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Abstract

Web3D is most certainly an intriguing world. Its story has changed suddenly with
the advent of WebGL, evolving from a slow and stagnant past to a dynamic and
rapidly-evolving present. 3D data is becoming one of the key digital media on
the Web, with a wide number of solutions specifically designed for publishing and
consuming three-dimensional content online. Unfortunately, this field experimented
a quick and often chaotic growth, presenting nowadays a dichotomy between pure
research-oriented and market-oriented approaches. This has somehow shaped the
directions of Web3D development, creating de-facto standards and solutions tailored
to specific fields, or only focused towards mainstream publishing actions and thus
unable to cope with the needs of more specialized and technical 3D users.

Under these premises, the aim of the thesis has been to investigate the
shortcomings and missing features of Web3D technology, as well as to propose a
solution aimed at filling these empty spots.

We start by presenting an analysis of the state of the art of 3D Web publishing,
surveying the features provided by the major current approaches, useful to
categorize the existing solutions and to cross-map them with the requirements of
the different application domains. Then, in what is the main contribution of the
thesis, we exploit the result of our analysis of the Web3D and discuss the design
and implementation of a flexible platform, aimed at providing an effective
framework for the Web presentation of specialized 3D content. Our solution is
tailored to cope with the needs of a challenging application context, Cultural
Heritage. Therefore it exploits highly-efficient solutions for data transfer and
rendering, intuitive interaction/manipulation paradigms, and features enabling
trans-media elements connections.

To validate the proposed framework, the thesis presents the results of two
specific interactive visualization applications, addressing different Web3D
presentation needs: a first one aimed at a museum dissemination initiative, and a
second one developed to support scientific analysis.

Finally, we also tested the capabilities of our platform for the implementation
of service-oriented applications: a project aimed at providing a service for the easy
publication of complex, technical media types; and a more structured scenario of
multimedia Digital Libraries, proposing a pipeline useful to rationalize and speed-up
the publication of heterogeneous 3D dataset on a multimedia repository.
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Chapter 1

Introduction

Our world is more and more overwhelmed by digital data. Among these information
streams, the presence of 3D data is becoming quite common. Originally confined
in the domain of Computer Graphics (the science of visually communicating via
a computer display and its interaction devices), today 3D datasets are popular in
every scientific discipline that relies on the power of modern computers to improve
knowledge and speed up discoveries. Architecture, biomedical engineering, CAD
design, fabrication, geo-exploration, computer vision, robotics, astrophysics, games
and entertainment industry, cultural heritage, are just few examples of application
fields leveraging on the analysis and processing of geometric 3D data.

However, the intrinsic complexity of 3D has characterized the exploitation of
this informative layer since from its early days, limiting the chances to use it just to
restricted tasks, like the basic visualization or the numerical analysis. Despite the
efforts for going beyond these plain uses were relevant, for a long time a series of
shortcomings (of functional interaction paradigms, or of tailored user interfaces, or
even of smart modes for connecting 3D assets to other digital content), prevented the
evolution of 3D data from a merely specialized support to a completely integrated
content.

Nowadays these well known hurdles are becoming critical once again, since new
trends in democratization of use and sharing of data are pushing 3D towards an
unexplored world, where data management, user interactions, and cross-media
integrations, are open issues still to be solved. Obviously the novel ecosystem we
are talking about is the Web (democratic space “par excellence”), in recent years
subject of renewed attentions concerning the integration of three dimensional
content and the development of resources specifically aimed at this.

This thesis explores this rapidly-expanding environment, called Web3D, and it
is aimed at proposing innovative solutions for the effective publishing of 3D data,
after a careful study and analysis of the current status of the platforms, tools and
libraries for the management of 3D content on the Web.
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1.1 Web3D, Defining the Workspace

Generally, the term Web3D just means the presence of 3D content on the Web.
Starting from this trivial formulation, it could be possible to affirm that every time
a webpage embeds a 3D element, we would identify that as a Web3D implementation
or instance.
However, from its inception, Web3D has become a more specific concept, and at
the same time it has become the name of a community of developers/users, and the
collective name for the wide ecosystem of algorithms, paradigms, libraries, tools,
apps and services that manage 3D content online. When we refer to Web3D, we mean
the higher-level idea of representing 3D models, scenes, animations, and interaction
paradigms as a fully-integrated part of the Web environment. The emphasis goes
on the concept of data integration, and on the strong interconnection between the
3D data and the Web paradigms, standards and base technologies.
Keeping this in mind, it easy to understand why for the purposes of this thesis,
aspects like the possibilities to interconnect a 3D element with the DOM structure
of the HTML page, the capabilities to create hyperlink-based connections between
3D content with other Web media, or the chance to fully exploit the HTTP protocol
for the transmission of a 3D geometry, become predominant features compared to
the simple presence of a 3D data online.

