
1

End-User Development for Personalizing Applications,
Things, and Robots

Fabio Paternò & Carmen Santoro
CNR-ISTI, HIIS Laboratory

Pisa, Italy
{fabio.paterno, carmen.santoro}@isti.cnr.it

ABSTRACT
The pervasiveness of ICT technologies has led to a growing need to empower people to obtain applications
that meet their specific requirements. End-User Development (EUD) is a growing research field aiming
to provide people without programming experience with concepts, methods and tools to allow them to
create or modify their applications. Recent mainstream technological trends related to the Internet of
Things (IoT) and the availability of robots have further stimulated interest in this approach. In the paper,
we discuss the historical evolution of EUD, then we analyse the main current challenges with respect to
recent technological trends (IoT and social robots) through the use of some conceptual dimensions, and
conclude with a discussion of a possible research agenda for the field.
Author Keywords
End User Development; Internet of Things; Robots; Metaphors; Programming styles.

INTRODUCTION
The goal of End-User Development (EUD) is to allow people without programming experience to create
or modify their applications (Lieberman et al., 1986). In EUD the focus moves from easy-to-use to easy-
to-develop. Interest in EUD arose soon after the introduction of personal computing in order to empower
people without particular programming experience (such as teachers, scientists, health care workers,
salesmen, and administrative assistants) to be directly involved in the creation of their applications. Often
such people work on tasks that rapidly vary, and thus their software needs are diverse, complex, and
frequently changing. Professional software developers cannot directly meet all of these needs due to their
limited domain knowledge and because their development processes are too slow.

Historically, first End-User Programming (EUP) (Nardi, 1993) was proposed but this concept is more
limited than EUD, since EUD methods, techniques, and tools span the entire software development
lifecycle, including modifying and extending software, not just the creation phase. Burnett and Scaffidi
(2013) consider EUP as the subset of EUD that is the most mature, describing EUP as a set of techniques
that empower end users to write programs by adopting special-purpose programming languages, such as
those included in spreadsheets or web authoring tools. EUP also includes techniques such as programming
by demonstration, visual programming, and high-level scripting languages.
EUD aims at empowering end users to develop and adapt systems at a level of complexity that is adequate
to their practices, background and skills (Lieberman et al., 2006). Therefore, it focuses on system
flexibility and modifiability, and it encompasses domain-specific environments for software creation. The
goal of EUD is thus to make users able to participate in their own software artefacts design and
development, not only at design time, but also during use, which also distinguishes EUD from
Participatory Design, which foresees users’ participation at design time only.

2

Some authors (Ko et al., 2011) proposed the End-User Software Engineering (EUSE) concept as well,
with the aim of finding ways to incorporate general software engineering activities into users’ existing
workflow, with an emphasis on the quality of the software end users create, modify, or extend. EUSE
takes a different perspective compared to EUP and EUD because it focuses on systematic and disciplined
activities carried out throughout the system lifecycle to guarantee the quality of the code created by end
users. In particular, EUSE proposes techniques derived from traditional software engineering, which are
aimed at fostering reliability, efficiency, reuse, debugging support, maintainability, and version control
(Burnett, 2009).

The EUD approach has shown to benefit from the increasing intertwining of the design and use phases
that characterise modern applications, because it is easier for users to think about how to change the
application after having actually used it. Thus, it obviates some limitations of user-centred design in which
users are mainly involved in the identification of requirements for the professional developers (Fisher and
Giaccardi, 2006) so that the designers extract information from the users (through interviews, focus
groups, questionnaires), observe them at work and retrieve their feedback. However, the inverse process
does not happen, i.e. the users are not directly involved in the world of software design and development,
and their contribution in this phase is not contemplated. Participatory design foresees a more active user
contribution, even in the design phase. EUD tends to further strengthen this active involvement by
allowing, to some extent, the users to even autonomously carry out design of at least some parts of their
applications. Such an activity can be performed at various times, not only at the initial design phase, but
also after actual use. However, to make this possible there is a need for meta-design methods and tools
(Fisher and Giaccardi, 2006) that provide open environments to enable design changes of interactive
applications continuously intertwined with their actual use without requiring people to substantially
change the nature of their work or their priorities.
In terms of application domains, a recent systematic literature review of EUD, EUP, and EUSE over the
last twenty years (Barricelli et al., 2019) has pointed out that the application domains that have mostly
been considered are: business and data management, web applications and mashups, and smart objects
and smart environments. Other application domains that have received attention are games and
entertainment, education and teaching, healthcare and wellness, mobile applications, interaction design,
and robotics.
In this paper, after a description of the historical evolution of the field, we focus on the current generation
addressing EUD for IoT and/or robot applications. Thus, we introduce its characterising elements, and
describe a design space that facilitates the discussion of the various approaches proposed. Then, we
compare a representative set of approaches through the identified design dimensions, and lastly we provide
indications for promising research topics and draw some conclusions.

HISTORICAL EVOLUTION
Historically, it is possible to identify various generations of EUD approaches. In the evolution of this
research area, the start of a new generation has been characterised by the advent of some mainstream ICT
technology, which raised the need for new application types or allowed users to exploit new platforms to
obtain their applications.

The first approaches relevant to EUD were put forward in the late 80s, soon after the advent of graphical
desktop systems, which made it possible to support the first emerging end-user development needs. Over
time several technologies had an effect on the possibilities for EUD, including language technologies and
social systems. Amongst them, the rapid increase in the use of the Web, with its open interfaces (as
opposed to offline desktop applications) to support computational work, made possible the design of a

3

number of interactive tools to support EUD. The third generation corresponded to the success of touch-
based mobile devices, characterised by sufficient interaction and computation resources to directly support
development activities. The last generation aims to empower users in order to exploit the continuously
increasing availability of smart things and robots, two types of technologies that share the use of various
types of sensors and actuators.
Figure 1 provides a summary view of the evolution of the field. For the sake of clarity, we did not include
in the diagram all the contributions cited in the paper. In the late 80s and early 90s the first contributions,
which mainly addressed how to improve end user programming, (e.g. Myers and Buxton 1987, Nardi,
1993, Cypher 1993) were put forward. Then, on the European side there was the Network of Excellence
on EUD1 , which was useful to create a community with an open view of how the user can be empowered
in the development cycle. In parallel, the NSF started a project (EUSES2) on end-user software
engineering that stimulated a more systematic view on how to approach the various software engineering
phases from the user side. Such research efforts stimulated an agreed definition of EUD (Lieberman et al.,
2006) and various research initiatives, for example, the manifesto for meta-design (Fisher et al., 2004).
Regarding the exploitation of the Web technologies in this perspective, a book (Cypher et al., 2010), which
was a follow up of a CHI workshop, provides a good overview of various approaches in this area. The
first attempts to exploit mobile technologies in this area were put forward around 2008 (e.g. Carmien and
Fisher 2008, AppInventor 2010). An overview of initial approaches in the area of EUD for IoT
applications appeared in the dedicated TOCHI special issue (Markopulos et al., 2017).

Figure 1 – Summary overview of the field evolution.

In the first generation, corresponding to the wide availability of graphical desktop systems, the
contributions mainly focused on two types of approaches: those based on spreadsheets and those based on
visual languages. A long standing example of domain expert development of interactive applications is
the spreadsheet application: laymen as well as professionals can develop or adapt computational models
useful for accounts, planning, etc. with a minimal overhead of learning programming concepts and
conventions. To reach such a broad audience the EUD should be almost transparent to users, e.g.,
spreadsheet users may not even be conscious of the fact they are programming when processing data. At
least, EUD should present a very low threshold to get started, while letting users progressing far in the
value and even complexity of the software they create. In the case of spreadsheets, the interest started with
VisiCalc, then continued with Lotus 1-2-3 and Excel, and the focus has been on facilitating the definition
of expressions to apply to multiple cells, and then testing their results, and the analysis of the relationships
amongst the values of the cells involved. One goal can be to simplify the tracking of successful and failing
inputs incrementally, providing feedback about software quality as the user edits the spreadsheet program.
In the case of visual languages one often used approach is based on icons associated with high-level
functionalities, which are connected through arrows to indicate the data that can flow across them. For

