
1

Supporting End-User Debugging of Trigger-Action Rules
for IoT Applications

Marco Manca, Fabio Paternò, Carmen Santoro, Luca Corcella

CNR-ISTI, HIIS Laboratory

Pisa, Italy

{marco.manca, fabio.paterno, carmen.santoro, luca.corcella}@isti.cnr.it

ABSTRACT

End users need tools to enable them to control and personalise Internet of Things (IoT) applications, which

may involve hundreds of interconnected objects. Trigger-action programming has shown to be a useful

support for this purpose because it allows users to easily associate dynamic events with the activation of

desired effects. End User Development (EUD) tools aim to allow even users without programming

experience to define the behaviour of IoT applications. However, users may define rules triggering various

actions that may be in conflict, may specify rules that do not result in the intended behaviour or may define

rules which will never be applied. Although such situations can often occur, there seems to be a lack of

tools able to help users understand whether the specified rules actually bring about the desired behaviour

and, if not, the reasons why they fail. We present an original solution for filling this gap, which takes into

account the specific aspects of trigger-action rules. We describe the design and implementation of this

debugging support, and then discuss the results of a first user test.

Author Keywords

End User Development; Internet of Things; Trigger-Action Rules; Debugging.

INTRODUCTION
In recent years we have witnessed the advent of the Internet of Things (Atzori et al., 2010), which has also

emphasised the need to design applications able to react to events that can be generated from dynamic

combinations of a variety of sensors, objects, services, devices, and people. In the Internet of Things (IoT)

vision, ‘smart’ physical objects are networked together, able to interact and communicate with each other,

with human beings and/or with the environment, to exchange data and information ‘sensed' about the

environment. Furthermore, they are able to react autonomously to events in the physical world, and

influence it by running processes that trigger actions and perform services. According to Gartner1, there

will be nearly 26 billion devices on the Internet of Things by 2020. In this perspective it becomes important

to empower end users to configure future smart environments consisting of hundreds or thousands of

interconnected devices and objects, which will enable many possible interactions in a user’s surroundings.

In End-User Development (EUD) (Lieberman et al., 2006) the goal is to allow non-professional

developers to create or modify their applications so that they can better meet their diverse and frequently

changing needs. One of the approaches considered in this area is the use of rule-based systems. Some first

examples were AgentSheets (Repenning, 1995) and the KidSim/Cocoa/StageCast work (Smith et al.,

1994). In recent years, there has been increasing interest in using trigger-action rules for supporting EUD

1 https://www.gartner.com/newsroom/id/2636073, Last accessed in May 2018

https://www.gartner.com/newsroom/id/2636073

2

of IoT applications at both the commercial (e.g. Tasker2, IFTTT3) and research level. This type of approach

seems to be increasingly adopted. For example, IFTTT has more than 320,000 automation scripts (called

“applets”) offered by more than 400 service providers. The applets have been installed more than 20

million times, and more than half of IFTTT services are IoT device-related (Mi et al., 2017). In this trend

one important aspect related to EUD is how people can test and possibly assess whether the modified or

created behaviour of the application actually results in the expected one. This need is especially relevant

in IoT domains, such as elderly assistance or the home, where incorrect behaviour of applications or

actuators can even have safety-critical consequences. This issue is relevant both in single-user and in

multi-user scenarios. For instance, conflicting rules can occur with a single user who might not realise that

some rules can conflict under specific circumstances. In other situations, multiple users might define rules

attempting to influence the status of devices or physical objects belonging to the same environment in a

conflicting manner, following opposing preferences. In both cases a debugging tool could be beneficial to

highlight potentially conflicting rules or show the reasons why a rule will not be triggered in specific

situations. So, although this kind of support could represent an important aid for improving the correctness

of applications and facilitating the appropriation (Pipek, 2005) of such tools by end users, most EUD

environments do not include any debugging tool.

In rule-based environments it is possible to have conflicts when multiple rules are verified in the same

time interval and their actions have contradictory effects. One of the easiest ways to resolve rule conflicts

is to associate a ‘priority’ value to each rule, an attribute that is set when the rule is built. Once a conflict

happens, the rule with the highest priority value will be triggered. If there are two verified rules having

the same priority, further policies should be put in place to solve the conflict. Thus, the conflict resolution

strategy based only on priority values is the simplest one but works well only if users are able to set

suitable priority values at design time, which is not always easy as they might not be able to predict in

advance the conflicts that will occur at runtime. In addition, the strategy of assigning priority values that

are all different does not seem feasible when dealing with large sets of rules, as it would require a

significant overhead on the user’s side. Thus, more effective resolution strategies should be put in place,

able to identify potential problems in rule execution and help find possible solutions, also involving users

in the process.

In this perspective, another key point is how people can test the correctness of rules and possibly identify

errors in them, e.g. triggers or actions that they might have forgotten (or inappropriately added) in the

current rule specification. There are two main aspects when dealing with correctness: syntactical and

semantical correctness. The first one is generally easier to ensure than the second. Thus, here we mainly

focus on the semantic correctness of rules, i.e. when rules are syntactically correct, but do not behave in

the expected manner. A way to reduce the likelihood of errors in the specification of rules is to allow users

to simulate the occurrences of conditions and events, and analyse whether the relevant rules are triggered

in such context. An alternative to the simulation is to apply them in the current (real) context of use, to

understand whether they will be executed, and then identify the corresponding actions that will be carried

out. However, this approach it is not immediate (e.g. think about rules involving date or time triggers) and

it provides only a limited set of context options for the verification of the rules.

While testing aims at detecting possible errors in the programs built by users, debugging is the process of

finding the cause of the identified behaviour errors and fixing/removing them. In particular, here we

present a tool able to support a number of functionalities (simulation, interactive explanations, conflict

identification/resolution), by taking into account the Interrogative Debugging paradigm (Ko and Myers,

2 http://tasker.dinglisch.net, Last accessed in May 2018

3 https://ifttt.com/, Last accessed in May 2018

http://tasker.dinglisch.net/
https://ifttt.com/

3

2004), in which the system directly answers “why” and “why not” questions. In this regard, we have also

considered previous studies on the use of “why” and “why not” explanations to improve the intelligibility

of context-aware intelligent systems (Lim and Dey, 2010).

In this paper, after discussing related work, we provide some background information and an example

scenario. Next, the approach proposed to debugging trigger-action rules is presented. We also report on a

user test that shows how the introduction of such support allows users to more easily find bugs and fix

them more accurately with respect to current practises. Lastly, we draw some conclusions and provide

indications for future work.

RELATED WORK
We build on prior work on end user development of internet of things applications, intelligibility of

context-aware systems, interactive debugging.

End-User Development of Internet of Things Applications
EUD is an emerging field that has stimulated research in various directions (Blackwell, 2002; Dax et al.,

2015; Kubitza and Schmidt, 2015; Perera et al., 2015; Paternò, 2013; Pipek and Wulf, 2009; Sutcliffe and

Papamargaritis, 2014; Tetteroo et al., 2015). Rule-based solutions have been considered in order to obtain

EUD approaches for IoT applications. For example, various apps for customizing the behaviour of existing

applications in mobile devices or Web services have been introduced, such as Atooma, Tasker, IFTTT.

The underlying idea is to specify the system behaviour by using a number of if-then statements expressing

how the system should behave when specific situations occur. At the research level, one of the first

proposals using rules for EUD was iCAP (Dey et al., 2006), which introduced the possibility to create if-

then rules to support personalization of dynamic access to home appliances. Recently, due to the

importance of contextual dynamic aspects that can potentially affect the behaviour of IoT applications,

rule-based approaches are receiving increasing interest. This is because end users can easily reason about

context and express in rules the desired behaviour of their applications by describing how the application

should react to specific events occurring in specific contexts. However, trigger-action rule-based

approaches can become difficult for non-programmer users (Huang and Cakmak, 2015) because they

could raise some ambiguity in their interpretation due to potential discrepancies in end users’ mental

models, or, in case of complex rules, because correct formulation of logical expressions implies

knowledge of some key concepts (e.g. Boolean operators, priority of operators, composition of triggers)

that may not always be intuitive for non-professional developers. In addition, proposals adopting this

approach are generally limited in their ability to compose events and corresponding actions: some

approaches do not even support their composition at all (as happens with IFTTT), whereas end users may

need to specify them (Ur et al., 2014). Therefore, further effort in enabling end users to describe complex

expressions of triggers and actions should be pursued because this would provide users with the possibility

to specify more flexible behaviour. TARE (Ghiani et al., 2017) provides results that are still far from

satisfying all the needs of domain experts and end users in the many possible scenarios of use. In addition,

especially when dealing with complex expressions of triggers (e.g. events and conditions) and actions,

there are further aspects that need to be better analysed. According to (Yarosh and Zave, 2017) currently

the task of reasoning and resolving ‘feature interaction’ (i.e. conflicting functions occurring in complex

systems with multiple devices), is entirely left on end users and remains challenging for most of them

even with a feature interaction resolution mechanism. Misunderstandings involving rules for IoT scenarios

can cause undesired behaviours such as unlocking doors at the wrong time, or unintended energy waste.