Our vision of Web3D is a context where 3D is not just a geometry that can be
interactively rendered in a dark box on a webpage, but a media that should be fully
integrated with the other existing ones already supported by the Web standards, and
comply with the usual functionalities and methods of a Web publishing environment.
Looking at Web3D from this new perspective, we can get a scenario certainly more
defined, at least in its external boundaries. This, because, by looking at the inside of
this workspace, we may find an indistinguishable continuum of publishing solutions,
heterogeneous and rapidly growing in number. 3D on the Web is nowadays going
through an expansion process, which should establish this data type as one of the key
digital media for the Web. But the Web3D world has not always been so flourishing,
and 3D content had to overcome several hurdles.

In early days, the Web environment was not designed to embed very complex
data; consequently, it was not equipped with the necessary data structures for the
3D media. The lack of standardization resulted to be heavily penalizing for the
first Web3D attempts, creating huge delay in the integration of 3D and the Web
(especially if compared with the situation of other media types). Thus, for a long
time, all the attempts to embed 3D content online only led to ad-hoc solutions,
proprietary components, or external plug-ins, resulting in unsolved issues,
limitations and incompatibility.

More recently, the impressive evolution of hardware, specialized Web software
and network infrastructure capabilities, created the suitable conditions to turn 3D
content into a standard Web media component. These technological advances,
combined with a rising interest by the community for Web 3D applications, led to
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the release of WebGL in 2009. WebGL is the standard API for Computer Graphics
on the Web, whose introduction changed suddenly the status of Web3D by
evolving from a slow and stagnant past to a dynamic and rapidly-evolving present.
Thanks to WebGL, in a very short time-span, Web3D became an important
research area, producing a number of relevant results. The renewed interest for
Wed3D led to an important amount of related literature, proposing valuable
approaches able to touch many applicative domains, but often resulting just in
demonstrators rather than fully qualified solutions. However, it is important to
note that Web3D received instantaneous attention also by software companies,
which perceived it as a quasi-mature market already at the moment of the WebGL
introduction. This generated instantaneous and sizable investments, resulting in a
series of commercial-grade systems and software solutions, that constrain 3D
content in a path very different from the one followed in the past by other kind of
media, for which the Web exploitation followed a trial-and-error approach, with
players of different size and wealth (from underdogs to large corporations). This
market-oriented nature can also be seen in the fact that most of the available tools
and systems do not have a reference scientific publication, even though they
present innovative technical solutions.

Notwithstanding this dichotomy between commercial tools and academic
experiences, the years immediately following the WebGL release saw the sudden
availability of a number of usable systems that somehow shaped the directions of
evolution and development of the Web3D field, creating de-facto standards (in
terms of formats, interface paradigms, features, etc.), and solutions often only
tailored to specific fields or to mainstream publishing actions, so generally unable
to cope with the needs of more specialized and technical 3D data users.

All this has generated a Web3D panorama that, despite the wide variety of
solutions available, at a closer inspection reveals several empty spots: unsolved
issues, uncovered users and neglected fields. The presence of these empty spots has
been the main motivation of this thesis.

1.2 Research Directions

Building a clear picture of the state of the art of the Web3D world is essential for
discovering potential weak points and gaps in current methodologies, to identify
possible open research areas and spaces for improvements. For this reason we
decided to review in depth the status of Web3D systems and technologies, having
in mind two main aims: firstly, to draw a characterization of the network
interconnecting users requirements and available Web3D technologies; secondly, to
derive, from the results of this review, the requirements needed for the design and
the implementation of a software platform addressed to fill the possible empty
spaces individuated in the Web3D panorama.
Therefore, we planned a systematic study of the available modalities for the
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integration, interaction, and use of 3D content offered by the existing Web3D
approaches and solutions, analyzing a heterogeneous set of software solutions as
well as at the state of the art in Web3D literature. In planning this analysis
(presented in detail in Chapter 2), we started from a list of ideal characteristics
and specificities our review should satisfy:

• flexible enough to adapt to the extremely complex panorama resulting from
the rapid growth of systems aimed at 3D Web publishing, in which a neat and
rigid classification approach would be destined to fail;

• representative, in the sense of being able to give an exhaustive overview both
of the software systems worth mentioning and the more remarkable academic
papers concerning Web3D;

• complete, thus able to categorize the full Web3D landscape, going from low-
level to high-level solutions, even though this means to survey and analyze
a collection of contributions inherently heterogeneous composed by libraries,
tools, frameworks, applications, etc;

• multi-layer, thus able to go beyond the classic “layer stack” structure and
organization (where each software layer is built on top of another, and only
vertical communication is possible), which seems to be unable to cope with
the more fluid development of Web applications;

• transversal, in the sense of being able to cross-map the prominent and recurring
Web3D peculiarities with the requirements of different application domains.

The final goal of our analysis is to define a reliable map that, unveiling the
pursued “missing links”, should be able to lead to the technical characteristics
needed to build an optimal Web3D platform, given some application domains
characterized by some degree of communality of scope and requirements.