1 http://hiis.isti.cnr.it/projects/eud-net.htm
2 http://eusesconsortium.org/

4

example, LabVIEW is an environment for creating circuit simulations and other analysis programs. Each
box represents a computational component, while lines indicate the flow of data. Usually, in this type of
approach there is some support to check whether the output from one functionality is actually compatible
with the input of another one. One further visual approach that soon raised interest is that based on the
jigsaw metaphor. The idea is to visually represent the jigsaw puzzle pieces so that each element
corresponds to a function or a programming element, and their shapes provide hints about how many
connections they can manage both for receiving input and producing output. Scratch (Resnick et al., 2009)
was one of the first environments to adopt this type of representation. In visual languages one common
design aspect has been how abstractions are used to hide the implementation details (Paternò, 2013). In
some cases, the main visual elements have been associated with high-level functionalities developed by
programmers, so that end users need only to compose them without knowing how they were implemented.
In other cases, the visual elements correspond to low-level programming constructs, and the end users
should specify how the desired interactive program should behave at a more detailed level. In this phase
another approach to EUD that emerged is programming-by-example, in which the user demonstrates an
example of what the program should do, from which the programming environment infers a more general
specification supporting the desired behaviour. Peridot (Myers and Buxton, 1986) applied this approach
for creating interactive components.
Over time the Web has become the most common user interface because it can be accessed through most
devices and provides an open interface (the Document Object Model3), which can be exploited to
interactively manipulate Web applications, even by people other than the original developers. The
programming by example approach has been implemented in Web environments through different
mechanisms. Nichols and Lau (2008) describe a system that allows users to create a mobile version of a
Web site through a combination of navigating through the desired portion of the site and explicitly
selecting content. Macias and Paternò (2008) take a similar approach, in which users directly modify the
Web page source code. These modifications are used as a specification of preferences, which are then
generalized and applied to other pages on the same site through the support of model-based user interface
description languages. CoScripter (Leshed et al., 2008) is a system that allows user to record, share, and
automate tasks to perform in the Web, and provides a repository where the scripts created are shared. In
CoScripter scripts are recorded as natural language commands that can be modified by the user without
having to understand a programming language. In this area one approach often considered is the mashup
approach characterised by the possibility of creating new applications by interactively composing
components from existing applications. NaturalMash (Aghaee and Pautasso, 2014) is a Web-based
environment that allows non-programmers to exploit existing Web resources by combining their
input/output. NaturalMash users start defining a mashup by picking ingredients from a toolbar that
includes services/contents available through Web APIs. Then, users specify how to bind components
together through a natural language subset. However, the mashup components associated to textual
expressions are predefined and require pre-processing by expert programmers. PEUDOM (Matera et al.,
2013) is another Web-based platform that allows end users to compose components associated with
registered Web services into a mashup. Components are defined by professional developers, and can
subsequently be connected by means of drag-and-drop actions and by selecting the binding properties
from some dropdown menus. Ghiani et al. (2016) put forward a graphical environment in which users
create new mashups by directly selecting interaction elements, content and functionalities from existing
Web applications without requiring the intervention of expert developers. Then, users just need to exploit

3 https://www.w3.org/TR/WD-DOM/introduction.html

5

a copy-paste metaphor to indicate how to compose the selected interactive content and functionalities in
the new mashup.

A different perspective in exploiting Web technologies that can be relevant for EUD has been introduced
by Webstrates (Klokmose and others, 2015). It is an environment for creating shareable dynamic media
that blurs the distinction between documents and applications, showing how software can become
reprogrammable and extensible in a collaborative fashion. Webstrates augment web technology with real-
time sharing. They turn web pages into substrates, i.e. software artefacts that embody content, computation
and interaction, blurring the distinction between documents and applications, as substrates can evolve over
time and shift roles, acting as what are traditionally considered documents in one context and applications
in another, or a mix of the two.

The advent in the mass market of touch-based mobile devices has enabled new opportunities for EUD.
On the one hand, the mobile device can be the platform through which users can create or customize their
applications, and on the other hand applications have to be able to consider that the surrounding context
of use is no longer fixed, and so they have to adapt to changes that can dynamically occur in the
environment. Carmien and Fisher (2008) describe a framework for customizing mobile applications to
help people with cognitive disabilities. A graphic editor, intended to be used by the caretakers, facilitates
the management of the task-support scripts for helping the disabled. Ghiani et al. (2009) have developed
an environment that allows customization of mobile solutions for museum guides, and it also allows the
generation of application versions for stationary systems with large screens. Puzzle (Danado and Paternò,
2014) supports editing on a touch-based smartphone by using the jigsaw metaphor to convey the concepts
of connecting high-level functionalities, and a solution, inspired by the work by (Cuccurullo et al., 2011)
using the colours to indicate the associated data types, thus providing intuitive cues to help the users to
correctly connect the outputs and inputs of the jigsaw pieces. App Inventor (2010) addresses the
application development at a more detailed granularity, asking the end-user developers to use jigsaw
pieces representing low-level programming constructs and specify what should be done when low-level
events occur.

The Internet of Things is the network of objects of our daily life (such as lights, refrigerators, car
components, medical devices, dog collars, etc.) that can send or receive information with various devices
on the network. These objects include sensors and actuators of various kinds and can interact with each
other, with human beings and with the environment to exchange data, reacting to real-world events,
triggering actions and activating services. They are increasingly used in any sector: home, retail, industry,
agriculture, ... We use our applications more and more in dynamic contexts in terms of services, devices,
objects and people where many events can occur. Since 2004 there are more connected devices than people
in the world and the number of connected objects is steadily increasing. According to a recent report of
the World Economic forum, it is one of the largest enablers for responsible digital transformation and it
will add $14 trillion of economic value to the global economy by 2030 (WEF, 2018). These technological
trends provide great opportunities, new possibilities, but also risks and new problems. Indeed, our
interactions with such objects can be monitored by unauthorized parties, their inappropriate use can
generate unwanted effects, there can be intelligent services based on them that eventually generate effects
that do not match the real needs of end users. Thus, one fundamental research question has become how
to provide tools that allow users to control and customize the way they use the available connected objects.
Atzori et al. (2010) survey the Internet of Things area mainly from a technical perspective (e.g., by
discussing the pros and cons of enabling technologies such as RFID and TCP), but also mention the
benefits of combining sensors and actuators with personalization techniques: managing home appliances
based on user preferences and dynamic contextual factors can improve comfort, safety and energy
efficiency. Some work to address such issues in the EUD perspective has started to be put forward. One

6

of the first proposals was iCAP (Dey et al., 2006), which introduced the possibility to create if-then rules
and to support personalization of dynamic access to home appliances. Ghiani et al. (2017) aim to provide
an environment able to support intuitive editing of a broader set of rules in terms of possible trigger and
action types, and with additional possibilities, such as rule reuse and sharing. IFTTT4 is a popular
environment that allows users to easily connect existing applications in such a way that if something
happens in one, then some effect can be generated (for example a functionality is activated) in a kind of
Trigger-Action Programming (TAP). Unfortunately, IFTTT has limited expressivity since it only allows
a single trigger per rule. Ur et al. (2014) wondered about the balance between expressivity and usability
of TAP, and have conducted a study to find out how the average end user can manage flexible trigger-
action rules in the home domain. The results show that average users can successfully manipulate multiple
triggers and actions to formulate rules, but studies are still needed to assess the attitude of the users to
understand the differences between rules that are similar and that slightly differ in the trigger (e.g., a
simple check or a state change). Huang and Cakmak (2015) found that the distinction between relevant
concepts can be a source of problems, since users can have difficulties interpreting the difference between
events and conditions or between the possible types of actions (for example extended actions, which
reverts back to the original state after some time automatically and sustained actions, which do not revert
to the original state automatically). Misunderstandings can cause undesired behaviours (e.g. unlocking
doors at the wrong time or cause unintended energy waste). It is important that EUD tools take into account
the requirements emerging from this study, for example allowing users to differentiate between event
triggers (that hold only when a contextual change occurs) and condition triggers (that hold whenever a
condition is true).
Application composition is an approach to create applications by using software components (i.e. web
services or other resources associated with objects/devices) as building blocks. In general, there are two
main approaches to application composition (Davidyuk et al., 2015). In the automated composition, user
intervention is minimal since the system automatically configures and provides most of the functionalities.
In the interactive composition, the user has a high degree of control and can freely compose the final
application. Recently, due to the importance of configuring the behaviour of IoT applications, rule-based
approaches are receiving increasing interest, since end users can easily reason about contextual events and
the corresponding behaviour of their applications (Ur et al., 2014). However, even if rule specification
could seem simpler than specifying block of code, such approaches can become difficult for non-
programmer users when complex rules have to be expressed. The correct formulation of logical
expressions implies knowledge of some key concepts (e.g. Boolean operators, priority of operators) that
may not always be intuitive for them. Some approaches do not even support events composition at all (as
it happens with IFTTT). Therefore, further effort in enabling end users to specify rules combining multiple
triggers and actions should be pursued because this would provide them with the possibility to indicate
more flexible behaviours (Desolda et al., 2017; Ghiani et al., 2017). In (Metaxas and Markopoulos, 2017)
an established theory of mental models is used to guide the design of interfaces for EUD so that people
can easily comprehend and manipulate logical expressions. According to such theory, people find it easier
to conceptualize logical statements as a disjunction of conjunctions (an OR of ANDs), as opposed to other
logically equivalent forms. Thus, the authors propose a paradigm to facilitate the specification of complex
logical expressions that however is still far from providing a general solution. More generally, one
important aspect to consider is that one barrier to the uptake of EUD approaches for IoT is the lack of
compelling motivations to adopt them, since users sometimes do not see any reason to invest time to learn
how to use these tools and overcome the risks of failure (Blackwell, 2002).