This requires further analysis and investigation of the various types of triggers and actions that can be

included in complex expressions, so as to avoid such interpretation issues in future EUD tools. For this

purpose, some authors have considered the 5W model (Desolda et al., 2017) seeking to answer five

4

questions: (1) Who did it? (2) What happened? (3) When did it take place? (4) Where did it take place?

(5) Why did it happen? The problem of intuitive composition of logical expressions by end users has also

been studied in (Metaxas and Markopoulos, 2017), where an established theory of mental models has been

used to guide the design of interfaces for end user programming. According to such mental model theory,

people find it easier to conceptualize logical statements as a disjunction of conjunctions (an OR of ANDs),

as opposed to other logically equivalent forms. Thus, Metaxas and Markopoulos presented a tool with the

aim of facilitating end-users in programming context-dependent behaviour using quite complex logical

expressions. Corno et al. (2017) consider the use of ontologies to obtain high-level descriptions of the

context of use and specify corresponding trigger-action rules. Although such approaches represent a useful

contribution to end user programming by decreasing the cognitive load associated with the specification

of complex logical expressions, we are still far from finding general solutions for these key aspects. In

addition, in this area only a few contributions to some extent addressed the issue of end user debugging.

The TARE editor (Ghiani et al., 2017) included a simulator that provided just a basic support and it was

not empirically assessed. In addition, TARE completely lacked any debugging support and did not provide

users with aid for conflict identification and resolution. AppsGate (Coutaz and Crowley, 2016) included

dependency graphs representing devices and programs, their status and dependencies. Unfortunately,

these types of representations have some scalability issues and in realistic cases soon become difficult to

interpret due to the numerous icons and arrows they contain.

Intelligibility of context-aware systems
While context-dependent adaptation can be a powerful tool to obtain flexible solutions, it is important that

users can understand how such solutions work and are able to effectively control them. Bellotti and

Edwards (2001) discuss the need for intelligibility and accountability. Context-aware systems that seek to

act upon what they infer about the context must be able to represent to their users what they know, how

they know it, and what they are doing about it. In addition, context-aware systems must enforce user

accountability when, based on their inferences about the context, they seek to mediate user actions that

impact others. Indeed, the incorporation of context-awareness raises a number of issues. For example,

users are required to trust the behaviour of the system’s intelligence and this requires the system to exhibit

predictable behaviour and the ability to successfully and consistently achieve user’s goals. Unfortunately,

even an intelligent application may incorrectly support such user’s goals, owing to either flawed

intelligence or to incorrect contextual information (Cheverst et al., 2001). In such circumstances the user

is likely to feel frustrated because the application will either appear overly prescriptive or, worse still,

present incorrect adaptations. Since context-aware intelligent systems employ implicit inputs, and make

decisions based on complex rules that are rarely clear to the users, Lim et al. (2009) carried out a user

study to investigate how to mitigate this through automatically providing explanations answering why,

why not, what if, and how to questions. They found that explanations describing why the system behaved

in a certain way resulted in better understanding and stronger feelings of trust. From such studies they

derived a toolkit specific for generating explanations for decision models (Lim and Dey, 2010), while in

this work we consider a different domain (execution of trigger-action rules).

Interactive debugging
One of the most difficult tasks in End User Development is debugging, i.e. finding the code portion

causing an unwanted behaviour in a program. Previous studies investigated how developers try to fix bugs,

and discovered many slow, unproductive strategies (Myers et al., 2017, Ko and Myers, 2005; Ko et al.,

2006). They found that people without programming experience tend to read their code and change things

they thought might be wrong. This often introduced new defects, rather than resolving the original ones.

More experienced developers use breakpoints to step through a program’s execution, looking for where it

deviated from the expected behaviour. Such studies led to the idea to provide tools able to answer the

5

typical ‘why’ and ‘why not’ questions. The first application (Ko and Myers, 2004) extended Alice (Pausch

et al., 1995), an environment for creating interactive 3D virtual worlds, and was supported through a

‘whyline’ allowing users to receive answers concerning program outputs. The ‘whyline’ provides a simple

graphical representation of the elementary programming steps necessary to reach a desired effect. Further

studies investigated the possibility of applying this approach also to help more experienced developers

debug Java programs (Ko and Myers, 2009). This approach is interesting but needs to be appropriately

revised and extended in order to address trigger-action rules for context-dependent applications. The

following presents a contribution to resolving such issue. Kulesza et al. (2011) use the Whyline oriented

approach to ask questions about how an intelligent assistant made its prediction; it provides answers to

these ‘why’ questions by showing the assistant’s logic to look at or modify it; all the explanations are

provided through bar charts visualizations. It asks questions about the intelligent assistant behaviour at

run-time, while our approach supports rules debugging with respect to a simulated context indicated by

the users. In the evolution of that work (Kulesza et al., 2015) propose an approach called Explanatory

Debugging in which the system explains to users how it made the predictions, and the user then defines

the changes to the learning system in order to obtain better predictions. This approach is based on two

important concepts: explainability which responds to the ‘why’ question and correctability which

responds to the ‘what if’ question. The performed tests show that participants, using the Explanatory

Debugging approach, understand how the learning system operate about 50% better than the other

participants. This approach is applied to the decisions and predictions taken by a machine learning system;

thus end-users debug the decisions taken by an automatic system, while we want to apply similar concepts

to debugging the resulting behaviour obtained through a set of trigger-actions rules defined by end-users.

Moreover, in addition to the ‘why’ and ‘what if’ questions, we also want to address the ‘why not’ question

explaining to the users why their rule will not be triggered given the current simulated context values.

BACKGROUND
For clarity and self-containment goals, here we clarify some terms that will be used in the following

sections to describe the proposed approach:

 A trigger-action rule describes a behaviour that automatically performs actions provided w

specific triggers occur. A rule is composed of two parts:

o a part dedicated to specifying trigger(s), which defines the event(s) and/or the condition(s)

that activate the execution of the rule

o and a part dedicated to specifying action(s) to carry out when the rule is verified.

 A rule is verified when any event(s) occur and/or any condition(s) are satisfied in its trigger part.

 A rule is executed when it is verified and the action part is performed in a specific context.

 An event is a change of state of some contextual aspect.

 A condition is a state of a specific contextual aspect that lasts for a period of time.

 A trigger can be either an event or a condition or their composition through Boolean operators

(AND/OR).

 An action specifies what to carry out and multiple actions are executed sequentially.

A context model provides a description of the main aspects that characterise a context. The context model

considered in this work has a hierarchical structure. At the highest level the context model is specified in

terms of four context dimensions, which are: User, Environment, Technology, Social, while at the lowest

level of this hierarchy we find context entities. A context model can be generic (i.e. includes entities that

6

are domain –independent) or specific (which is obtained by refinement of the generic model in such a way

to include the entities that are specific for a particular context of use).

In this approach, triggers refer to events or conditions related to aspects described in the considered context

model. The four main contextual dimensions consider different aspects: User describes some user

characteristics e.g. personal data, physiological and mental state, user activity; Environment defines the

attributes that characterize the settings where the user acts; Technology considers the state and

characteristics of any devices, smart sensors, smart objects and appliances available in the context; Social

concerns relationships in terms of social networks and related aspects (relationships, memberships,

events).

This model is used for defining the possible triggers that can be specified through the Rule Editor. The

considered context model can be edited and saved in XSD (XML Schema Definition)-based format, and

it can be imported by the Rule Editor (Figure 1), which is then able to propose triggers according to the

imported context model structure. This tool also provides a classification of the actions that specify the

possible personalisation. Five action categories were identified: changes of the state of the

appliances/smart objects/devices; changes of the aspect or content in the user interface of the target

application; activation of functionalities (e.g. show the energy consumption or query the weather forecast);

alarms to signal risky situations; reminders to bring users’ attention to some action that should be taken.