By exploiting the results of this preliminary study, our next goals were: to
propose a functional approach providing sensible answers to the listed needs; to
design and develop a viable implementation; and, finally, to test this new solution
over some concrete testbeds. Starting with this premise, the implementation of this
platform should pose a strong emphasis on some key aspects, such as:

• efficient approaches for online 3D data representation/delivery ; eventually
obtained adopting Web-oriented geometric data encoding formats and
transmission/rendering approaches specifically designed for Web-based
visualization;

• context-based structural design; eventually obtained adopting development
paradigms oriented to the HTML declarative setup (familiar for developers
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having a background in Web development), and a functional and modular
structure derived from the idea to mimic the philosophy of other predefined
HTML/JavaScript components available on-line (providing Web shaped
event handlers, equipped with sensible default behavior, etc);

• intuitive interaction/manipulation paradigms ; specialized on specific
interaction tasks but at the same time customizable and interchangeable;
possibly based on the exploitation of Web elements, and built to comply with
heterogeneous application contexts and with different technical scenarios;

• trans-media oriented connectivity ; eventually obtained adopting
hyperlink-based integration schemes or others Web friendly components
aimed to create multimedia Web pages interactively displaying 3D models;

• multi-level and multi-target usability ; eventually obtained providing different
configuration levels and modular components able to lead step by step to a
fast and easy integration of 3D models into a Web page, and sufficiently easy-
to-use (for developers without solid knowledge in CG programming), but also
reusable in more complex contexts or in specialized environments.

Therefore, this novel platform should be an effective system, expressly designed for
the on-line environment. It should be tailored on one of those specific niches of
technical users which are still far from the mainstream use of 3D data and do not
have a clear solution available for creating Web3D content.

The development of a solution based on this requirements resulted in the
3DHOP (3D Heritage Online Presenter) system, a Web3D framework aimed at
the interactive visualization of complex 3D dataset. This performing and flexible
solution is presented in depth in Chapter 3.

Finally, to validate our proposal we planned to implement several testbeds,
addressing different needs: firstly, to assess the platform consistency using it as a
tool for Web content creation; secondly, to test the framework flexibility while
using it for the design of complex services.

Concerning the first case, our goal was to contribute to the implementation of
at least two real publishing experiences addressed to different communication aims:
one presenting an example of Web publishing aimed at supporting dissemination in
the framework of museum expositions, and another one developed for supporting
scientific analysis and documentation. These two case-studies, both characterized
by a design tailored on the requirements of the specific dataset (and so ideals to
validate the modularity and the flexibility of our framework), are presented in detail
in Chapter 4.

However, since these validation examples are mostly oriented to test the direct
and static publishing task (i.e. the act of creating a complex visualization context for
a specific 3D dataset), in Chapter 5 we will propose a couple of additional examples
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aimed at exploring also the concept of service-based Web3D publishing. In this
second case our goal was to assess the behavior of our platform firstly on supporting
the easy automatic publication of complex visual assets on the Web (by designing
a a 3D publishing service for “naive” users); and, secondly, on adapting 3DHOP
technology to a digital library scenario, thus contributing to the implementation
of an automated publishing pipeline aimed at rationalizing and speeding up the
publication of large and heterogeneous 3D dataset in a specialized Web repository.



Chapter 2

Web3D as We Know It

The evolution of the technological solutions connected to the Web3D idea has gained
a significant momentum in the last years, mainly driven by the introduction of the
WebGL-factor. The resulting rapid growth of systems aimed at Web3D publishing
is somehow changing the way to approach 3D data online, finally transforming them
from merely specialized contents, used just by a small community of professionals, to
a completely integrated media. On one hand this has contributed to familiarize users
with the presence of 3D on the Web, on the other hand has created an extremely
complex scenario, in which it is difficult to orient.

Nowadays, when we refer to Web3D solutions, we mean a wide group of
approaches (from theoretical to practical endeavors, from low-level to high-level
software, etc.) supporting Web publishing/presentation of interactive 3D content
embedded into an HTML webpage. Considering that the success of a publishing
action is not just related to the single media value, but strongly depends on the
choice of the more suitable among those approaches, it is easy to understand how
relevant is to be fully aware of the Web3D landscape. Moreover, having a clear
picture of the state of the art of this world is also essential in discovering potential
weak points and empty spots, so as to identify open research areas and
opportunities for further work.

In order to cope with these needs, we present here a systematic study of the
modalities of 3D content integration, interaction, and use offered by the existing
Web3D approaches and solutions. Our main goal is to define a schema of the
available possibilities, obtaining a map that, depending on the application field,
could lead through the technical characteristics needed to build an effective Web3D
presentation.

With this motivation we evaluated an heterogeneous set of software solutions
and the state of the art of the literature, selecting and classifying noteworthy
experiences and the more remarkable papers of the last thirty years of Web3D
attempts. Nevertheless, the fluidity of the Web environment makes it difficult to
outline a clear and rigid classification of the Web3D world denizens. To overcome
this issue, we organized our analysis isolating some of the prominent and recurring
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features that are used in the different publishing solutions, grouping them by their
scope and functionality. Then, mapping these characterizing features on the
existing systems we obtained a flexible schema able to present an exhaustive
overview of the 3D Web publishing panorama.