4 https://ifttt.com/discover

7

Another interesting aspect (yet underexplored in the EUD area) is how people can test and possibly assess
whether the modified/created behaviour of the application actually results in the expected one. This need
is especially relevant in IoT domains, where incorrect behaviour of applications or actuators can
eventually have safety-critical consequences (e.g., in the elderly assistance domain and in the home
domain). If we consider rule-based approaches, a way to reduce the likelihood of errors is to allow users
to simulate the conditions and the events that can trigger a rule and the effects that they will bring about.
However, most EUD environments do not include debugging aids (Coutaz and Crowley, 2016) since non-
professional end users find debugging especially difficult. Manca et al. (2019) present a possible solution
to help end users understand whether the specified trigger-action rules behave as desired and without
conflicts. It provides answers to common why/why not questions concerning rules execution in specific
context states that can be interactively defined, as well as conflict analysis functionalities. In any case,
another important area for further investigation is devising debugging mechanisms that are adequate for
end users. One further issue is that overall the studies on the usability of trigger-action programming tools
have usually been carried out in laboratories, far from realistic contexts of use where users can
immediately perceive the results of the execution of their rules. One exception is AppGate (Coutaz and
Crowley, 2016), which was tested by the authors in their home. Thus, there is a need for longitudinal
studies able to provide substantial empirical feedback on the usability and appropriation (Pipek, 2005) of
this approach.

In the EUD for IoT perspective also social and humanoid robots play an important role: they can be seen
as integrated sets of sensors and actuators, thus IoT platforms can make it easier to monitor and control
them (Jalamkar and Selvakumar 2016). In general, there is a distinction between industrial robots,
developed to accomplish specific tasks in specific work environments, and social humanoid robots,
usually exploited in environments where they coexist and must relate with human beings (see an example
in Figure 2). Thus, they can help us at our jobs, in housework, in the care of children, elderly and disabled
people, in hospitals, schools, hotels and so on. Such robots interact with us by voice, gestures and all the
other modalities typical of human communication. The available robots can be programmed through some
programming language, which is usually oriented to engineers and requires considerable effort to learn.
Thus, the issue of making the development of robot applications easier has started to be considered as
well.

Figure 2 – An example of a humanoid robot.

8

What has been done so far to facilitate EUD in this area has mainly consisted in applying iconic data flow
visual languages, such as Choregraphe (Pot et al., 2009) or the use of some block-based programming
languages (Laval 2018, Weintrop et al, 2018). However, such solutions seem to work well when they
consider scenarios in which the possible options to address are quite limited, but this is not true with
modern humanoid robots which can flexibly react to many possible events and perform a wide variety of
actions. Recent work (Leonardi et al., 2019) has aimed to investigate whether adopting a trigger-action
paradigm, such as the one supported by tools such as IFTTT and Zapier5, can enable people without
particular programming knowledge to personalize the behaviour of humanoid robots. The goal is to exploit
its compact and intuitive structure connecting dynamic situations with expected reactions without
requiring the use of complex programming structures. Since humanoid robots can be used in various every
day environments (equipped with several IoT devices/things/sensors), the possibility to detect what
happens in the surrounding environment opens the way to exploit triggers that use the data detected by
both the robot and IoT objects, and to link the robot behaviour to what happens around it. Thus, EUD
tools should provide users with suitable techniques for specifying such triggers to describe context-
dependent robot behaviour. However, that study (Leonardi et al., 2019) was an in-lab test, in which users
received explicit task assignments to limit the possibility of ambiguity and to better compare the collected
results. In order to have more precise indications on the effectiveness of this approach it would be
interesting to challenge users through less explicit task instructions, and conduct longitudinal studies
assessing the use of the tailoring tool for longer periods of time, to investigate whether further aspects
emerge (e.g. if and how the way to personalise the robot would change over time).

A DESIGN SPACE FOR EUD OF IOT AND ROBOTIC APPLICATIONS
In order to analyse the main current approaches, and then discuss the future challenges, we find useful to
introduce a design space, which is based on previous work (Paternò and Santoro, 2017), but that in this
paper we better define and extend, in order to consider robotic applications as well. The purpose of the
design space is to identify the main aspects that characterise methods and tools for EUD of IoT and/or
robotic applications. As we introduced, for the robotic part we are mainly interested in humanoid robotic
applications as they are more likely to be encountered in daily life scenarios, and share some aspects with
IoT applications since they contain various sensors and actuators in a human-like structure.

One first characterising concept of EUD approaches is the type of metaphor they adopt. They have to
represent the development concepts to people without programming experience. Thus, they should use
concepts and representations that are used in the users’ real world, with the aim to be more immediately
understandable. In this way, metaphors provide users with easily understandable cognitive hints expected
to facilitate the creation or customisation of an application by decreasing the learning effort needed by a
non-professional developer to manipulate programming concepts and artefacts. However, previous studies
(Blackwell and Green, 1999) showed that poorly designed metaphors do not improve usability, thus
suggesting caution in their introduction.

Figure 3 shows examples of metaphors that have been investigated for facilitating end user development.
For instance, using the jigsaw metaphor each software component is seen as a piece of a puzzle and the
shapes of the various pieces provide the cognitive hints needed to understand the possible compositions.
Another metaphor often proposed is the pipeline, in which applications are represented graphically as
directed graphs where nodes correspond to elementary services or components, and links (i.e. pipelines)
connect them. Often they are represented through icons associated with high-level functionalities, with
some output and input ports representing the input and the output data, and the application development

5 https://zapier.com/

9

mainly consists in indicating from where such functionalities receive input and where they send the results
of their processing. The timeline is another relevant metaphor that has been considered. It basically
provides a temporal reference along which events/objects are aligned, so helping in organising relevant
information in a chronological order. Timelines are typically represented by a line on which various
elements are graphically positioned, thus, in timelines the temporal relationships (between e.g. events) are
basically represented as spatial relationships. TagTrainer (Tetteroo et al., 2015) is an approach exploiting
timelines for caregivers to developing rehabilitation exercises for patients with hand or arm mobility
problems based on the manipulation of everyday objects. Rules are a type of metaphor that seems
particularly relevant for context-dependent applications since users can specify the desired behaviour by
using a number of e.g. if-then statements expressing how the system should behave when specific
situations occur. One of the first proposals using rules for EUD was iCAP (Dey et al. 2006). Recently,
due to relevancy of contextual dynamic aspects that can potentially affect the behaviour of applications in
IoT-based environments, rule-based approaches are receiving increasing interest. Indeed, IoT applications
are characterised by the use of various sensors distributed in various points, and thus it is important to
allow users to describe how the application should react to specific events detected by such sensors.
HANDS (Pane et al., 2002) was an environment with similar goals, more oriented to children. It uses the
cards metaphor: All objects in HANDS are represented by cards, which have user-defined properties,
while the program execution, that is, the manipulation of cards, is represented by an agent.

Figure 3 - Example metaphors for software development.

One distinct but often connected aspect is the programming style offered by the considered EUD approach.
For programming style, we consider how the EUD environment allows the creation or modification of an
application. Thus, in this case we focus on the concrete solution in terms of programming. Examples of
programming styles are programming by example, trigger-action –based approaches, natural language
techniques, mashups, mock-up –based and tangible programming techniques. The programming style
based on user interface mock-ups as design tools (Beaudouin-Lafon, M. and Mackay, 2002) has long been
considered due to its intuitiveness and effectiveness, and various tools for rapid prototyping for early
stages of design, and iterative and evolutionary prototyping have been proposed. They can still be useful
in IoT domains as well. One programming style relevant for EUD is based on natural language, a way of
programming using a subset of constructs expressed in natural language which should model the user’s
intents. An example approach exploiting this programming style can be found in the work of Perera et al.
(2015), which analyse how a natural language approach can support the definition of policies to manage
the domestic environment. The authors consider the “sticky note” technique for defining the tasks
requiring information exchange between IoT appliances and services. The findings reveal mainly that: the
average number of words per note was relatively small; people in general adjust their language depending
on the type of addressee (human vs. machine); and their technical background affects the way users
communicate with machines. Another relevant approach in this area is represented by tangible interfaces,
where a person interacts with digital information through the physical environment. An example of
tangible metaphor is the fridge magnet metaphor used in (Truong et al., 2004). It mimics refrigerator
magnets where the magnets offer a set of words that users can arrange into phrases. It also provides an
interface for automated capture and playback (which allows users to replay events that were automatically

10

recorded in the home). Mashup refers to a composition of contents and/or features from several sources
that determines new client-side interactive applications. It is an approach that has mainly been considered
with Web technologies, since they are more open and facilitate it. One limitation is that it only supports
the possibility of creating new applications from existing components, but not creating new components
from scratch. Trigger-action programming seems to meet well the requirements for IoT applications since
it allows their personalization according to the dynamic events and conditions that can be identified
through the wide variety of possible sensors. It is an approach that has stimulated interest also at a
commercial level. For example, IFTTT has more than 320,000 automation scripts (called “applets”)
offered by more than 400 service providers. The applets have been installed more than 20 million times,
and more than half of IFTTT services are IoT device-related (Mi et al., 2017). The programming-by-
example style allows the user to furnish examples of sequences of interactions from which the
environment understands what the corresponding expected general behaviour is. It has been applied in
various domains. For example, Improv (Chen and Lin, 2017) aims to support end users in dynamically
defining cross-device interactions in order to leverage the capability of additional devices. Thus, users
first demonstrate the target UI behaviour using the native input on the primary device. Improv
parameterizes the user-demonstrated behaviour. Then, the user demonstrates the input on an accessory
device, and the tool associates it with the parameterized behaviour so that the user can obtain the same
original application behaviour through the cross-device interaction demonstrated.