It is worth noting that such actions can be tailored according to the target application since it is the

application that will apply them.

When we want to create an instance of the Rule Editor the first step is to refine the context model (which

determines the hierarchies of triggers) and the actions for the target context of use and applications. This

work is carried out involving relevant stakeholders. For instance, when developing the context model for

some trials to carry out in an Ambient Assisted Living project, we had an interactive discussion with

expert caregivers working in a Norwegian rehabilitation organisation who helped us to better identify the

contextual elements to use in the trigger hierarchy. In carrying out such work we also have to consider the

information that can actually be received by the available sensors and applications.

Triggers include both events and conditions, which are distinguished through the use of different keywords

in the rule editing (“IF/IS” for the condition, “WHEN/BECOMES” for the events). Their different

meanings can be explained by considering the following rules: IF time is after 5 pm DO ring a bell; WHEN

time becomes after 5 pm DO ring a bell. Apparently these two rules seem conceptually equivalent.

However, they describe different behaviours. The first rule includes a condition, and the action should be

performed as long as the condition is verified: in this case the bell should ring continuously after 5 pm.

The second rule defines an event, which is associated with a state change of a contextual aspect (in this

case the time), thus it indicates that the bell should ring only when the time changes its state from 5.00 to

5.01.

7

Figure 1: Rule Editor interface

The rules created through the rule editor are saved in JSON format. Figure 2 shows an example of the

format used to store a rule: the first three rows represent respectively the author, the rule name, and the

priority field, which is an optional field that can be used to select the rule to execute when multiple rules

are triggered simultaneously. Since a trigger can be composed of multiple elements, the ‘triggers’ field in

Figure 2 (row 5) is implemented as an array of triggers. Each element of such array is described by: an

entity belonging to one of the four main logical context dimensions, its parent element in the context

hierarchy, the context element representing the trigger, a field indicating if the trigger is a condition or an

event (see row 13 in Figure 2), the trigger operator (more, less, equal, etc.) and the current value associated

with the concerned contextual element. The trigger specification also indicates the Boolean operators used

when composing events and conditions (see e.g. the rule example shown in Figure 1), if any.

Since there can be multiple actions in a rule, the “actions” field is also associated with an array. An action

is described by the corresponding category (see the attribute “type” in Figure 2), a reference to the target

element (in Figure 2 the action reference is defined in row 20), an operator (e.g. turn on/off, display/hide

element, open, close, etc.), its actual name, as well as its parent element in the hierarchy of actions.

8

Figure 2: Rule format example

The target element of an action can be an appliance, a user interface element, the name of an external

function. External functions are accessible services through specific calls. When the Rule Editor is

configured it is possible to define the external services that can be accessed through the rules, and their

parameters. Thus, when the user selects this type of action, the configured external services are listed, it

is possible to select one of them (for example weather forecast), then the action editor shows the

corresponding parameters (for example town and date) and the corresponding call to the service is stored

as the action of the rule.

Previous work (Ghiani et al., 2017) was able to provide a simulator returning only the list of verified rules

in a given context, which is not sufficient to understand why a rule is (or is not) verified. Since already in

the evaluation reported in that paper several users had difficulties in correctly understanding the distinction

between events and conditions, we have designed and developed a new tool called ITAD (Interactive

Trigger-Action Debugging), which supports the Whyline approach for trigger-action rules. Thus, users

can interactively ask “why” and “why not” questions to know the reason why a rule is (respectively: is

not) verified. Moreover, this novel tool integrates a conflict analysis functionality able to highlight

potential conflicts between rules that are simultaneously verified. In addition, we have also validated the

new support in order to assess its effectiveness.

AN EXAMPLE SCENARIO
In order to show how the proposed solution works we can consider a scenario where a user, John, wants

to more automatically manage the behaviour of his smart house, so that it can better fit the needs of his

family (his wife and two children). To this purpose, John starts to formulate a first rule (Rule 1) saying

that all the windows in the house should be open from 9 a.m. in the morning, in order to have some fresh

air in the house. Afterwards, John defines another rule to ensure that all the windows will be safely closed

in the evening after 9 p.m. (Rule 2). After saving these rules John runs the simulator, setting the value of

10 p.m. as the time of interest to be considered in the simulated context, and checks whether the two rules

are verified or not. ITAD will notify John about the existence of a possible conflict between the two rules:

when John activates the conflict analysis feature, the tool warns him that the windows of the smart home

9

could enter an undefined state after 9 p.m., because at that time the windows should simultaneously be

open (according to Rule 1) and closed (according to Rule 2). Thus, thanks to this information, John is able

to identify the issue, and then modifies Rule1 by adding another condition to better specify the time

interval in which the windows of the house should be open, namely between 9 a.m. and 1 p.m.. In addition

to the previously defined rules, John also wants to have all the windows closed when it is raining: then he

adds another rule (Rule 3) to his rule private repository. After doing this, the conflict analysis tool will

notify John that there could be a potential conflict during rainy mornings since, according to Rule 1 the

windows should be open, according to Rule 3 the windows should be closed. Thus, thanks to the help of

the system, John modifies Rule1 by adding a further condition saying that the windows should be open

during the morning only during sunny days.

John adds further rules to manage other aspects of his smart home in a context-dependent manner. For

instance, he adds a rule for switching off the TV after a specific hour in the evening (to prevent children

from going late to bed). Then, he could add another rule for sending the output of the house surveillance

camera to his mobile phone when children are alone at home and some motion is detected near the house.

He also defines additional alarms and reminders. Among the various rules created over time, he has added

a rule for a weekly analysis of the history of the energy consumption in the house during the past week.

In particular, he would like to have this report shown on the TV of the living room each Saturday, when

he generally has time to relax. To this aim, John adds the following rule (Rule 4): "WHEN Date becomes

Saturday AND IF User is seated in front of living room TV, DO Show Energy Consumption on living

room TV". After having added this rule to his repository, John decides checking whether the smart home

would actually behave as expected. However, in that simulated context the rule would not be verified,

therefore the tool highlights in red the associated rule. By selecting the ITAD ’why not’ button, the

simulator notifies about an inconsistency between the behaviour specified in Rule 4 (which in the current

state would activate the report format the transition between Friday and Saturday, as expressed by the

event "WHEN Date becomes Saturday" in the trigger), and the simulated context (which specifies the

condition "Date IS Saturday", and then it would simulate a context in which the day is already Saturday).

After changing the following trigger in the rule specification: "WHEN Date becomes Saturday" into "IF

date is Saturday", John checks again the obtained rule through the tool simulator, which now shows that

the rule is fully verified in the simulated context.

DEBUGGING TRIGGER-ACTION RULES
By observing users in various trials specifying trigger-action rules, and considering previous work in the

area (e.g. Huang and Cakmak, 2015; Ghiani et al., 2017), we identified some features that an environment

to enable users to define context-dependent personalization rules and manage their execution should

satisfy:

 it should be able to perform the rules execution in specific contexts of use simulated through an

interactive user interface;

 it should be able to provide indications about why or why not a rule can be triggered in a given context

of use;

 it should be able to identify rules conflicting at design time. The environment should statically analyse

the defined rules and identify which of them are in conflict (see rule 1 and rule 2 in Scenario section);

 it should be able to identify rules which may conflict depending on the values that their triggers can

assume at run-time. Rules such as “IF it is raining, the windows should be closed” and “IF time is after

9 am the windows should be open” are in conflict only when both the conditions are verified (it is

raining and it is after 9 am).

10

Context of Use Simulation
The goal is to allow end users without programming experience to be able to debug the execution of

personalised trigger-action rules. In such rules an important issue is that it can be difficult to test whether

the specified rules will behave as desired in the real context because often triggers depend on events and

conditions that are not currently verified in the real environment (for example, a rule expressing that lights

should be off at night cannot be verified if the current time is daytime). For this purpose, we found it

important to support the possibility of simulating the state of the context of use by allowing users to assign

values to various contextual aspects of interest (e.g. time, location, technology used), and then the tool

will automatically check whether the indicated rules would be triggered for the specified values. The

simulator presents the hierarchical structure of the context model in a tree-like manner (see Figure 3, left

panel). After activating the simulator, the tool will automatically unfold just the context dimensions and

entities involved in the triggers included in the rules for which the simulator has been activated, while the

other context dimensions will be hidden: this has been done to limit the cognitive effort of users, who do

not have to search within the context model for the elements involved in the defined triggers.