We think that reviewing the existing through this analytical pattern could be
very useful, not only in full understanding Web3D, but also to identify the current
trends (in research and commercial development) and discover open challenges still
to be faced in publishing 3D graphics on the Web.

2.1 Web3D, from Plugins to WebGL

Web and 3D professionals soon realize that 3D could not stay trapped in stand-
alone applications and that opening the Web to 3D data would have had a great
relevance. Already in 1994, a few months after the release of the first multi-media
browser [SH94] able to mix just text and images, Raggett presented his vision for a
platform independent 3D standard for the Web, VRML (Virtual Reality Modeling
Language) [Rag94]. The Web3D denomination emerged immediately after.

Unfortunately, such a prompt start was not followed by the same pace in the
development of practical and consistent solutions, and the path towards an effective
Web3D resulted in a long and winding process. Some major pioneering landmarks
were the Macromedia Flash [Cur00] plug-in (1996), the ancestor of Adobe Flash and
probably the first approach to handle fully interactive multimedia content online;
or the Apple Webkit CANVAS [Hic04] (2004), the first HTML drawing element
controlled by means of JavaScript. Nevertheless, for a long time the Web landscape
has been populated just by a series of proprietary systems, third-party software, and
closed solutions. Not having a common and recognized development standard was
a strong limiting factor for the real use of 3D on the Web.

The release of the WebGL API [Khr09] in 2009 was a major breakthrough,
originating the rapid growth of a new generation of applications based on a common
standard, able to act directly on the rendering pipeline and, above all, supported by
all common Web browsers. Facilitated by the new standard, the proposed Web3D
approaches start to specialize depending on the 3D content, the target users, the
publishing venue typology, the application field, and the planned outcome. In short,
thanks to WebGL, Web3D entered in a new era. But let us start from the beginning.

2.1.1 Early Approaches

The first attempts to publish 3D content online have led to a heterogeneous set of
approaches, often really different from each other. This was mainly due to the lack
of a real standard for 3D graphics on the Web. Actually, two different ISO
standards solutions were available in the early phase: the already mentioned
VRML [Rag94] and the X3D [Web04, BD07]. But unfortunately, since they were



Web3D, from Plugins to WebGL 9

designed basically as file/scene formats, they failed to cope with all the needs of
Web publishing. Moreover they needed additional software to enable visualization
in Web browsers. This last issue was probably the biggest hurdle to success of that
generation of solutions. Those attempts indeed required the design (and use) of
proprietary plugins, inaccessible to independent developers, and poorly integrated
with the remaining webpage elements.

Beside the previously mentioned Adobe Flash [Cur00], the Sun Microsystem
Java Applets [Boe09] probably constitute the earliest plug-in able to integrate
computationally onerous content on the Web. Released in 1995, they are small
applications executed client-side in the Java Virtual Machine, an abstract
computing machine developed for running Java byte-code in a hardware-agnostic
mode. Although the Java Applets probably constitute one of the first attempt to
access the GPU from a Web browser (well before WebGL), they were not
specifically aimed to manage 3D content. A follow up occurring in 1998 was the
release by Sun of Java3D [Sun98], an API expressly designed to simplify the
development of 3D Web applications. Java3D provided high-level constructs to
create and manipulate 3D geometries, supporting both Direct3D and OpenGL.
Java3D has been later discontinued, but, during the years, the effort to embed 3D
content online using Java has been carried on by other libraries, like JOGL (Java
OpenGL) [Jog04] and LWJGL (Lightweight Java Game Library) [LWJ07], known
for being used in the development of the popular Minecraft [Per09] game.

The whole Java ecosystem has ignited and supported the design of interesting
solutions at the beginning of the Web3D era, both concerning academic outcomes
and software results. Just to cite a few of them: RAVE (Resource-Aware
Visualization Environment) [GAW09], an applet designed for collaborative
server-side visualization; COLLAVIZ [DDF+10], a framework for collaborative
data analysis developed using JOGL; ParaViewWeb [JAG11], an applet for remote
3D processing and visualization (later adapted to WebGL); and finally
OSM-3D [Zip10], an interactive 3D viewer for Open Street Map data developed as
an applet.