Another design dimension that we have deemed useful for our analysis is the platform supported for the
development activities. Traditionally it had been the desktop, but other platforms are being more and more
considered, e.g. mobile, or even multiple platforms can be used, e.g. desktop and mobile together (Chen
and Li, 2017). An indication of the relevant application domains which the concerned EUD approach can
be applied to is useful as well. The domain can vary depending on the case; in the IoT area examples of
application domains often considered are home automation, ambient assisted living, rehabilitation.

In the event dimension we consider the types of events that can have an impact on the behaviour of IoT
applications. We have identified five possible categories of events: interaction events (i.e. events occurring
when interacting with the application), those associated to aspects such as the user, the technology (e.g.
appliances or devices), the surrounding environment (e.g. light, noise), and the social relationships. In
addition to events, the possible actions should be considered as well. This level describes which type of
changes/actions the considered EUD environment allows. Different types of actions can be identified, e.g.
those performed in appliances (to change the state of actuators), user interface modifications (e.g. to
change its presentation, content or navigation), execution of functionalities (e.g. access to an external
service such as a weather forecast service). Associated to the latter two dimensions (event and action
types) there are two more dimensions corresponding to the types of composition operators that are
supported. Event compositions operators analyses the possibility to build composite expressions of events,
which can be obtained in various manners, by using e.g. Boolean operators or temporal operators. Action
compositions operators analyses the possibility to build composite expressions of actions. Constructs
similar to those occurring in programming languages can be used (e.g. sequence, for, while, if).

A COMPARISON BETWEEN A SET OF REPRESENTATIVE APPROACHES
Taking into account the dimensions described before, in order to show how they can be used to analyse
research contributions in this area, we have identified a number of representative contributions, which
provide good coverage and a variety of values in such dimensions, and are well cited or have put forward
novel work that seems worth discussing. In order to select them, we used various digital libraries and
search engines (ACM, IEEE, Springer, ScienceDirect, Scholar). We focused on papers published in
conferences and/or journals, and which also present some kind of evaluation. Each considered contribution

11

is associated with a row in the following table, in which the columns correspond to the dimensions
identified, and the values of each row summarise how each approach supports them. In the table the first
13 contributions focus on EUD for IoT, the last 8 proposals focus on EUD for robotics; the division is
highlighted by a bold horizontal line in the table. In the following we will describe such table according
to each dimension.
Platform
In the works considered, the two development platforms that have been used most frequently are the Web
(IFTTT, AppsGate, E-5W, meSchup, SmartFit Rule Editor, PersRobIoTE, Code3, English2NAO) and the
desktop (TagTrainer, iCAP, TiViPE, InteractionBlocks, CoBLOX, Choreographe, Target-Drives-Means).
The other platforms that have been considered are the mobile one (Epidosite, HomeBLOX, Puzzle) and
also the tangible platform, which typically appears used in combination with other possibilities (see
Gallagstrip, HomeRules and T4Tags2.0). Over the years, it can be seen that, in both the IoT and the
robotics domain, the Web is becoming the most preferred one, probably due to its flexibility in
accommodating various form-factor devices, which can be effectively exploited with responsive design.
Domain
As for the application domains considered, in the area of EUD for IoT, the home is the most preferred one
(AppsGate, Epidosite, HomeBLOX, T4Tags 2.0, HomeRules). This is not by chance: the advancement of
IoT has led to a plethora of Web-enabled devices and services in smart homes which have made them one
of the most popular testbeds for developing systems for personalization and management of automated
tasks based on the needs, goals, and routines of their residents. Another recurrent domain is the one, more
general-purpose, focusing on task automation (IFTTT, Puzzle, E-5W). The application domain of context-
aware applications has been considered in iCAP and GALLAG Strip, while the domain of e-wellness has
been considered in SmartFit Rule Editor. The area of assistive applications and rehabilitation therapies
have been of interest for both EUD in IoT-enabled contexts (TagTrainer) and EUD for robotics (TiViPE
and English2NAO), as in these sectors the need to have personalized customizations targeting the specific
needs, skills and abilities of patients is a key aspect. Regarding EUD for robotics, the considered domains
are those focusing on programming the behaviour of humanoid robots (e.g. PersRobIoTE, Choreographe),
autonomous dynamic robots (Target-Drives-Means), mobile manipulator robots (Code3) as well as robots
collaborating with humans in industrial settings (CoBLOX). Programming the human-robot
interaction/dialogue is the primary goal of the Interaction Blocks system.
Events
Regarding the events, all the approaches consider interaction events, whereas much fewer approaches
consider the full range of event types (interaction, user-related, environment-related, technology-related,
social relationships-related). As for the events considered in the EUD approaches for robots, all focus on
the events detected by robot’s embedded sensors, which can be considered part of the Technology
category. In addition, the environment in which the robots act has also been considered when it is needed
to specify a context-dependent robot behaviour. Therefore, other recurrent events in the area of developing
robot behaviour for IoT settings are those associated with the Environment category (for instance, events
related to environment noise, motion, time). As for the works focusing on EUD for IoT, all of the
contributions have considered the events associated with Interaction, Environment and Technology
categories. Some of them also consider events related to user characteristics (IFTTT, TagTrainer, Puzzle,
E-5W, iCAP, SmartFit RuleEditor), for instance user preferences, skills, position, posture.
Metaphors
Looking at this dimension, the most used representation adopted to make intuitive the specification of the
meant behaviour is the one based on rules (IFTTT, AppsGate, E-5W, iCAP, meSchup, T4Tags 2.0,
SmartFit Rule Editor, HomeRules, PersRobIoTE), which has been generally translated, in terms of
programming style, to trigger-action rules or one of its variants (if-then-else, event-condition-action).

12

Beyond rules, also timelines have been exploited in some tools (TagTrainer, InteractionBlocks).
Components-based metaphors have also been used in HomeBLOX, TiViPE and Target-Drives-Means.
The jigsaw/puzzle metaphor has been used both in EUD for IoT (Puzzle), as well as in the area of EUD
for robotics (see Code3 and CoBLOX). Another metaphor adopted is the comic strip, used in GALLAG
Strip, which shows action states in a sequence of frames, and enables programming by physical
demonstration of envisioned interactions with the same sensors and objects that that are part of users’
daily lives (rather than their models or abstract representations).
Programming style
Beyond the programming styles used to implement the rule metaphor (i.e. the “if-then” rules or the event-
condition-action one), other recurrent programming styles are Programming by Demonstration (Epidosite,
HomeRules, GALLAGStrip, Code3), in which the user performs actions on concrete examples and then
the system records these actions and infers a generalized program that can be applied to new examples,
and block-based programming (see e.g. TiViPE and CoBLOX), where instructions are mainly represented
as blocks. A similar approach is used in Choreographe, where an iconic flow (or pipeline) of connected
icons represents the robot behaviour to obtain. Natural language is another programming style that has
often been used to make programming interfaces more approachable especially for novice users. It has
often been used in combination with other approaches such as rules (this is the case of e.g. AppsGate,
PersRobIoTE). A less used programming style is the process-driven one (homeBLOX), which exploits
processes to specify not only automation sequences but also contextual situations that will trigger
automations. Context information is aggregated as a result of a process, rather than being described as a
Boolean expression of triggers (as typically happens with trigger/action –based approaches). Target-
Drives-Means uses a programming paradigm that is quite different from those that usually consider the
behaviour of a system (a robot in this case) as a sequence of actions. Instead, it is based on a number of
reusable pre-programmed components (with information flowing between them), which are grouped
together in higher-level behaviours that all potentially run in parallel and compete for activation (the logic
of the program is specified by associating conditions that should activate functions).

13

Table 1: Analysis of a set of representative contributions according to the proposed design space

Name	 Platf.	 Domain	 Events	 Metap.	 Progr.	
style	

Actions	 Event	
Comp.	

Act.	
Com.	

Further	Support	

IFTTT		
https://ifttt.com	

Web	 Task	
Automa.	

Int	Tech	
Env	Use	

Rules	 TA	rules	 Devices;	Web	
services	

Not	
support.	

SEQ	 Inform	users	when	rules	
are	executed	and	failures	

AppsGate			
(Coutaz	&	
Crowley,	2016)	

Web	 Home	 Interac.	
Tech	
Environ	

Rules	 If-Then-
Else+	
Nat.lang.	

Devices	and	
services	available	
at	home		

Not	
support.	

SEQ	 Simulation	(Time-based)	
+	Debug	(Timel.	+	
Depend.	Graph)	

TagTrainer		
(Tetteroo	et	al.,	
2015)	

Desk.	 Assistiv
e	

Interac.	
User	
Tech.	

Timeli
nes.	

Tangible	 Exercises/actions	
involving	physical	
objects	

AND	 SEQ	 Tool	notifies	users	about	
errors	or	inconsistencies	
during	creation	

Puzzle		
(Danado	&	
Paternò,	2014)	

Mob.	 Task	
Automa
tion	

Int	Tech	
Soc	Env	
Us	

Jigsaw	 	 Application	UI,	
appliances	and	
devices	

Not	
support.	