Figure 3: The environment for executing rules in a simulated context of use

Figure 3 shows the simulator user interface: on the left part there is the (editable) instantiation of the

context of use used in the simulation, while in the right part there are the rules indicated by the user. In

the considered example, the context instantiation used in the simulation uses the following values: “Age

is 81” (condition) and “Respiration Rate becomes 29” (event). When the user selects the Simulate Rule

button, the tool checks whether the defined rules can be triggered when the state of the context is the one

indicated on the left side. The results are shown by changing the background colour of the verified rules

to green, while the colour of the rules that are not verified becomes pink. Moreover, as a result of the

simulation some buttons are displayed in each rule container: the “Edit” button allows users to activate

the editing of a rule directly from the simulator; the “Why” (resp.: “Why not”) button is displayed only if

11

a rule is verified (resp.: not verified): the “Why” button activates the highlighting of the contextual

elements that are verified, the “Why not” button points out why the rule is not verified (Figure 4). Lastly,

the “Conflict” button is displayed only if the rule is verified, it conflicts with other rule(s) and the priority

of the verified rules is the same: when the user clicks on this button, this will invoke the conflict detection

functionality which produces an output as the one showed in Figure 7: in particular, it does not show all

the conflicts but only the ones that involve the considered rule.

In addition to the trigger values, the simulator also allows users to specify whether the value inserted for

each contextual entity should be considered as associated with an event or a condition. To make this

distinction clearer, the radio button representing the two possible choices has been augmented by two

icons visually representing the difference between events and conditions. Differently from previous work,

ITAD also helps users better understand the difference between events and conditions. Indeed, on the one

hand a rule is presented as verified only if the user specifies the right option between event and condition

and provides the correct values to use in the simulation. On the other hand, when a rule is not verified, in

the explanation associated with ‘why not’ the tool highlights in red the elements that do not match, to

inform the user about the reason why the rule is not verified. Figure 4 shows how the interface changes

after selecting the “why not” button: on the right panel only the selected rule is displayed, while on the

left panel only the context elements related to that rule are shown and expanded in the tree representation

of the context model. The verified triggers are highlighted in green (both on the context tree and in the

natural language description shown in the right-hand panel of the window), while parts of the trigger that

are not verified will have a pink background.

As said, if a rule is not verified in a simulated context it could be for two reasons: either the values used

in the simulation are not able to activate the trigger contained in the rule; or there is an inconsistency

between the event or condition contained in the rule and those specified in the simulator; or a combination

of the two situations. An example of the latter situation is shown in Figure 4. On the one hand the natural

language description of the rule specifies an event involving respiration rate (see in the right panel of

Figure 4: “WHEN Respiration rate BECOMES less than 30 bpm”). On the other hand, in the simulator

(see left panel of Figure 4) not only a respiration rate value that does not verify the rule trigger is used

(namely: 31), but that trigger is considered as a condition (in the left panel of Figure 4 the “IS” option of

the radio button is selected), while in the rule specification it is modelled as an event. Thus, the simulator

highlights these inconsistencies through a red border around the concerned elements in the left panel of

the simulator (see Figure 4), and using a red text associated with the parts of the rule specification that are

not verified, to indicate the reasons why the current rule fails.

Figure 4: Why Not Example

12

Conflict Analysis
The conflict analysis functionality can be executed independently from the context of use simulation. The

algorithm for detecting potential conflicts between rules has been defined taking into account the specific

structure of the language describing the rules. As shown in Figure 5, in the rule specification language the

structure of the actions part contains two important fields: reference (row 4 and row 15) and operator (row

8 and row 19).

Figure 5: An Example of Action Specification

The reference field identifies the target appliance or devices whose state will be modified when the rule

is triggered; while the operator field describes the state changes that will be applied on the device (or

appliance) identified by the reference field. For each such device there is a predefined and limited set of

possible values (e.g. turn on/turn off, open/close, show/hide), thus the algorithm can easily identify any

actions which can potentially conflict because they set different state changes.

Also the reference field considers a limited and predefined set of devices or appliances (which are

indicated in the current context model), and it is also possible to identify a containment relationship among

them. Indeed, the actions defined through the Rule Editor can refer to a set of devices/appliances grouped

according to a specific category (e.g. all the lights, all the electric plugs, all the air conditioners, etc.). In

this case it is possible to define a hierarchical containment relationship according to which an action

involving All lights implicitly includes the Living Room Light. Thus, two actions (one referring to All

lights and the other only to the Living Room light) may conflict if the specified state changes are different.

To summarise, the conflict detection algorithm first analyses the actions defined in all the rules, because

the elements which may cause the conflict are those defined in the actions. Analysing the actions list, it

derives the ones which refer to the same target element (e.g. the light in the kitchen) or those that are

connected by a containment relationship (e.g. Living Room Light and All Lights). Then, from the list of

actions identified in the previous step, the algorithm selects those that can potentially be in conflict due to

the occurrence of conflicting state changes.

We say ‘potentially’ since the algorithm still has to verify if the rules can be triggered at the same time.

Then, the algorithm considers the rules corresponding to the previously selected actions, and for each rule

it extracts the associated triggers in order to understand if there actually is a range of values for which they

are all verified.

13

Figure 6: Triggers example

Thus, the condition for the actual occurrence of a conflict is the simultaneous occurrence of multiple

triggers belonging to different rules; these rules are composed of actions which have an effect on the same

device or onto the same ‘hierarchy’ of devices. For instance, if we consider the rules: “between 9 pm and

5 am the living room light should be on” and “at 6 am turn off the living room light”, these two rules refer

to the same appliance (the living room light) and the actions are potentially conflicting (turn-on, turn-off).

However, if we analyse the associated triggers, we can see that the rules cannot be executed at the same

time because there is no overlap between the values which verify the triggers, thus they are not in conflict.

Thus, the algorithm has to analyse three different situations:

 Triggers related to the same context entity but are verified for different, non-overlapping values,

so there is no conflict. For example, when the first trigger is verified before 12:00 and the second

one is verified when time is after 12:30;

 Triggers that are related to the same context entity but are verified for different values, partially

overlapping. For example, a first trigger is verified if temperature is more than 12o C degrees while

the second one is verified if temperature is less than 19o C degrees. In this case the algorithm

identifies the overlapping between the values which trigger the execution of the rule and then it

generates a sentence in natural language which describes why the rules conflict. The sentence is

generated by taking into account the operators involved in the triggers definition:

1) if the operators are both "greater than" it considers the highest value (trigger 1 verified if

temperature > 12 and trigger 2 verified if temperature is > 15; then the rules are in conflict if

temperature > 15)

2) if the operators are both "less than" it considers the smallest value (trigger 1 verified if

temperature < 12 and trigger 2 verified if temperature is < 15; then the rules are in conflict if

temperature < 12)

3) if the operators are different it considers the range of values in common between the two

triggers (trigger 1 verified if temperature > 12 and trigger 2 verified if temperature is < 15 then

the rules are in conflict if temperature is between 12 and 15).

14

 Triggers related to different context entities; in this case the rules conflict when all the triggers

involved in the rule are verified. For example, rules can be: “if time is after 12 open the windows”,

and “if it is raining close the windows”. Although the context entities are different (time and

weather condition), the rules are conflicting when both triggers are verified (e.g. when time is after

12 and it is raining).

Figure 7 shows an example of the output produced by the tool. The rules that may conflict are 3:

rule1: IF Time is after 9, DO Open All window in the house

rule2: IF Time is after 21, DO Close All window in the house

rule3: IF Weather Condition is rainy, DO Close All windows in the house

Figure 7: Conflict Detection and Analysis Tool

As we can see three conflicts are detected in the example. The results of the algorithm execution show

three important pieces of information: the name of the conflicting rules; under which conditions they

conflict; the actions which cause the conflict. In the example the first and the second rules conflict when

time is after 21. The first and the third rules presented before conflict when time is after 9 and it is rainy.

The first rule is in conflict with the second and the third ones when time is after 21 and it is raining.