The Java attempts have been one of the first approaches to support 3D content
publishing online, but not the only ones. Indeed, just a year later Sun released
Applets, Microsoft unveiled ActiveX [Mic96], essentially a framework for
downloading multimedia content from the Web. Developed with a philosophy
similar to Java Applets, it did not use files compiled in byte-code, but dynamically
refers to OS libraries (which share with the browser the same memory space). This
solution makes ActiveX very fast in execution, but causes drawbacks related to
security and OS dependency which hindered a wider adoption of this solution.
Microsoft changed approach in 2007, by releasing Silverlight [Mic07], a client side
API for developing Web applications, this time closer to the Adobe Flash
philosophy. Silverlight is another solution not specifically aimed to 3D, but able to
provide a programmable graphics pipeline and basic 3D transforms, thus resulting
a step forward from the Adobe Flash plug-in, which was not able to access GPU
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functionalities until the release of the Stage 3D [Ado11] add-on.
Conversely to Adobe Flash, the Google O3D Project [Goo09] was designed since

the beginning to support the use of GPU features (either via Direct3D or OpenGL).
Released in 2009 as open-source plug-in for creating interactive 3D applications, this
solution was ported to WebGL just few months after.

Finally, two approaches developed just before WebGL are the Opera Software
plug-in [Joh07] and the Canvas 3D [Moz07] project (with its supporting library
C3DL [Leu08]). These solutions, aimed to create an OpenGL context in the HTML
CANVAS element, have been the real WebGL precursors, later becoming part of
the new standard.

2.1.2 The WebGL Revolution

Anticipated by the aforementioned Canvas3D experiment, WebGL was finally
announced by the Khronos Group in late 2009. Basically, it introduced a new
standard for developing 3D applications on the Web which, in a very short period,
reached an incredible diffusion, revolutionizing the world of Web3D.

WebGL is a royalty-free API fully integrated with the HTML DOM. It is based
on OpenGL ES 2.0 [Khr03], the OpenGL API for embedded system (e.g. mobile or
portable devices, possibly with lower-end computing resources, power consumption
constraints, low bandwidth, reduced memory space, etc.). This makes WebGL
extremely optimized and computationally light, thus ideal for the Web
environment.

The main key advantages of WebGL are:

• to offer cross-browser and cross-platform compatibility. This means that a
WebGL application can run on any platform without the need to re-write
source code or install additional software.

• to be tightly integrated with HTML content. This includes layered
compositing, interaction with other HTML elements, use of the standard
HTML event handling mechanisms, etc.

• to offer a scripting environment that makes it easy to prototype interactive
3D graphics content. This means you don’t need to compile and link before
you can view and debug the rendered graphics.

• to be based on a familiar and widely accepted 3D graphics standard. This
implies several advantages, like for instance the chance to use the GL shading
language for programming the shaders (separate programs compiled at run-
time and executed on the GPU).

• to give access to the GPU programmable pipeline, exploiting
hardware-accelerated 3D graphics in the browser environment.
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Thanks to these features, WebGL was able to checkmate the other 3D Web
publishing approaches, contributing to the rapid extinction of all other solutions
not WebGL-based.

Although it is designed to work strictly in conjunction with Web technologies
(like HTML and JavaScript), WebGL remains a quite low level API, so it is not
easy to master without solid skills in Computer Graphics (CG) and programming.
For this reason, the years immediately after its release have seen the proliferation of
middle-level wrapping libraries, aimed at making easier the use of this new standard.

Among these middleware solutions, one of the first to be released was
SpiderGL [Vis10, DBPGS10, DBGB12], a JavaScript library providing typical
structures and algorithms for real-time rendering. SpiderGL abstracts a lot of
WebGL methods without forcing to use some specific paradigm (such as the scene
graph, a hierarchical structure discussed more in detail in §2.4.2), neither
preventing low-level access to the underlying WebGL graphics layer. Other
mid-level libraries appeared almost simultaneously to SpiderGL were
WebGLU [DeL10] (supporting a set of low-level utilities and a high-level engine for
developing WebGL based applications) and GLGE [Bru10] (provides a declarative
method for programming the 3D scene). Those were followed one year later by
PhiloGL [Bel11] (a framework for data visualization, creative coding and game
development), Lightgl.js [Wal11] (a low level wrapper, abstracts many
code-intensive WebGL functionalities), and KickJS [NJ11] (a game-oriented
engine, abstracts WebGL to make game programming easier).

Simultaneously with those mid-level JavaScript libraries, some focused
solutions were also developed to build a bridge between WebGL and some popular
3D software applications. Among these: Inka3D [Wil11] (an exporter plug-in for
Autodesk Maya [Aut98]), J3D [Dro11] (an utility to export static scenes from
Unity3D [Uni05]), and KriWeb [Mal12] (a Blender [Ble95] exporter written in
Dart).

2.2 Technical Background

The WebGL revolution opened a number of possibilities for using 3D on the Web,
and this impressive potential has been clear right from the beginning. Nevertheless,
while several characteristics of local 3D systems could be easily mapped on Web
solutions, some technical arrangements were needed to handle with the peculiarities
of the remote Web fruition.

In this section, we focus on a couple of main challenges that led the community to
work on basic research in order to provide effective Web3D solutions. They concern:
the dichotomy between declarative and imperative approach while defining an online
3D scene, and the management and the remote visualization of (complex) 3D dataset
over a network. For each of these two challenges, we present a synthetic overview
of the basic research and of seminal experiments that led to the current wide offer
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of solutions, also providing a preliminary outline of Web3D base technicalities.