SEQ
/LO
OP	

	

E-5W		
(Desolda	et	al.,	
2017)	

Web	 Task	
Automa
tion	

Int	Tech	
Soc	Env	
Us	

Rules		
	

TA	rules	 Composition	of	
multiple	objects	
and	services		

AND	OR	 SEQ	 	

Epidosite		
(Li	et	al.,	2017)	

Mob.	 Home	
Automa
tion	

Interac.	
Env.	
Techn.	

	 Progr.	By	
Example.	

Control	smart	
appliances	and	
devices	at	home		

Not	
support.	

SEQ	 	

iCAP		
(Dey	et	al.,	2006)	

Desk.	 Context
-aware	
app		

Int	Tech	
Soc	Env	
Us	

Rules	 If-then	
rules	

Context-aware	
applications	

AND	OR	
Tempor.	

Not	
supp
.	

Rule	simulation	+	
Ambiguity	check	+	
Resolution	of	conflicts		

homeBlox			
(Rietzler	et	al.,	
2013)	

Mob.	 Smart	
homes	

Interac.		
Env.	
Tech.	

	 Proc.-
driven	
Graphs	

House	
appliances/device
s	&	services	

AND		
OR	

AND	
OR	

	

meSchup			
(Kubitza	&	
Schmidt,	2015)	

Web	 Smart	
Environ.	

Interac.	
Env.	
Tech.	

Rules	 If-then-
else+Ma
shup	

Composite	
behaviour	of		
smart	devices	

Not	
support.	

Not	
sup.	

Simulation	

T4Tags	2.0		
(Bellucci	et	al.,	
2019)	

Web	+	
Tangib	

Home	
	

Interac.	
Env.	
Tech.		

Rules	 T-A	rules	 Mail,	sounds,	
manage	power	
outlet	&	light	

AND	OR		
	

SEQ	 Informs	user	if	trigger	
compos.	is	always	
True/False	

SmartFit	
(Barricelli	&	
Valtolina,	2017)	

Web	 Wellnes
s		

Int	Tech	
Soc	Env	
Us	

Rules	 ECA	
rules	

Suggestions,	
warnings,	
messages		

AND	OR			
Tempor.	

SEQ	 	

HomeRules			
(De	Russis	&	
Corno,	2015)	

Mob.+		
Tangib	

Home	 Int.	Env.	
Tech.	

Rules		 ECA	
rules	+	
PbD	

Controlling	smart	
devices	at	home	

OR	 SEQ	 The	user	can	
disambiguate	the	rule	
structure	

GALLAG	Strip		
(Lee	et	al.,	2013)	

Mob.	+		
Tangib	

Context
-aware	
app	

Inter.	
Env.		
Tech		

Comic	
Strip		

Progr.	by	
Demonst
rat.	

Home	appliance	&	
devices,	
reminders,		

AND	 SEQ	 	

PersRobIoTE		
(Leonardi	et	al.,	
2019)	

Web	 Human
oid	
robots	

Int	Tech	
Soc	Env	
Us	

Rules	 TA	
rules+	
Nat.lang.	

(Pepper)	robot;	
IoT	appl./dev.;	
alarm/notif.	

AND	OR	
NOT	

SEQ	
PAR	

Simulation	+	Debug	
(why/why	not)	+	Conflict	
detection/resolution	

TiViPE		
(Barakova	et	al.,	
2013)	

Desk.	 Assistiv
e	

Int.	Env.	
Technol
ogy	

Blocks	 Textual	
comman
ds	

(NAO)	robot:	
wait,		LEDs,	audio,	
motor	

Not	
support.	

SEQ	
PAR	

	

Code3		
(Huang	&	
Cakmak,	2017)	

Web	 Manipul
.	Robots	

Interac.	
Env.	
Tech.	

Jigsaw	 Progr.	by	
Demonst
rat.	

(PR2)	Robot	
perceiv./manipul.	
objects/environ.		

Not	
support.	

SEQ	 	

Interaction	
Blocks		
(Sauppè	&	Mutlu,	
2014)	

Desk.	 Human-
Robot	
Interact.	

Interac.	
Env.	
Techno.	

Timel.	 Pattern-
based	

User	Dialogue;	
(NAO)	robot	mov.	
(gaze,	head)	

Not	
support.	

SEQ	 	

CoBlox			
(Weintrop	et	al.,	
2018)	

Desk.	 Industri
al	
robots	

Interac.	
Env.	
Technol
ogy	

Jigsaw	
	

	
Templat
es	

1-arm(Roberta)	
robot:	arm,	place	
object,	gripper	

Not	
support.	

SEQ	 Virtual	Robot	simulator	

Choreographe		
(Pot	et	al.,	2009)	

Desk.	 Human
oid	
robots		

Interact
ion	Env.	
Tech.	

Pipelin
e	

	 Controlling	(NAO)	
robot:	move,	
speech,	LEDs	

Not	
support.	

SEQ	
PAR	

	

English2NAO			
(Buchina	et	al.,	
2016)	

Web	 Assistiv
e		

Interact
ion	Env.	
Tech.	

	 Visual	
Not.	+	
NatLang.	

(NAO)	robot	
(speech,	object	
interaction)	

Not	
support.	

SEQ	 	

Target-Drives-
Means		
(Berenz	&	Suzuki,	
2014)	

Desk.	 Autom.	
Dynam.	
Robot	

Int.	Env.	
Technol
ogy	

Comp.	 Parallel	
behavior
s		

Robot	behav.	
move	head,	
pick/search	

AND	 SEQ	
PAR	

User	specify	priorities	for	
disambiguation		

14

Actions
The actions that have been supported are strictly connected with the specific application area that has been
considered in each approach. For instance, the approaches focusing on smart homes and, more in general
on smart environments, involve actions allowing the management of smart devices, appliances and
services typically available at home and in smart environments (see AppsGate, Epidosite, HomeBLOX,
T4Tags 2.0, HomeRules). Suggestions/reminders/warnings directed to users have been considered in
SmartFit Rule Editor.
As for works associated with robots, all of them focus on managing the tasks that the considered robot is
expected to carry out. However, some of the works encompass a wider set of actions. For instance,
PersRobIoTE not only provides means for controlling the (Pepper) robot considered, but also for
controlling the appliances and smart devices available in the users’ surrounding environment, as well as
providing some alarms and reminders to them. In this case, the integration between the humanoid robot
and IoT smart contexts has been supported by providing suitable techniques for specifying context-
dependent behaviour not only of the robot but also of the surrounding IoT-enhanced environment.
Event composition
The composition of events has been considered only in some cases, also due to the cognitive effort required
by users to specify such composite situations. In the works that considered the specification of more
flexible contextual conditions, the composition is typically supported through Boolean operators (e.g.
AND, OR) and even NOT as in PersRobIoTE (to indicate when something does not happen in a period of
time). This is the case of TagTrainer, E-5W (in which all the events in a rule are either in AND or OR),
iCAP, homeBLOX, T4Tags2.0, SmartFit Rule Editor, homeRules, GallagStrip, PersRobIoTE. Among
them some works also consider the possibility of specifying time-related constraints on events. For
instance, in iCAP events can be related through e.g. ‘before’ and ‘after’.
Action composition
Regarding the combination of actions, several proposals consider it, the most used approach being simply
to have a sequence of actions (TagTrainer, E-5W, Epidosite, T4Tags 2.0, SmartFit Rule Editor,
homeRules, GALLAG Strip). Recently also IFTTT supports the composition of actions through the new
‘Maker’ tier which allows developers to add multiple triggered actions. In the area of EUD for
programming robotic behaviour, the need to develop natural (and complex) robot behaviour even
resembling humans has led to works that provide means for better structuring such behaviour. Therefore,
all the works support the possibility to combine the possible actions in a sequence of actions, whereas
some of them also consider the possibility to combine the actions in parallel, since the robot is able to
perform different actions at the same time through its various components (see e.g. PersRobIoTE, TiViPE,
Choreographe, Target-Drives-Means). In this regard, it is worth mentioning Target-Drives-Means that
directly structures its programming style in terms of parallel behaviours competing for activation.
Further support
Regarding the further support that such tools offer to their end-user developers, less than a half of them
support users during their development, basically to better validate the correctness of the specified
behaviour. The most frequent type of support is based on simulation of the programmed behaviour in a
virtual context (see e.g. iCAP, meSchup, AppsGate, PersRobIoTE). For instance, in AppsGate there is the
possibility to run programs using a virtual date and time. In addition, still with AppsGate, end user
developers are further supported in monitoring the programmed behaviour by means of timelines (to let
users monitor home states over time) and dependency graphs (which let users monitor home states through
relations between entities such as devices and rules). TagTrainer offers a validation tool that notifies users
about errors or inconsistencies during creation of programs. iCAP, apart from providing end users with
the possibility of simulating rules, also offers support for checking rule ambiguity and resolution of
potential conflicts. T4Tags 2.0 restricts the choice of the triggers that can be combined through

15

conjunction and disjunction: the toolkit guides the user towards implementing correct behaviour and
avoids the creation of rules that lead to inconsistent/invalid states. The interface does not allow conjunction
of two event triggers (as it is a very unlikely situation). If the conjunction or disjunction of two triggers
results in a rule that always returns the same value (True or False), the system provides a prompt to the
user, informing that the specific behaviour cannot be implemented, explaining the cause. HomeRules
assists end users during the definition of rules highlighting possible problems, also allowing step-by-step
simulation of rules. PersRobIoTE offers means for simulating rules, automatically detecting possible
conflicts and also suggesting ways to solve them, as well as debugging features exploiting the why-why
not paradigm. Also CoBLOX offers a virtual root simulator. Using Target-Drives-Means the users
themselves have to specify behaviour priorities to disambiguate possible ambiguous situations (this
feature is also available in the work of PersRobIoTE). IFTTT provides another type of support that aims
to inform users whenever a rule is executed, and in case of failure provides associated feedback as well.