It is worth pointing out that the tool shows the rules that are in conflict also taking into account possible

priority values that have been associated with rules at design time. In this case, if there is a conflict on two

rules having different priority values, the tool does not signal any conflict (since the conflict was actually

resolved using the priorities); on the other hand, if there is a conflict on two or more rules having the same

priority, it shows them, so that the user can properly act to resolve them.

USER TEST

We have carried out a user test to understand to what extent our approach for analysing and debugging

trigger-action rules can support non-programmer users. In particular, we wanted to investigate whether

ITAD was able to support users to identify and correct mistakes in their trigger-action rules more

accurately than without its support.

15

Participants

20 participants (13 females) with age ranging between 23 and 61 (mean=34.3, median=32.5, std. dev.=9.9)

were involved in the user study. They were recruited by sending an email message to various lists of the

authors’ research Institute. In particular, people mainly working in administrative roles, as well as their

friends were recruited for the test. The main criterion for including people in the test was the fact that they

must not be professional developers. As for the education of participants, 4 users held a High School

degree, 7 a Master Degree, 2 a PhD and 7 a Bachelor. Their knowledge of programming languages was

categorised in five different levels from no knowledge to very good knowledge: 1: No knowledge at all in

programming; 2: Low Knowledge (which means: knowledge of HTML, CSS, and basic knowledge of

JavaScript); 3: Medium Knowledge (knowledge of JavaScript, basic knowledge of either PHP or Java or

C++); 4: Good Knowledge (good knowledge of either PHP or Java or C++); 5: Very Good Knowledge

(knowledge of development languages at a professional level). Mean = 2.25, dev.st = 1.07, median = 2.5.

The majority of participants had never used any customization tool for smart environments: five users

were familiar with IFTTT, one user with Atooma. As compensation for their time and effort, participants

received either a USB flash pen or a small backpack (estimated value: around 10 USD).

Test organization

The test was done in laboratory. A moderator observed the participants interacting with the authoring tool

(one at a time), annotating any issue, remark, and question they had. The test was organised in four phases:

introduction and motivations, familiarisation, test execution, questionnaire.

In the first phase participants received a brief introduction to the study, illustrating its main goals and

motivations. Then, they were also provided with a description of the authoring tool and the trigger-action

rule structure, as well as a brief explanation of the features of the tool, especially the ones supporting

conflict analysis and rule debugging. In addition, we provided users with a short video illustrating the

authoring tool capabilities and some example interactions for building trigger-action rules. Participants

were strongly encouraged to analyse such introductory information remotely i.e. before the test, in order

not to unnecessarily prolong the duration of the study. However, the information material (the slides and

the video) was still available to them during the test, so that they could access it anytime, just in case.

In the second phase people familiarised with the tool. Participants could interact with it for some time, to

understand its use and features. In this phase users were first asked to freely provide a rule they would

define for their home and specify it using the tool. After that, the moderator provided users with a specific

behaviour written in natural language, which they had to model using the tool: “Whenever the heart bpm

(beats per minute) goes beyond 100 and the user is stationary, send to the caregiver an alarm call”.

The next phase was devoted to the actual execution of the tasks planned for the test. Users were provided

with the description of the considered scenario (smart home) and a list of ten rules, which were created

beforehand. Users were first invited to quickly analyse them and then, taking into account such rules, they

were asked to carry out three tasks. The tasks were aimed at checking to what extent users can solve some

issues in the rules under two different conditions: by using the tool and by not using the tool (“control”

case). It is worth noting that with ‘issues’ in the rules we mean possible inconsistencies between what was

specified in the provided set of rule(s) and the behaviour that was required to describe. In each task the

facilitator provided users with a natural language description of the desired behaviour, which they should

specify using the trigger-action approach, possibly modifying one or more rules already created. In

particular, users had to check if in the considered set of rules there was already one or more rules that

correctly ad completely specified the expected behaviour (we prepared the set of rules in such a way that

it was never the case). Then (in the ‘control’ case), they first had to write down (in natural language) the

result of their analysis, identifying the rule(s) to edit and the kind of changes to do on one or more rules

16

for specifying the expected behaviour. In the other case they had to edit/fix the concerned rule(s) by

exploiting the simulator functionality and the why/why not buttons developed in the tool. More in detail,

the tasks given in the test were:

Task1: for this task, the rules given modelled the expected behaviour in a way that was more restrictive

than the one requested, which was “As soon as the user enters in the kitchen at evening, the kitchen light

will automatically switch on”. Associated with this task, in the list of predefined rules, there were two

rules, which users should modify to accomplish the task:

Rule1.1: WHEN User enters inside kitchen AND IF TIME is after than 24, DO Turn On Kitchen light

Rule 1.2: WHEN User enters inside kitchen AND IF Time is after 5 a.m., DO Turn On Kitchen light,

Open Kitchen blind

Task2: For this task, the behaviour to specify was: “Whenever on Sunday the temperature goes beyond

30 degrees, close all the blinds”. Associated with this task, users should modify one of the following two

rules:

Rule 2.1: WHEN Date is Sunday AND IF Temperature is more than 30 °C, DO Open All blinds in the

house

Rule 2.2: IF Date is Sunday AND Temperature is more than 30 °C, DO Turn On Kitchen light

Task3: In this task users had to model a behaviour which required editing two rules, since it expressed a

“if-then-else” behaviour (which needs two rules). The behaviour to model was: “Whenever the respiration

rate of an over-80 person goes beyond 28 breaths per minute (bpm), switch on the white light in the living

room, otherwise switch off that light”. Associated with this task we created two rules, which were also in

conflict (for the interval 25-30 bpm, see below):

Rule 3.1: IF Age is more than 80 AND WHEN Respiration Rate is less than 30 br.pm, DO Turn Off Living

Room light

Rule 3.2: IF Age is more than 80 AND WHEN Respiration Rate is more than 25 br.pm, DO Turn On

Living Room light

Thus, for this task, not only users had to specify the desired behaviour, but we were interested to

understand whether they were able to identify the existing conflict amongst the two previously specified

rules. In addition, we included some other rule just for “noise” goals. They were the following ones:

IF Age is more than 80 AND Respiration Rate is less than 12 br.pm, DO Turn On Bedroom fan, send a

reminder by sms

WHEN User leaves home, DO send alarm by sms to user

IF the user has low vision DO increase the character font of 20%

WHEN User leaves home, DO send reminder by mail

The tasks submitted to users were identified in such a way to cover some typical ‘errors’ that could occur

in specifying rules, also varying the level of ‘trickiness’ of such errors. The first two tasks included ‘errors’

mainly associated with the fact that the involved type of triggers were right but not expressing the intended

behaviour, either because the provided rule was too restrictive compared to the expected rule (Task1), or

because (Task2) the provided rule incorrectly specified an event through a condition or vice versa. Task3

was dedicated to checking user’s understanding of issues associated with conflicts existing in rules. The

17

execution order in which the three tasks were carried out was the same for all the users because the

complexity of the three tasks was judged as increasing. For instance, the third task was judged as the most

difficult one compared to the other ones, since users had to modify two rules to solve the task (remove

conflicts). In addition, we could not counter-balance the two conditions (without vs. with the tool), since

the use of the tool in the “with the tool” condition could have revealed the solution for the corresponding

task in the “without the tool” condition (e.g. for the task associated with conflicts, the tool shows the

existing conflicts). We provided the three desired behaviours descriptions in natural language in such a

way that the formulation did not suggest any particular rule specification construct (e.g. by avoiding using

IF and WHEN keywords which respectively indicate conditions and events).

In the last phase users filled in an online questionnaire indicating their expertise in programming, whether

they had previously used any system for building trigger-action rules, and some personal data (age, gender,

education). They also rated, on a 1-7 Likert scale, some aspects of the proposed environment and provided

observations on positive/negative aspects they noticed on the assessed system and recommendations for

its possible improvements.

Results
The data used for the analysis were different in the two conditions. In the without-tool condition, for each

task, the users had to write down (and save) in a textual document the explanation of the errors/issues they

found in the rules and e.g. how they would have corrected the rules consequently. Such explanations were

afterwards analysed by the test moderator to assess whether the task could be classified as correct or not.

In the with-tool condition, users exploited the features of the tool for solving the submitted tasks (e.g.

properly editing and then saving the rules). Thus, the rules edited by the participants were directly

available in the tool, and were used by the moderator to assess the correctness of the corresponding task.