2.2.1 The Declarative/Imperative Dichotomy

The definition and handling of a 3D scene can be done with several levels of
complexity, and the more complex the scene, the harder it is to provide a structure
that can be easily used by non-experts. This issue is also true for local 3D
rendering, but it poses severe challenges in the case of online 3D content creation
and interaction.

A few years after the WebGL release, Jankowski et al. [JRS+13] presented a
classification matrix that became popular in the academic world, being recalled in
many later works ([JBG11, ERB+14]). Basically the proposed scheme introduced a
parallel between the way to approach 2D and 3D graphics on the Web, classifying
the available techniques into two main groups: declarative and imperative. Even if
both of them allow to create, modify, share, and experience interactive 3D graphics
on the Web, they differ on the basic approach and the target users. Indeed, while
the declarative approach exploit the HTML Document Object Model (DOM) to
provide access to high-level 3D objects (components familiar to the Web developers
community), the imperative one uses scripting languages to offer access to low-
level functionalities of the rendering stage (elements more common among the CG
developers community).

Even though nowadays the distinction among the two approaches is becoming
less and less substantial, the early years of Web3D were strongly marked by this
dichotomy. This contrast was able not only to catalyze the attention of the research
community (like [JRS+13] and similar works demonstrate), but also to influence a
number of design choice which still characterize Web3D solutions.

Among the main causes of this separation there was the strenuous attempt to
lead back CG solutions (and their developers) to the native Web environment
approach, an effort bound to fail in the Web3D environment, a world in rapid
evolution populated by solutions not confined in watertight compartments but
rather inclined to overlap.

However, especially thanks to VRML [Rag94] (that represents a seminal work
for the declarative Web3D approach), the declarative approach becomes dominant
in many solutions between the late ’90s and the early 2000s
(ARCO [PWWS03, WWWC04, WCW06], ShareX3D [JFM+08],
X3DMMS [ZCGC11]). VRML was essentially a logical markup format for
non-proprietary independent platforms which used text fields to describe a simple
3D scene (only content and basic appearance). In 2004 VRML was superseded by
X3D [Web04], in turn an ISO standard. X3D is defined as a royalty-free open
standard and run-time architecture to represent and communicate interactive 3D
scenes and objects using XML. It adds a lot of features to VRML (advanced scene
graph, event handler, data-flow system for nodes interpolation, etc.), but
analogously to VRML, it was designed basically as a file/scene format, and
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therefore it needs an external software (e.g. FreeWRL [Ste98] or
View3dscene [Kam04]) to be visualized in a Web browser.

Despite this evident limitation (and the absence of a continuous support),
many solutions tried the way of the declarative approach in that first years. One of
the first was the Blaxxun Contact plug-in (released in 1995, evolved in BS
Contact [Bit02] in 2002). It is essentially a scalable multi-user server environment
for the VRML developers community. Another pioneering declarative system was
SimVRML [Ric02], that uses VRML for scientific simulations, followed a few later
by other interesting attempts, like: Orbisnap [HUM05], a VRML97 viewer able to
connect with remote servers running Matlab Simulink 3D Animation [MAT02];
Octaga Player [Oct06], a solution to build interactive 3D Web presentations;
Cortona3D [Pac06], a VRML viewer and authoring tool (the last two solutions
were later adapted to WebGL); and, finally, InstantReality [Fra09a], a VRML and
X3D framework providing support for VR and AR.

In order to extend the browser support for X3D,
X3DOM [Fra09b, BEJZ09, BJK+10] was proposed as a plug-in free declarative
system, able to integrate the X3D nodes directly into the DOM content. Defining
an XML name-space and using a special connector component, X3DOM builds a
bridge between the DOM and X3D that allows manipulating the 3D content by
only adding, removing, or changing DOM elements. An approach similar to
X3DOM is the XML3D system [Son10, SKR+10, SSK+13], another plug-in free
high level approach which, instead of embedding an existing framework (X3D) in
the browser context (like X3DOM does), tries to extend HTML maximizing the
use of existing features to embed the 3D content in the Web page. XML3D uses
XHTML and, for intense online data processing (like for instance in [KRS+13]),
relies on Xflow [KSR+12, KSRS13], an “extension” developed to expose system
hardware and allowing data-flow programming.

X3DOM and XML3D have been the last two widespread solutions endorsing a
“pure” declarative approach. Nowadays many of the features indicated as
characterizing in the Jankowski’s matrix mentioned at the beginning of this section
(such as the scene graph construct for the declarative approach, or the WebGL
API for the imperative approach) do not allow anymore to unequivocally classify
existing 3D Web solutions. A brilliant demonstration of this is the
A-Frame [Moz15] case, a solution released in 2015 that merges together a
declarative structure and the famous WebGL supporting library
Three.js [Cab10, Dir13].