DISCUSSION
As a result of this analysis, a number of observations and implications can be derived, also in terms of
potential areas that require further research in the near future.
Looking at Table 1, first of all, one area that seems to require further development regards intuitive ways
to flexibly and more expressively specify the situation/context of interest that should trigger expected
behaviour, especially in EUD for robotics, where many approaches do not support this event-composition
–related aspect at all. While the use of Boolean expressions is the preferred approach that has been used
up to now, there is the need to avoid the specification of complicated Boolean expressions, which may be
difficult for users to specify, control, and maintain over time.
Another aspect that has stimulated less interest in the past but recently is attracting increasing attention is
the support that should be offered to end-user developers to somehow facilitate the adoption of EUD in
their lives. Till now, this has mainly been done by means of providing automatic support prompting users
about ambiguous situations or situations that require further attention, or automatically identifying
situations that cannot be verified, and thereafter suggesting a suitable solution.

In addition, the combination of multiple interaction modalities for EUD seems another promising direction
(although exploited only in a few works), since it allows for better exploiting the advantages of different
modalities and therefore it should facilitate end users in approaching such tools. In this regard, the
proliferation of IoT and the widespread adoption of sensing and interaction technologies make multimodal
EUD tools a promising and timely approach able to assist users in specifying the behaviour of intelligent
environments. In particular, multimodal platforms exploiting the tangible modality are of special interest
due to their natural connection with physical smart things of IoT environments, better supporting the
transition from the digital world to the real one. More general implications can be derived, as elaborated
in the following.

Support for managing complex, real-life personalization
As it has already been highlighted in the work of (Bellucci et al., 2019) and (Brich et al., 2017), the trigger-
action paradigm, even enhanced by AND/OR compositions, turns out to be good for modelling and
programming basic and well-structured situations (an example was reported in domestic settings), but not
perfect for managing more complex scenarios and task automations, which may need further, more
expressive programming paradigms for supporting the different, ever-changing needs of users, who can
have varying expertise (and interests) in technology and programming. Also in (Bellucci et al., 2019) it is

16

highlighted how some personalization scenarios either require specialized functionality (such as dedicated
applications), or cannot even be expressed using the trigger-action paradigm. In this regard, enhanced
programmability, such as programming by example and especially process-driven approaches, could
represent an interesting option that should be further pursued.
Offer the most appropriate abstraction level to end-user developers
The specification of context-dependent behaviour can be supported at various levels in programming,
from basic hardware primitives to social behaviour. EUD tools should be able to hide the complexity of
the many underlying technologies involved, and highlight the main conceptual aspects that need to be
understood and manipulated through intuitive metaphors and programming styles. For instance, in the
case of a context-aware application it is important to identify the relevant situations triggering some
specific behaviour without having to learn the low-level sensing technology, and enable setting the
consequent reactions in a condensed and understandable manner, so that even non-professional
programmers can make sense of them.
Users need the most appropriate metaphor for their routines and practises
As we have seen, there are many different abstractions for IoT end user developers to choose from. They
all aim to hide the implementation details at different levels and through different representations. One
issue to consider is that many users are not used to thinking in terms of algorithmic computation, and thus
need representations and concepts more suitable for them. Therefore, the selection of the most suitable
metaphor should be done properly, because end user developers will accordingly form a different mental
model of the system, and this will also impact the specific personalization capabilities. In addition, the
intuitiveness of the metaphor will also affect the way in which end users will include EUD activities in
their everyday routines and life practises.
Users need effective means to understand and validate the correctness of the specified behaviour
Defining context-dependent behaviour may imply specifying several contextual situations where various
behaviours should occur. When there are many such possible behaviours, the resulting intertwined
behaviour could be difficult to control especially by people with limited or no programming expertise at
all. In addition, in real contexts, users will likely experience some surprising behaviours, wondering why
a certain unwanted behaviour occurred in a specific situation. When this happens (i.e. there is a mismatch
between users’ expectations and actual system behaviour), non-expert IoT users should be provided with
tools that clarify the underlying rationale and logic of the system. In order to effectively localize issues in
the currently specified behaviour, users should be supported by explanations (better if they are provided
in natural language) of the reasons for the unexpected behaviour, possibly accompanied by concrete
examples or counterexamples highlighting the situations in which a specific rule is verified or not. Also
simulation modes represent a good direction to enable people with less programming expertise to maintain
full control of their IoT environment by providing a safe environment where users can try their
automations and also test new ideas. However, in order to be effective and actually adopted by users, the
simulation environment should reflect the current situation at least to a certain degree (even if it often
changes, as happens in domestic environments), and it should exploit meaningful yet intuitive
visualization techniques to enable people to make sense of the potentially very large set of devices and
smart objects to control (Brich et al., 2017). However, it is worth pointing out that, in specific domains
(e.g. assistive applications), end users might not feel sufficiently sure of using the simulation environment.
For instance, in (Buchina et al., 2016) it emerged that caregivers felt confident of implementing their
scenarios for their patients (ASD children) only when having the possibility to test them concretely with
the robotic assistant.
Integration of humanoid robots with IoT environments
Differently from industrial robots, humanoid robots can be used in various everyday environments
(equipped with several IoT devices/things/sensors). The possibility to detect what happens in the

17

surrounding environment opens the way to exploit triggers that use the data detected by both the robot and
IoT objects and to link the robot behaviour to what happens around it. Thus, EUD tools should provide
users with suitable techniques for specifying such triggers to describe context-dependent behaviour
integrating the capabilities of the smart IoT environment and the robot.
Support and promote user creativity and reuse of programs
Since the behaviours to specify tend to be multi-faceted, we should provide users with means to re-use
already created rules or even parts of such rules (e.g. blocks of actions) through familiar concepts in order
to easily refer to them in further, more structured rules. In addition, providing the possibility to share rules
(as it happens e.g. in T4Tags 2.0 and also PersRobIoTE) supports users’ sustained engagement and
creativity: users can be inspired by system usage from other users as well as adopt or tailor others’
customizations for their personal needs.
Integration of intelligent techniques to support EUD.
End users can be helped in the identification of relevant ways to modify IoT and robot applications by
some kind of intelligent mechanisms. Various possible approaches can be possible in this perspective.
One possible approach is to exploit machine learning to detect the relevant rules from the actual user
behaviour. For example, an intelligent thermostat is able to detect at which temperature the heating system
should be turned on based on previous user choices. A more general solution is rather difficult because it
implies the ability to monitor in a continuous and stable way many possible relevant contextual aspects
and actions performed (corresponding to changes in the appliances status or commands sent to
applications). Another possible approach is to introduce a rule recommendation system. Some can be
obtained through generalization of the content of some part of the existing rules. Thus, for example, if
there is a rule that says that when the user enters the bedroom then the lights should be on, one possible
suggestion obtained through generalization can be that when the user enters any room then the lights
should be on. Another type of recommendation can be obtained by trigger refinement, which means to
narrow when the trigger should be fired by adding conditions that make the rules meet the needs more
precisely.

CONCLUSIONS
In this paper we discuss the historical evolution of EUD, then we analyse the main current challenges with
respect to recent technological trends (IoT and social robots) through the use of some conceptual
dimensions, and conclude with a discussion of a possible research agenda for the field. The presented
conceptual framework is useful to facilitate a better understanding of the important aspects to consider
when designing EUD environments for IoT and/or robots, and it can be used as the basis for comparative
analysis amongst various approaches and inform discussion about areas that can be further investigated.
Additional aspects that are currently starting to emerge include new evaluation techniques that would
facilitate effective in-the-wild evaluation of EUD approaches in longitudinal studies to investigate how
the use and appropriation of the tools vary over time. Indeed, most usability studies in this area have been
carried out with a limited number of users, and often in laboratories. In addition, another interesting
direction of research is represented by aspects associated with how to better support end-user awareness
of relevant security and privacy concerns in IoT settings, by identifying intelligent and usable mechanisms
for controlling them.