Task1

Without the tool: 17 users out of 20 successfully identified the needed changes without using the tool.

Regarding the remaining 3: Two of them did not report the need of modifying any rule. The remaining

one wrongly reported that the change to do on Rule 1.1 would have been to delete “IF TIME is more than

24”.

With the tool: Only one user did not realise the need of changing any rule. The other users correctly

specified the rule by using the tool.

Task2

Without the tool: Only two users were able to recognize the modifications needed for successfully

completing this task. For the remaining ones: two users left completely unchanged the set of rules, the

other users wrongly edited one of the two rules R2.1 or R2.2 (all users changed the action part, none of

them correctly changed the trigger part although the exercise would have been correctly solved by

changing in one rule an event into a conditions and the opposite in the other provided rule).

With the tool: Using the tool, 8 users successfully edited the rules to express the desired behaviour.

Task3

Without tool: Only 8 users out of 20 realised that there were conflicts in the rules and correctly explained

the modifications to do to specify the expected behaviour.

With tool: Using the tool, all users had the possibility to directly see the conflicts and, thanks to this

support, all of them correctly edited the rules using the tool.

18

Figure 8 shows a summary of the results. By analysing more in depth the data resulting from this task we

observed that people with higher programming knowledge were more successful in doing this task: this

was not surprising due to their likely familiarity with the concept of conflicts.

Figure 8: Percentage of successful users over the three tasks: not using the tool (‘control’ case) and

using it

We have not considered time completion because it does not seem meaningful in this case, since the type

of support in the two conditions was not comparable in terms of time, and we were more interested in the

actual ability to find mistakes in the rules. Indeed, while in the ‘control’ case users were asked to just write

down an explanation in natural language of what they would change in the provided rules and how, in the

other case users had to exploit the features of the tool to edit, simulate, analyse and debug rules until they

were satisfied with the results.

Questionnaire

Figure 9 shows a stacked bar chart reporting a summary of the results gathered from responses to the

questionnaire submitted to participants. The aspects in the following were rated on a 1-7 Likert scale. The

lowest and highest scores were associated to judgement labels depending on the question (e.g.: 1 = low

usability, 7 = high usability; 1 = low usefulness, 7 = high usefulness).

19

Figure 9: Stacked bar chart showing questionnaire results

From the post-task feedback shown in Figure 9, we can see that participants provided positive feedback

regarding the tool, and found it easy to perform the tasks. Across all questions, the median ratings were at

or above 5 on a 7-point Likert-scale (7 = best). Only for the clarity of difference between events and

conditions it was slightly lower than 5 (it was 4).

Moreover, participants also answered a series of open-ended questions, whose results detail in the

following.

Do you have suggestion to improve the approach usability?

Five users suggested better emphasising the difference between events and conditions, especially in terms

of keywords used (one user suggested replacing “becomes” with “changes to”). One user recommended

simplifying some terms used in the tool (e.g. “triggers”) and in the hierarchies of triggers/actions, which

can be a bit too technical for the unprofessional user. The same user found the tool too text-based, and

suggested exploiting more visual elements for better explaining the tool functionalities. Another

suggestion was to improve the choice of colour for accessibility goals. A user suggested using wizards for

decreasing the cognitive effort needed, due to the fact in the tool UI there are many elements shown at the

same time.

Do you have any suggestion for better highlighting the difference between events and conditions?

One user suggested providing a set of examples better explaining the difference within the tool, so that

users can easily refer to them. Another user suggested explicitly using “event” and “condition” keywords

to better highlight the difference. Two users suggested using tooltips associated with related UI controls

for better illustrating the different meaning of the two concepts.

Do you have any comments about the usability of the mechanism for composing triggers?

The majority of users declared not having any particular difficulty in composing triggers using the tool.

Do you have any comments about the utility of the mechanism for composing triggers?

The vast majority of users found it very useful for modelling situations in which complex expressions of

events and conditions have to be specified. One user complained about the absence of an “if-then-else”

mechanism for expressing more directly this type of behaviour.

When it was unclear where you were in rule editing process?

Commentato [C1]: non c'entra molto con la composizione dei

trigger

20

Three users found the editing process a bit difficult because the editing process is mainly controlled

through the natural language string expressing the rule, which is always visible in the UI. As such, they

found it difficult to understand when exactly it was possible to edit the rules. One user declared to have

problems in going back to the start. One user suggested adding a UI navigation element of type “Where I

am/What I still have to do” to better support users in orienting themselves, the same user also suggested

visualizing the level of progress in completing a rule. Do you have any comments on the utility of “why”/

“why not” to understand the behaviour expressed in the rules?

The vast majority of users found both of them (especially the “why not”) very useful to understand the

behaviour of rules. One user was unsure about the utility of the button associated with the “Why”. Another

one, while acknowledging the utility of the support, suggested making it more usable and quick, since in

the current version an additional step (click on the associated “why”/“why not” buttons) is needed to

access the visualisation of the detected inconsistencies.

Do you have comments on the utility of “why”/ “why not” to understand what is not correctly expressed

in a rule?

The vast majority of users agreed about the utility of the supported analysis functionalities. However, as

in the previous case, one user suggested avoiding the use of buttons associated with why/why not

functionalities as they make longer the interaction: the suggestion was to highlight the errors directly

within the string visualising the rule in natural language. However, some users said that the tool does not

sufficiently help understand that the error can be in the rule specification rather than in the values of the

simulated context.

Do you have comments on the usability of the mechanism for editing the rules just analysed with the tool

support?

Overall, the support was judged usable. However, some users suggested making the editing directly

available within the simulator itself, without going back to the edit panel.

Do you have any comments about the utility of the mechanism for identifying and resolving conflicts?

All the users judged the support very useful, enabling users to identify quickly the rules that are involved

in conflicts, which, in realistic cases, with tens of rules active at the same time, can be rather difficult to

identify without any help.

Do you have any comments about the usability of the mechanism for identifying and resolving conflicts?

Several users found the support as improvable in terms of usability. Some of them complained about the

way conflicts are currently shown, one user suggested rendering them in a more structured way (by e.g.

enabling users to order, categorise, filter them, etc.). Other users suggested adding the possibility to

directly edit rules in the window showing conflicts, without necessarily going back to the edit panel.

Do you have any further suggestions to improve the tool?

The most frequent suggestion was to better emphasise the difference between events and conditions. Users

also suggested better rendering the point where two or more rules are in conflict (i.e. with a more proper

feedback). One user suggested better visualising the state the user has currently reached (especially in the

editing phase), and, to decrease user’s cognitive effort, give more visibility to the options that are actually

relevant in the current state and less visibility to others.

Improvements after the User Test

The results of the user test also motivated us to perform some improvements to the tool. One of them was

to add a further explanation of the information provided by the debugging support, to better explain to the

21

user the reasons why rules are not verified after performing a simulation. As you can see from Figure 10

below, the tool now is also able to show in a textual manner the reasons why the rules are not satisfied, so

allowing the users to more easily fix the identified errors. This was done in order to better drive the user’s

attention on the reasons of the inconsistencies detected by the tool, which can be either triggered by the

set of context values considered in the current simulation (which does not activate the verification of the

rule), or by the current specification of the considered rule(s) (which does not correctly describe the

intended behaviour). Depending on where the problem is, the user can more easily identify accordingly

what should be modified. In particular, for each trigger appearing in a rule there are three main aspects

that should be verified simultaneously to have a rule verified in a simulated context: (a) the contextual

entity referred in the trigger should also appear in the simulated context; (b) there should be some

intersection/overlap between the value(s) involved in the specification of the trigger within the rule and

the values associated with the same contextual entity in the simulated context; (c) the concerned contextual

entity should be referred within an event (or within a condition) both in the rule specification and in the

simulated context. Depending on whether one (or more than one) constraint is not verified, corresponding

explanation(s) will be generated by the tool accordingly. For instance, in Figure 10, the lack of verification

of t R2 in the considered simulated context produces an explanation of type b associated with the

contextual entity “Age” and two other explanations (the first of type b and the second of type c) associated

with the contextual entity “Respiration rate”.

Figure 10: The tool also provides a textual explanation of why the rule is not verified

Discussion
From the results of the user study we can derive some more general implications for developing debugging

mechanisms for Trigger-Action rules in IoT scenarios.

