracy performance we observe
is not so far from the state of the art in Wi-Fi indoor localisation. While a direct
comparison is not possible, because we work with the little data provided by
devices occasionally sending probes in small environments with a low number of
FogSenses, it is interesting to note that during the EvAAL-ETRI competition
at IPIN 2015 [?ipin2015] one of the tracks was dedicated to off-line indoor
localisation done exclusively with Wi-Fi information. The results obtained by
competitors vary from a median of 4.6 m (the winner) to a median of 7 m. We
take this as a hint that the methods proposed in this paper are indeed promising,
since the figures measured during IPIN competitions are taken in controlled and
scientifically accurate conditions, rather than by the system authors themselves
in their own laboratories.

6. Conclusion

To the best of our knowledge, the literature lacks experimental investiga-
tions on using passive detection of Wi-Fi probes produced by mobile devices for
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Table 2: Median errors of the best 25 methods for each scenario [m]

Best CNR Id Best C4WIT Id Best C4WUS Id

5.1 a 2.9 e 4.8 C
5.1 b 3.0 a 4.9 B
5.1 c 3.2 f 5.0 h
5.2 d 3.2 g 5.0 i
5.3 3.3 5.1
5.3 3.4 B 5.2
5.3 3.5 5.2
5.4 3.5 5.2
5.4 3.5 5.3
5.4 3.6 A 5.4 D
5.4 e 3.6 5.4
5.5 f 3.6 5.4
5.5 3.7 5.5
5.5 A 3.7 5.6
5.5 h 3.7 C 5.6
5.6 3.7 5.6
5.6 3.7 5.6
5.6 3.8 5.7
5.6 3.8 c 5.7
5.6 C 3.8 5.7
5.6 B 3.9 5.7
5.6 3.9 5.7
5.6 3.9 5.7 A
5.8 D 3.9 D 5.7
5.8 3.9 5.8

Table 3: Median errors for the 4 ensembles in the 3 scenarios

Scenario CNR Scenario C4WIT Scenario C4WUS

Ensemble CNR 4.3 3.7 5.6
Ensemble C4WIT 5.3 2.9 7.2
Ensemble C4WUS 5.6 3.9 4.2
Ensemble Intersect 5.5 3.7 4.7
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Table 4: Legend for the Id letters used in table ??

Id Interpolator Distance k Grid width

Ensemble CNR
a invdist cosine 2 2 m
b strongest 1 1 m
c linear pnorm,1 1 2 m
d invdist freeloc,8 1 2 m

Ensemble C4WIT
e invdist cosine 3 2 m
a invdist cosine 2 2 m
f invdist cosine 2 3 m
g invdist cosine 1 2 m

Ensemble C4WUS
C linear cosine 3 2 m
h linear cosine 2 2 m
B linear freeloc,5 1 2 m
i linear cosine 2 3 m

Ensemble Intersect
A linear cosine 1 2 m
B linear cosine 2 2 m
C linear cosine 3 2 m
D linear pnorm,2 3 2 m
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Figure 8: Cumulative density distribution of errors for the four ensembles and the three
scenarios.
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indoor localisation purposes. We set up an experimental environment and we
measure the performance of localisation methods that require neither installa-
tion measurements nor maintenance.

We present an architecture designed to collect the Wi-Fi probes periodically
emitted by Wi-Fi-enabled devices. We collect about 20 million probes emitted
by mobile and stationary devices in three different indoor settings over a span of
several weeks. We analyse the data set by providing some base statistics and we
show the performance of an ensemble estimator built from over 100 variations
on several localisation algorithms. Results are based on the median localisation
error in different conditions and with different settings and are shown to be
robust with respect to three settings that exhibit quite different characteristics.

We derive some key takeaways as well as some considerations from this
experimental campaign. First, the architecture we proposed is dynamic, in the
sense that in case the already-deployed APS are not enough to get satisfying
positioning accuracy, it is possible to deploy additional sniffers, without any
system reconfiguration. Second, our approach is unsupervised, since it does
not require the usual configuration work needed for Wi-Fi indoor localisation
systems, that is to survey the environment, to select the points where to gather
the RSS values and finally to collect data with one or more sensing devices. We
avoid all these steps by exploiting the probes sent by the APs and the possible
additional sniffer themselves. Finally, the results obtained with the described
ensemble estimator are, in our opinion, remarkable. In fact, the median errors
of the intersection ensemble are directly comparable with the results of some
of the best localisation algorithms based on Wi-Fi fingerprint, such as those
that were presented and, most importantly, independently tested, during the
EvAAL-ETRI 2015 competition.

We claim that exploiting Wi-Fi probes promises to be a viable and cheap
strategy for indoor localisation of devices. The method we describe can be the
main building block of systems that sample the presence of people in a given
area, a task that we call crowd localisation. Future work will need to build and
experiment with such systems in real-life environments.
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