Nevertheless, even if nowadays the declarative/imperative dichotomy is gradually
losing meaning, it has been able to shape the development of Web3D over the years,
and a full awareness of it can help to better understand many of the reference pattern
of current 3D Web graphics systems.
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2.2.2 Managing 3D Data Over the Internet

The issues related to the efficient visualization of 3D data over the Internet have
long been both one of the most important research area and a characterizing topic
of Web3D. The difficulties to interactively handling 3D content over a network
mainly arise from these factors: insufficient computational resources (usually due
to client/user side limitations), poor network capabilities (usually due to limited
bandwidth and latency issues), and huge amount of data to process (usually due to
the intrinsic complexity of the 3D content). As reported in the recent surveys of
Shi and Hsu [SH15] and Mwalongo et al. [MKRE16] different approaches and
techniques have been proposed over the time to solve these problems.

Web-based visualization in particular has received growing attention in the last
years, with an increasing number of emerging applications. This success has been
due to its ubiquity across platforms (from desktop computers to mobile devices),
but mostly to the continuous growth of datasets and to the improvements in
enabling technologies, such as server-side rendering infrastructures (via grid or
cloud computing) or client-side rendering techniques (via WebGL and HTML5).
Given the importance of interactivity in visualization, 3D Web publishing
platforms have been mainly based on this latter rendering techniques, able to
perform GPU-accelerated local rendering directly within modern browsers.
Nevertheless, any of these improvements would solve the challenge of efficient
visualization without efficient methods to manage and transfer 3D data between
the server and the client. For that reason, techniques aimed to reduce bandwidth
requirements (like compression and other optimizations, such as progressive
rendering and streaming) have historically been very active research fields. This
section tries to briefly cover some of these methods.

Nowadays all the main systems aimed to Web3D successfully exploit either
layered (discrete sequence of data each of which represents the object at a different
resolution) or multi-resolution (virtually continuous set of data representing an
object at increasing resolutions) data encoding. Layered representation are usually
called Level of Detail (LoD) representations [Lue03].

However, despite technology to performing handle 3D models has been studied
since mid-90’s [Hop96, PS97], decisive progress appeared only in the last decade,
taking also into account the specific Web requirements.

In particular, when works like [LWS+13] start to prove the importance of
balancing visualization latency and performing well in space/time, became clear
the need to use all together technologies like LoD/multi-resolution representations,
progressive data transmissions, and data compression schemes.

One of the first effort in this direction is the work by Gobbetti et al.
[GMR+12], which proposes to transmit 3D models parametrized into a quad-based
multi-resolution format. Lavouè et al. [LCD13, LCD14] suggested to iteratively
simplify 3D meshes encoding their information in a compressed stream, thus
adapting for the Internet the progressive algorithm of Lee et al. [LLD12], enabling



Feature-Based Characterization of Web3D Solutions 15

a low compression ratio with a small decompression time (solution based on the
valence-driven progressive connectivity encoding introduced by Alliez and
Desbrun [AD01]). Limper et al. [LJBA13] overcome the problem of decompression
time/complexity using different quantization levels for the model vertices and
transmitting them using a set of nested GPU-friendly buffers. More recently,
Ponchio and Dellepiane [PD15, PD16] presented a performing multi-resolution
rendering algorithm (parallelizable and scalable to very large models) based
on [CGG+05] and able to combine progressive transmission of view-dependent
representations and efficient geometric compression/decompression. Finally, to
cope with different issues, alternatives directions have been proposed, focusing on
improved data organizations (e.g. generic formats) [LTBF14, SSS14], or different
data types (such as point clouds) [EAB14, Sch15] of streamable 3D content.

The works mentioned in this section do not only represent performance
enhancements, but rather are real turning points for applications fields requiring to
handle online very complex 3D content, where the capability to present data at full
accuracy (without using degraded simplified models) is a major accomplishment.
They have been able to change the recent history of 3D Web publishing, and, since
3D data compression and optimization of data streaming/rendering are still trend
topics in research (the recent stable release of the glTF [Khr15a] asset delivery
format is just a proof of that), surely they will be able also to deeply influence the
next generation of 3D Web publishing solutions.

2.3 Feature-Based Characterization of Web3D

Solutions

Since the WebGL release the resulting Web3D scenario growth in a myriad of
different proposals, diversified depending on content, target, context, and of
course, expected results. In order to define a schema of the available (or required)
features, a categorization of these approaches would be both useful and needed.

2.3.1 Which Categorization of the Existing Solutions?

Chasing a representative categorization of the Web3D landscape, we have surveyed
and analyzed a large set of solutions, starting with simple libraries, moving to
middle-ware solutions, and up to complex applications. The decision to cover
approaches going from low-level to high-level solutions (see Figure 2.1) has allowed
us to cover almost entirely the 3D Web publishing possibilities and needs but, on
the other hand, has returned a collection of contributions inherently
heterogeneous, composed by libraries, tools, frameworks, applications, etc.