18

REFERENCES
Aghaee, S., Pautasso, C., 2014. End-User Development of Mashups with NaturalMash. J. Vis. Lang. Comput. 25(4), pp. 414-
432.
App Inventor MIT (2010), http://info.appinventor.mit.edu/
Atzori, L., Iera, A., and Morabito, G., 2010. The Internet of Things: A survey. Computer Networks, Volume 54, Issue 15, 28
October 2010, Pages 2787–2805. doi:10.1016/j.comnet.2010.05.010
Barricelli BR, Cassano F, Fogli D, Piccinno A, 2019, End-user development, end-user programming and end-user software
engineering: A systematic mapping study, Journal of Systems and Software 149, 101-137
Barricelli, B.R., Valtolina, S.: A visual language and interactive system for end-user development of internet of things
ecosystems. J. Vis. Lang. Comput. 40: 1-19 (2017) -
Beaudouin-Lafon M., and Mackay W., 2002. Prototyping Tools and Techniques. The Human Computer Interaction
Handbook. J.A. Jacko and A. Sears, eds., p.1006–1031.
Bellucci, A., Vianello, A., Florack, Y., Micallef, L., Jacucci, G.: Augmenting objects at home through programmable sensor
tokens: A design journey. Int. J. Hum.-Comput. Stud. 122: 211-231 (2019).
Berenz, V., Suzuki, K.: Targets-Drives-Means: A declarative approach to dynamic behavior specification with higher
usability. Robotics and Autonomous Systems, 62(4), 545-555 (2014). doi: 10.1016/j.robot.2013.12.010
Blackwell, A.F., 2002. First steps in programming: a rationale for attention investment models," IEEE Symposia on Human-
Centric Computing Languages and Environments, pp. 2-10.
Blackwell, A.F. & Green, T.R.G. (1999). Does Metaphor Increase Visual Language Usability? In Proceedings 1999 IEEE
Symposium on Visual Languages VL'99, pp. 246-253.
Bellotti, V, and Edwards, W.K., 2001. Intelligibility and Accountability: Human Considerations in Context-Aware Systems,
Human-Computer Interaction, 16(2-4): 193-212.
Brich J., Walch M., Rietzler M., Weber M., Schaub F., (2017) Exploring End User Programming Needs in Home
Automation, ACM Transactions on Computer-Human Interaction (TOCHI) 24 (2), 11
Buchina, N., Kamel, S., and Barakova, E.I., 2016. Design and evaluation of an end-user friendly tool for robot programming.
In Proceedings of IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN ‘16). IEEE,
185-191. DOI: https://doi.org/10.1109/ROMAN.2016.7745109
Burnett M., 2009. What Is End-User Software Engineering and Why Does It Matter? In: Pipek V., Rosson M.B., de Ruyter
B., Wulf V. (eds) End-User Development. IS-EUD 2009. Lecture Notes in Computer Science, vol 5435. Springer, Berlin,
Heidelberg
Burnett M., and Scaffidi, C., End-User Development. The Encyclopedia of Human-Computer Interaction, 2nd Ed, cap.10
https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/end-user-
development
Carmien, S.P., Fischer, G.: Design, Adoption, and Assessment of a Socio-Technical Environment Supporting Independence
for Persons with Cognitive Disabilities. Proc. CHI 2008, pp. 597 – 606
Chen X., Lin Y., Improv: An Input Framework for Improvising Cross-Device Interaction by Demonstration, ACM TOCHI,
2017.
Cheverst, K., Davies, N., Mitchell, K., and Efstratiou, C., 2001. Using Context as a Crystal Ball: Rewards and Pitfalls,
Personal and Ubiquitous Computing: Volume 5 Issue 1.
Corno, F., de Russis, L., and Monge Roffarello, A., 2017. A High-Level Approach Towards End User Development in the
IoT. In: CHI 2017: The 35th Annual CHI Conference on Human Factors in Computing Systems, Denver, CO (USA), May 6–
11, 2017. pp. 1546-1552
Coutaz, J., and Crowley, J.L., 2016. A first person experience with end-user development for smart home. IEEE Pervasive
Computing, vol. 15, no 2, May-June 2016: 26:39
Cuccurullo, S., Francese, R., Risi, M., Tortora, G.: MicroApps Development on Mobile Phones. In Costabile, M., Dittrich,
Y., Fischer, G., Piccinno, A., eds. : End-User Development 6654. Springer Berlin / Heidelberg (2011) 289-294
Cypher, A. (Ed.), 1993. Watch What I do: Programming By Demonstration. MIT Press.
Cypher A., Dontcheva M., Lau T., Nichols J., No Code Required Giving Users Tools to Transform the Web, Morgan
Kaufmann, ISBN 978-0-12-381541-5, 2010

19

Danado J., Paternò F., Puzzle: Puzzle: A Mobile Application Development Environment using a Jigsaw Metaphor, Journal of
Visual Languages and Computing, 25(4), pp.297-315, 2014, Journal of Visual Languages and Computing, 25(4), pp.297-315,
2014.
Dax, J., Ludwig, T., Meurer, J., Pipek, V., Stein, M., and Stevens, G., 2015. FRAMES – A Framework for Adaptable Mobile
Event-Contingent Self-report Studies. IS-EUD 2015: 141-155.
Davidyuk O., Sanchez I., Gilman E. and Riekki J.: An Overview of Interactive Application Composition Approaches, Open
Computer Science. Volume 5, Issue 1,ISSN (Online) 2299-1093, DOI: 10.1515/comp-2015-0007, December 2015.
De Russis, L., Corno, F.,: HomeRules: A Tangible End-User Programming Interface for Smart Homes. CHI Extended
Abstracts 2015: 2109-2114
Desolda, G., Ardito, C., and Matera, M., 2017. Empowering End Users to Customise their Smart Environments: Model,
Composition Paradigms, and Domain-Specific Tools, ACM Trans. Comput.-Hum. Interact. 24(2): 14:1-14:33, 2017
Dey, A.K., and Newberger, A., 2009. Support for context-aware intelligibility and control. CHI 2009: 859-868
Dey, A.K., Sohn, T., Streng, S., and Kodama, J., 2006. iCAP: Interactive Prototyping of Context-Aware Applications.
Pervasive 2006: 254-271
Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehandjiev, N., 2004. Meta-design: a manifesto for end-user development.
Commun. ACM 47 (9), 33–37. http://doi. acm.org/10.1145/1015864.1015884 .
Fischer, G., & Giaccardi, E. (2006). Meta-Design: A Framework for the Future of End User Development. In H. Lieberman,
F. Paternò & V. Wulf (Eds.), End User Development (Vol. 9, pp. 427-457). Dordrecht, The Netherlands: Springer. doi:
10.1007/1-4020-5386-X_9.
Ghiani G., Paternò F., Spano D., Cicero Designer: an Environment for End-User Development of Multi- Device Museum
Guides, Proceedings EUD'09, Siegen, Springer Verlag, LNCS 5435, pp.265-274.
Ghiani G., Paternò F., Spano L.D., Pintori G., An environment for End-User Development of Web mashups, International
Journal of Human-Computer Studies Volume 87, March 2016, Pages 38–64, Elsevier
Ghiani, G., Manca, M., Paternò, F., and Santoro, C., 2017. Personalization of Context-Dependent Applications Through
Trigger-Action Rules. ACM Trans. Computer-Human Interaction 24(2): 12:1-14:52
Huang, H., and Cakmak, M., 2015. Supporting mental model accuracy in trigger-action programming. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '15). ACM, New York, NY,
USA, 215-225. DOI=http://dx.doi.org/10.1145/2750858.2805830
Huang, H., and Cakmak, M., 2017. Code3: A System for End-to-End Programming of Mobile Manipulator Robots for
Novices and Experts. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI
'17). ACM, New York, NY, USA, 453-462. DOI: https://doi.org/10.1145/2909824.3020215
IFTTT, https://ifttt.com/
Klokmose C. N., Eagan J. R., Baader S., Mackay W., and Beaudouin-Lafon M.. 2015. Webstrates: Shareable Dynamic
Media. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology (UIST ’15). ACM, New
York, NY, USA, 280–290. DOI: http://dx.doi.org/10.1145/2807442.2807446
Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J., Lieberman, H.,
Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., Wiedenbeck, S., 2011. The state of the art in end-user software
engineering. ACM Comput. Surv. 43 (3), 1–44. doi: 10.1145/1922649.1922658
Ko, A.J., and Myers, B.A., 2004. Designing the whyline, a debugging interface for asking why and why not questions about
runtime failures. In Proceedings CHI’2004: Human Factors in Computing Systems (pp. 151–158). Vienna, Austria.
Ko, A.J., and Myers, B.A., 2005. A framework and methodology for studying the causes of software errors in programming
systems. Journal of Visual Languages and Computing, 16(1), 41–84.
Ko, A.J., and Myers, B.A., 2009. Finding causes of program output with the java whyline. In CHI’2009: Human Factors in
Computing Systems (pp. 1569–1578). Boston, MA.
Ko, A.J., Myers, B.A., Coblenz, M., and Aung H.H., 2006. An exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks. IEEE Transactions on Software Engineering, 33(12), 971–987.
Kubitza, T., and Schmidt, A., 2015. Towards a Toolkit for the Rapid Creation of Smart Environments. IS-EUD 2015: 230-
235

20

Kulesza, T., Burnett, M.M., Wong, W.-K., Stumpf, S., 2015. Principles of Explanatory Debugging to Personalize Interactive
Machine Learning. IUI 2015: 126-137
Kulesza, T., Stumpf, S., Wong, W.-K., Burnett, M.M., Perona, S., Ko, A., and Oberst, J., 2011. Why-oriented end-user
debugging of naive Bayes text classification. ACM Transactions on Interactive Intelligent Systems (TiiS) 1, 1 (2011).