22

Perception of the differences between events and conditions

Previous studies (Huang and Cakmak, 2015; Ghiani et al., 2017) indicate that several users have

difficulties in interpreting the distinction between events and conditions. This is an important factor

affecting the correctness of the rules created. On the contrary, increasing the complexity of the rules in

terms of the number of triggers and actions does not seem to impact the rule creation process much. This

probably happens because the distinction between these two concepts is better understood by people

accustomed to manipulating concepts in a formal way, which is not often the case for people without

programming experience.

Limited user understanding of the difference between events and conditions is an issue that has also

emerged in this study. Indeed, users made many more errors without tool support in the task where they

had to find erroneous use of events and conditions. In this study we noticed some users’ improvements in

understanding such difference thanks to the support provided. The use of multiple, related cues for

highlighting this aspect (providing the specific keywords “is/becomes” and “if/when” for characterising

each concept , and even different icons to distinguish them) seems to help users better reflect on (and

understand) them from the rule definition phase to rule simulation and debugging, thus diminishing the

possibility of introducing incorrect behaviour in the resulting system. In addition, in the debugging support

a rule is presented as verified only if the user specifies the right option between event and condition, and,

when it is not verified, the tool highlights in red the elements that do not match in the explanation of why

it is not verified.

Provide users ways to help them build suitable mental models of the system

Even a perfectly fine-tuned smart environment needs to evolve with changing user requirements, which

can be expressed through personalization rules. In such a situation, users can have difficulties in forming

an accurate model of a constantly evolving smart world because: on the one hand each rule has a specific

purpose and offers only a partial view of the system behaviour in a specific case, on the other hand the

behaviour of a collection of rules is difficult to grasp and therefore it is difficult to envision a global picture

of the resulting IoT environment behaviour. Therefore, we need to provide users with tools to help them

to build such an accurate mental model of the overall behaviour. One way to manage this tough problem

is to allow users to limit this complexity by focusing onto specific simulated scenarios (identifying specific

states of the context) of interest for them. To this end, we provide users with tools for simulating contexts

and rule behaviour over specific logical/semantic values (i.e. without involving raw sensor data) in order

to enable them to get an overview of the overall behaviour for the states that are particularly relevant to

them.

Provide automatic support to detect and resolve inconsistencies and potentially conflicting interactions among rules.

Although trigger-action rules are based on a paradigm which, on a general basis, is quite immediate and

easy to understand and use, when the number of rules increases in size, their combined behaviour is

difficult to control. This is quite a common case if we consider the ease (on the user's side) of adding new

rules to the system and the fact that users are likely to use EUD systems for rather long periods. As already

highlighted, the use of what-if simulations in specific contexts can help users to better follow system

behaviour in key scenarios. However, as it is a user-controlled simulation, it cannot ensure a full coverage

of all the possible scenarios that the designed system can be confronted with, but likely only the scenarios

which are most interesting/relevant for the user (in that specific moment). Therefore, users should be

provided with additional automatic support able to ensure full coverage in the identification of unforeseen

23

interactions and conflicts between rules, which can easily increase beyond what users (even professional

ones) can comfortably understand, while still allowing them to be in control.

Providing examples and counterexamples (e.g. through why and whynot), explanations and actionable feedback

As users live with their automations, they will likely experience surprising behaviour in a real context,

prompting questions about why a certain (unwanted) behaviour occurred (or not) in a specific situation.

In other cases, users would also just understand the rules that would be verified (or not) in a particular

simulated context, and unfortunately sometimes users' expectations will not exactly match the foreseen

system behaviour. When this happens (there is a mismatch in a real or in a simulated context between

users’ expectations and actual system behaviour), non-expert IoT users should be provided with tools that

clarify the underlying rationale and logic of the system. Indeed, since rules collections are unstructured, it

may be difficult for users to know which rule should be acted on in order to fix the current issue, especially

if the program is quite complex (i.e. a large set of rules). In order to effectively localize issues in the

currently specified behaviour, users should be supported by explanations, better if in natural language, of

why or why not the rules can/cannot be correctly executed, possibly accompanied by concrete examples

(or counterexamples) highlighting the situations in which a specific rule is verified or not.

Offer multiple cues to improve user understanding of how the system works

In order to facilitate end user comprehension of the IoT environment, we should provide users with

multiple views and perspectives of the same information, by using multiple, different representations, as

well as easily understandable visual cues. For instance, in this tool we support a context-based simulation

in order to provide users with an additional perspective of the system behaviour as expressed by the rule

set. In addition, when the simulation is started, the tool automatically hides the context variables that are

not relevant for the verification of current rules, i.e. those aspects that are not involved in the rules’

execution, so as to simplify the user model of the overall IoT environment. Easily perceivable colours,

with a clear meaning are used to provide at a glance the parts of the rules that need further attention: red

for the non-verified rules (or parts of rules) and green for the ones that are verified. In addition, each rule

is specified through an interactive graphical UI, but it is also represented through a natural language

expression in order to better speak the user's language. Moreover, the difference between events and

conditions is rendered not only by the use of different keywords in the natural language specification, but

also further emphasised by specific icons that are aimed at visually rendering such a key difference. By

using all such related cues users should be able to see the connections between the different data and better

understand the rules’ execution behaviour, as well as increase their confidence in understanding how the

rules editor works.

Limitations

The user study reported was useful and interesting to understand the usability of the debugging support

and its potential. It was a laboratory study, and it would be interesting to consider in the future longitudinal

studies assessing its use for long periods of time to investigate whether some further aspects emerge.

The study has been applied to a specific solution for supporting trigger-action programming. However,

the approaches that exist at both research and commercial level in this area share some basic underlying

concepts, even if they represent and support them differently. Thus we think that the results presented here

can be generalised with limited effort to other trigger-action approaches.

24

Currently, the editing and debugging support are provided in two different parts of the environment, while

it may be interesting to introduce the possibility of providing debugging support while editing as well.

CONCLUSIONS
The trigger-action approach is emerging as a useful programming paradigm to allow end user to

personalise their IoT applications. Various tools have been proposed to support the development of such

rules, but little attention has been dedicated to supporting their debugging, which is one of the most

challenging aspects in programming, especially for non-professional developers.

This paper presents a novel solution to help end users understand whether the specified trigger-action rules

behave as desired and without conflicts. It provides answers to common why/why not questions

concerning rules execution in specific context states that can be interactively defined, as well as conflict

analysis functionalities.

We also report on a user study that has provided positive feedback in terms of ability to detect conflicts

and the user satisfaction expressed through a post-test questionnaire. The user study also yielded some

suggestions for minor changes, some of which have been considered in a new tool version.

The results of the user test are encouraging, they indicate that debugging support of trigger-action

programming is useful and possible even for non-professional developers, and also has the useful side

effect that more users may become designers and developers and learn something through its adoption.

While in the literature there are various studies concerning the actual possibility that rules written by non-

professional developers do not indicate the desired behaviour, there is a lack of investigation of how to

support them in order to prevent undesired effects. Our proposal aims to address this issue, and also shows

that context simulation supported with interactive why and why not answers can help them to quickly

check the actual behaviour resulting from their rules. This is also accompanied by the automatic support

for conflict detection, which is another important aspect to consider when multiple rules are specified.

Overall, although it does not cover all the potential issues, the type of solution proposed is useful for

researchers and practitioners of IoT environments that can integrate it in order to improve their adoption.

Future work will be dedicated to addressing related issues such as loops between rules, further empirical

validation, and introducing additional features, such as more interactive checking of rules directly during

their editing.

REFERENCES
Atzori, L., Iera, A., and Morabito, G., 2010. The Internet of Things: A survey. Computer Networks, Volume 54, Issue 15, 28

October 2010, Pages 2787–2805. doi:10.1016/j.comnet.2010.05.010

Blackwell, A.F., 2002. First steps in programming: a rationale for attention investment models," IEEE Symposia on Human-

Centric Computing Languages and Environments, pp. 2-10.

Bellotti, V, and Edwards, W.K., 2001. Intelligibility and Accountability: Human Considerations in Context-Aware Systems,

Human-Computer Interaction, 16(2-4): 193-212.

Burnett M., and Scaffidi, C., End-User Development. The Encyclopedia of Human-Computer Interaction, 2nd Ed, cap.10

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/end-user-

development

Cheverst, K., Davies, N., Mitchell, K., and Efstratiou, C., 2001. Using Context as a Crystal Ball: Rewards and Pitfalls,

Personal and Ubiquitous Computing: Volume 5 Issue 1.

https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/end-user-development
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/end-user-development

25

Corno, F., de Russis, L., and Monge Roffarello, A., 2017. A High-Level Approach Towards End User Development in the

IoT. In: CHI 2017: The 35th Annual CHI Conference on Human Factors in Computing Systems, Denver, CO (USA), May 6–

11, 2017. pp. 1546-1552

Coutaz, J., and Crowley, J.L., 2016. A first person experience with end-user development for smart home. IEEE Pervasive

Computing, vol. 15, no 2, May-June 2016: 26:39

Dax, J., Ludwig, T., Meurer, J., Pipek, V., Stein, M., and Stevens, G., 2015. FRAMES – A Framework for Adaptable Mobile

Event-Contingent Self-report Studies. IS-EUD 2015: 141-155.

Desolda, G., Ardito, C., and Matera, M., 2017. Empowering End Users to Customise their Smart Environments: Model,

Composition Paradigms, and Domain-Specific Tools, ACM Trans. Comput.-Hum. Interact. 24(2): 14:1-14:33, 2017

Dey, A.K., and Newberger, A., 2009. Support for context-aware intelligibility and control. CHI 2009: 859-868

Dey, A.K., Sohn, T., Streng, S., and Kodama, J., 2006. iCAP: Interactive Prototyping of Context-Aware Applications.

Pervasive 2006: 254-271

Ghiani, G., Manca, M., Paternò, F., and Santoro, C., 2017. Personalization of Context-Dependent Applications Through

Trigger-Action Rules. ACM Trans. Comput.-Hum. Interact. 24(2): 12:1-14:52

Huang, H., and Cakmak, M., 2015. Supporting mental model accuracy in trigger-action programming. In Proceedings of the

2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '15). ACM, New York, NY,

USA, 215-225. DOI=http://dx.doi.org/10.1145/2750858.2805830

Ko, A.J., and Myers, B.A., 2004. Designing the whyline, a debugging interface for asking why and why not questions about

runtime failures. In Proceedings CHI’2004: Human Factors in Computing Systems (pp. 151–158). Vienna, Austria.

Ko, A.J., and Myers, B.A., 2005. A framework and methodology for studying the causes of software errors in programming

systems. Journal of Visual Languages and Computing, 16(1), 41–84.

Ko, A.J., and Myers, B.A., 2009. Finding causes of program output with the java whyline. In CHI’2009: Human Factors in

Computing Systems (pp. 1569–1578). Boston, MA.

Ko, A.J., Myers, B.A., Coblenz, M., and Aung H.H., 2006. An exploratory study of how developers seek, relate, and collect

relevant information during software maintenance tasks. IEEE Transactions on Software Engineering, 33(12), 971–987.

Kubitza, T., and Schmidt, A., 2015. Towards a Toolkit for the Rapid Creation of Smart Environments. IS-EUD 2015: 230-

235

Kulesza, T., Burnett, M.M., Wong, W.-K., Stumpf, S., 2015. Principles of Explanatory Debugging to Personalize Interactive

Machine Learning. IUI 2015: 126-137

Kulesza, T., Stumpf, S., Wong, W.-K., Burnett, M.M., Perona, S., Ko, A., and Oberst, J., 2011. Why-oriented end-user

debugging of naive Bayes text classification. ACM Transactions on Interactive Intelligent Systems (TiiS) 1, 1 (2011).

Lieberman, H., Paternò, F., Klann, M., Wulf, V., 2006. End-User Development: An Emerging Paradigm. In End User

Development, Henry Lieberman, Fabio Paternò, and Volker Wulf (eds.). Springer, The Netherlands, 1-8.

Lim, B. Y., 2012. Improving understanding and trust with intelligibility in context-aware applications. PhD thesis, Carnegie

Mellon University.

Lim, B. Y., and Dey, A.K., 2010. Toolkit to support intelligibility in context-aware applications. UbiComp 2010: 13-22

Lim, B. Y., Dey, A.K., and Avrahami, D., 2009. Why and Why Not Explanations Improve the Intelligibility of Context-

Aware Intelligent Systems, Proceedings CHI 2009, pp. 2119-2128, ACM Press.

Lucci, G., and Paternò, F., 2014. Understanding End-User Development of Context-Dependent Applications in Smartphones.

HCSE 2014: 182-198

Metaxas, G., and Markopoulos, P., 2017. Natural contextual reasoning for end users. ACM Transactions on Computer-

Human Interaction (ACM TOCHI), Vol.24, Issue 2, Article N.13.

Mi, X., Qian, F., Zhang, Y., Wang, X.F., 2017. An Empirical Characterization of IFTTT: Ecosystem, Usage, and

Performance, Proceedings of Internet Measurement Conference (IMC) ’17, November 1–3, 2017, London, UK

Myers, B. A., Ko, A. J., Scaffidi, C., Oney, S., Yoon, Y. S., Chang, K., Kery, M. B., and Li, T. J.-J., (2017) Making End User

Development More Natural. In: Paternò F., Wulf V. (eds) New Perspectives in End-User Development. Springer, Cham

Paternò, F., 2013. End User Development: Survey of an Emerging Field for Empowering People, ISRN Software

Engineering, vol. 2013, Article ID 532659, 11 pages, 2013. doi:10.1155/2013/532659

http://dblp.uni-trier.de/pers/hd/b/Burnett:Margaret_M=
http://dblp.uni-trier.de/db/conf/iui/iui2015.html#KuleszaBWS15
https://scholar.google.it/citations?user=6duSrM8AAAAJ&hl=it&oi=sra
https://scholar.google.it/citations?user=-ExSBb0AAAAJ&hl=it&oi=sra
https://scholar.google.it/citations?user=pONu-5EAAAAJ&hl=it&oi=sra
https://conferences.sigcomm.org/imc/2017/papers/imc17-final41.pdf
https://conferences.sigcomm.org/imc/2017/papers/imc17-final41.pdf

26

Pausch R., Burnette T., Capeheart A.C., Conway M., Cosgrove D., DeLine R., Durbin J., Gossweiler R., Koga S., White J.,

Alice: Rapid Prototyping System for Virtual Reality. IEEE Computer Graphics and Applications, May 1995

Perera, C., Aghaee, S., and Blackwell, A.F., 2015. Natural Notation for the Domestic Internet of Things. Proceedings IS-

EUD 2015: 25-41, Springer Verlag.

Pipek, V., 2005. From tailoring to appropriation support: negotiating groupware usage. University of Oulu. Retrieved from

http://herkules.oulu.fi/isbn9514276302/isbn9514276302.pdf.

Pipek, V., and Wulf, V., 2009. Infrastructuring: Towards an Integrated Perspective on the Design and Use of Information

Technology. Journal of the Association of Information Systems (JAIS), Volume 10, Issue 5, May 2009, 306-332.

Repenning, A., 1995. Bending the Rules: Steps toward Semantically Enriched Graphical Rewrite Rules, 1995 IEEE

Symposium on Visual Languages, Darmstadt, Germany, pp. 226-233, Sept. 5-9, 1995.

Smith, D.C., Cypher, A., Spohrer, J., 1994. KidSim: Programming Agents Without a Programming Language,

Communications of the ACM 37(7), 54-67, July 1994.

Sutcliffe, A.G., and Papamargaritis, G., 2014. End-user development by application-domain configuration. Journal of

Systems and Software 91: 85-99.

Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., and Markopoulos, P., 2015. Lessons

Learnt from Deploying an End-User Development Platform for Physical Rehabilitation. In Proceedings CHI '15. ACM Press,

pp. 4133-4142. DOI=http://dx.doi.org/10.1145/2702123.2702504

Ur, B., McManus, E., Yong Ho, M.P., and Littman, M.L., 2014. Practical Trigger-Action Programming in the Smart Home.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). 803-812.

Ur, B., Yong Ho, M.P., Brawner, S., Lee, J., Mennicken, S., Picard, N., Schulze, D., and Littman, M.L., 2016. Trigger-Action

Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings of the 34rd Annual ACM Conference on

Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 3227–3231. DOI:

http://dx.doi.org/10.1145/2858036.2858556

Yarosh, S., and Zave, P., 2017. Locked or Not?: Mental Models of IoT Feature Interaction. In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 2993-2997. DOI:

http://dx.doi.org/10.1145/3025453.3025617

http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1145/3025453.3025617