Jalamkar D, Selvakumar AA (2016) Use of Internet of Things in a Humanoid Robot – A Review. Adv Robot Autom 5:149.

Laval J., 2018. End User Live Programming Environment for Robotics. Robotics & Automation Engineering Journal, 3(2),
June 2018.

Lee, J., Garduño, L., Walker, E., and Burleson, W. 2013. A tangible programming tool for creation of context-aware
applications. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (UbiComp
'13). ACM, New York, NY, USA, 391-400. DOI: https://doi.org/10.1145/2493432.2493483

Leonardi N., Manca M., Paternò F., Santoro C., Trigger-Action Programming for Personalising Humanoid Robot Behaviour,
2019 ACM Conference on Human Factors in Computing Systems (CHI'19), Paper 445..

Leshed G., Haber E. M., Matthews T., Lau T. A.: CoScripter: automating & sharing how-to knowledge in the enterprise. CHI
2008: 1719-1728

Li T.JJ., Li Y., Chen F., Myers B.A. (2017) Programming IoT Devices by Demonstration Using Mobile Apps. In: Barbosa S.,
Markopoulos P., Paternò F., Stumpf S., Valtolina S. (eds) End-User Development. IS-EUD 2017. Lecture Notes in Computer
Science, vol 10303. Springer, Cham Programming IoT Devices by Demonstration Using Mobile Apps, IS-EUD 2017

Lieberman, H., Paternò, F., Klann, M., Wulf, V., 2006. End-User Development: An Emerging Paradigm. In End User
Development, Henry Lieberman, Fabio Paternò, and Volker Wulf (eds.). Springer, The Netherlands, 1-8.
Lim, B. Y., 2012. Improving understanding and trust with intelligibility in context-aware applications. PhD thesis, Carnegie
Mellon University.
Lim, B. Y., and Dey, A.K., 2010. Toolkit to support intelligibility in context-aware applications. UbiComp 2010: 13-22
Lim, B. Y., Dey, A.K., and Avrahami, D., 2009. Why and Why Not Explanations Improve the Intelligibility of Context-
Aware Intelligent Systems, Proceedings CHI 2009, pp. 2119-2128, ACM Press.
Lucci, G., and Paternò, F., 2014. Understanding End-User Development of Context-Dependent Applications in Smartphones.
HCSE 2014: 182-198
Macías, J.A. and Paternò, F. (2008). Customization of Web Applications through an Intelligent Environment Exploiting Logical
Interface Descriptions. Interacting with Computers. Elsevier. Volume 20 (1), pp. 29-47.
Manca M., Paternò F., Santoro C., Corcella L., Supporting end-user debugging of trigger-action rules for IoT applications,
International Journal of Human-Computer Studies, Vol.123, 56-69
Markopoulos P., Nichols J, Paternò F., Pipek V., End-User Development for the Internet of Things, ACM Transactions on
Computer-Human Interaction (TOCHI) 24 (2), 9, 2017
Matera M., Picozzi M., Pini M., Tonazzo M.: PEUDOM: A Mashup Platform for the End User Development of Common
Information Spaces. ICWE 2013: 494-497
Metaxas, G., and Markopoulos, P., 2017. Natural contextual reasoning for end users. ACM Transactions on Computer-
Human Interaction (ACM TOCHI), Vol.24, Issue 2, Article N.13.
Mi, X., Qian, F., Zhang, Y., Wang, X.F., 2017. An Empirical Characterization of IFTTT: Ecosystem, Usage, and
Performance, Proceedings of Internet Measurement Conference (IMC) ’17, November 1–3, 2017, London, UK
Myers B. and Buxton W., "Creating Highly Interactive and Graphical User Interfaces by Demonstration," Proceedings of
SIGGRAPH '86, Vol. 20, No. 4, ACM, Dallas, TX, August 1986, pp. 249 - 258.
Myers, B. A., Ko, A. J., Scaffidi, C., Oney, S., Yoon, Y. S., Chang, K., Kery, M. B., and Li, T. J.-J., (2017) Making End User
Development More Natural. In: Paternò F., Wulf V. (eds) New Perspectives in End-User Development. Springer, Cham
Nardi, Bonnie A. (1993): A Small Matter of Programming: Perspectives on End User Computing. Cambridge,
Massachusetts, MIT Press
Nichols, J., and Lau, T. 2008. Mobilization by demonstration: using traces to re-author existing web sites. In Proceedings of
the Symposium on Intelligent User Interfaces. 149–158.
Pane J. F., Myers B. A., Miller L. B.: Using HCI Techniques to Design a More Usable Programming System. HCC 2002:
198-206

21

Paternò, F., 2013. End User Development: Survey of an Emerging Field for Empowering People, ISRN Software
Engineering, vol. 2013, Article ID 532659, 11 pages, 2013. doi:10.1155/2013/532659
Paternò F, Santoro C., A design space for end user development in the time of the internet of things, in New perspectives in
end-user development, Springer 43-59, 2017
Pausch R., Burnette T., Capeheart A.C., Conway M., Cosgrove D., DeLine R., Durbin J., Gossweiler R., Koga S., White J.,
Alice: Rapid Prototyping System for Virtual Reality. IEEE Computer Graphics and Applications, May 1995
Perera, C., Aghaee, S., and Blackwell, A.F., 2015. Natural Notation for the Domestic Internet of Things. Proceedings IS-
EUD 2015: 25-41, Springer Verlag.
Pipek, V., 2005. From tailoring to appropriation support: negotiating groupware usage. University of Oulu. Retrieved from
http://herkules.oulu.fi/isbn9514276302/isbn9514276302.pdf.
Pipek, V., and Wulf, V., 2009. Infrastructuring: Towards an Integrated Perspective on the Design and Use of Information
Technology. Journal of the Association of Information Systems (JAIS), Volume 10, Issue 5, May 2009, 306-332.
Pot E., Monceaux J., Gelin R., Maisonnier B.. 2009. Choregraphe: a graphical tool for humanoid robot programming. In
Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN’09).
IEEE, 46-51. DOI: https://doi.org/10.1109/ROMAN.2009.5326209
Repenning, A., 1995. Bending the Rules: Steps toward Semantically Enriched Graphical Rewrite Rules, 1995 IEEE
Symposium on Visual Languages, Darmstadt, Germany, pp. 226-233, Sept. 5-9, 1995.
Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., Silver,
J., Silverman, B., Kafai, Y.: Scratch: programming for all. Commun. ACM 52, 60-67 (November 2009)
Rietzler, M., Greim, J., Walch, M., Schaub, F., Wiedersheim, B., and Weber, M., 2013. homeBLOX: introducing process-
driven home automation. In (UbiComp '13 Adjunct). ACM, New York, NY, USA, 801-808.
Sauppé, A., and Mutlu, B., 2014. Design patterns for exploring and prototyping human-robot interactions. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). ACM, New York, NY, USA, 1439-1448.
DOI=http://dx.doi.org/10.1145/2556288.2557057
Smith, D.C., Cypher, A., Spohrer, J., 1994. KidSim: Programming Agents Without a Programming Language,
Communications of the ACM 37(7), 54-67, July 1994.
Sutcliffe, A.G., and Papamargaritis, G., 2014. End-user development by application-domain configuration. Journal of
Systems and Software 91: 85-99.
Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., and Markopoulos, P., 2015. Lessons
Learnt from Deploying an End-User Development Platform for Physical Rehabilitation. In Proceedings CHI '15. ACM Press,
pp. 4133-4142. DOI=http://dx.doi.org/10.1145/2702123.2702504
Truong K. N., Huang E. M., Abowd G.D., ”CAMP: A Magnetic Poetry Interface for End-User Programming of Capture
Applications for the Home.”, Proceedings of Ubicomp 2004, pp. 143-160
Ur, B., McManus, E., Yong Ho, M.P., and Littman, M.L., 2014. Practical Trigger-Action Programming in the Smart Home.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '14). 803-812.
Ur, B., Yong Ho, M.P., Brawner, S., Lee, J., Mennicken, S., Picard, N., Schulze, D., and Littman, M.L., 2016. Trigger-Action
Programming in the Wild: An Analysis of 200,000 IFTTT Recipes. In Proceedings of the 34rd Annual ACM Conference on
Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 3227–3231. DOI:
http://dx.doi.org/10.1145/2858036.2858556
WEF, World Economic Forum (2018) Internet of Things, Guidelines for Sustainability - REF 310517 - January 2018
http://www3.weforum.org/docs/IoTGuidelinesforSustainability.pdf
Weintrop, D., Afzal A., Salac J., Francis P., Li B., Shepherd D. C., and Franklin D.. 2018. Evaluating CoBlox: A
Comparative Study of Robotics Programming Environments for Adult Novices. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI '18). ACM, New York, NY, USA, Paper 366, 12 pages. DOI:
https://doi.org/10.1145/3173574.3173940
Yarosh, S., and Zave, P., 2017. Locked or Not?: Mental Models of IoT Feature Interaction. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems (CHI '17). ACM, New York, NY, USA, 2993-2997. DOI:
http://dx.doi.org/10.1145/3025453.3025617