Even if the available solutions are characterized by different abstraction levels,
they also reveal several deviations from the more classical level-based
classifications. These contaminations often lead to fuzzy boundaries between the
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Figure 2.1: A representation of the Web3D space reviewed, covering all the space in
between low-level and high-level solutions.

various systems, making hard to reduce them to reference patterns. The idealized
image of a clean “layer stack” application (where each software layer is built on
top of another, and only vertical communication is possible) seems to be unable to
cope with the more fluid development of Web applications. As most of the modern
Web3D system are based on JavaScript, it is really easy to jump over layers, and
interface at different levels to the various software components of the application.
Many of what we would call “application layer” directly interface with the very
bottom WebGL layer for some specific low-level function, but also exploit, at the
same time, multiple “supporting layers”, that may themselves have
cross-dependencies. It is quite common for “WebGL wrapping libraries” to be
designed in this way, that allows to use them as low-level libraries, but also as
basic “load-and-display” applications. This fluid development makes sometimes
difficult to categorize and restrict a software component in a single category, and
the resulting scheme is something more complex than a neat series of software
layers only communicating vertically.

Figure 2.2: The diagram presents a layered representation of the software contributions
used in Web3D implementations, which aims to define a map characterizing connections
and relations among the different solutions.
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The stratification proposed in Figure 2.2 tries to structure and better represent
the scenario introduced in Figure 2.1 enclosing the attempts built over WebGL in
three macro groups (defined not only by looking at the abstraction level of the
solutions, but also considering other key factors, such as their interactions, the
provided capabilities, coding needs, etc.):

LIB/LIB++ = Supporting libraries for the WebGL API (low level, coding is
required). The notation covers the whole low level scenario, starting with
basic libraries that do not provide high-level features, like Lightgl.js [Wal11]
(bare-bone WebGL wrapper, abstracting many code-intensive
functionalities), and gradually arriving up to more complete ones, like Frak
Engine [3D 12b] (library providing features for simplifying the creation of
complex interactive 3D applications), or Three.js [Cab10] (multi-level API
allowing the developer to rely on a wide set of features, such as coding
support utilities, documentation, examples, tutorials, how-tos, etc.);

TOOL/TOOLKIT/FRAMEWORK = Middle-level solutions. To access
WebGL they often use one of the aforementioned libraries; usually provide a
GUI; almost always require a certain degree of coding. May range from
simple tools to complex frameworks. Besides the basic features, they can
provide the developer with higher level functionalities related to the 3D scene
(hot-spot, user interfaces, analytical tools, etc.). Examples:
WebGLStudio [AEB13, Age13] (toolkit to create interactive 3D scenes
directly from the browser); or Clara.io [Exo13, HLL+13] (platform for
modeling, animating, and visualize 3D content online);

APP = Applications at the highest level, where authoring elements are used and
coding is not needed. Typically end-products supporting the online 3D
publishing in the form of Web services. Examples: 3D Wayfinder [3D 12a]
(architectural application offers ways to manage content in 3D floor plans),
or Pinshape [MSY13] (portal and marketplace for 3D printing community).

Although this layered scheme fits very well with a wide range of reviewed cases
(in Figure 2.3, we present just three graphical examples describing some of the cited
software), at a closer analysis, it turns out to be not flexible enough to provide a
complete characterization of all the existing solutions. For instance, it fails to clearly
classify “multi-level” libraries (wrapping libraries providing, at the same time, very
low level and very high level access), or again to correctly identify solutions like
3D publishing standalone suites to download and install (end-products that act like
middle-ware systems but at the same time provide very low level possibilities).

To accomplish our categorization we decided, therefore, to propose a different
point of view: a systematic study on the features supported by the state of the
art solutions, organized in a sub-set of macro-groups. The reason for following a
“per feature” review rather than presenting the domain by listing and describing
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Figure 2.3: Graphic representation of different layering possibilities, adapted to three
real case studies. The diagrams shows the interaction between (from left to right): basic
library (Lightgl.js) and middle level solution (WebGL Studio); basic library (Frak Engine)
and high level application (3D Wayfinder); basic library (Three.js), middle level solution
(Clara.io) and high level application (Pinshape).

all solutions, is also related to the will to promote a transversal analysis over the
possibilities offered by the main approaches. In this way instead of producing a
linear list of libraries/tools/apps, we aim at obtaining a more useful comparison of
different philosophies and methodologies. Moreover, we also think that this decision
may be the most suitable in providing with a full understanding of the breadth and
depth of each contribution developed for publishing 3D content on the Web.

2.3.2 Characterizing and Grouping the Web3D Features

Characterizing the different approaches by their features means, first of all, to
define what are the atomic actions and functionalities needed for publishing and
interacting with 3D content online. To this aim, we have identified a large set of
characterizing features that should be able to satisfactory cover the possibilities
provided, supported or needed by a Web3D solution.

This set turned to be a long list of disparate aspects, including features at
different levels, for both implementation and usage:

• supported data types and associated representation scheme (3D volume,
particle systems, triangle-based, etc.);

• publishing modalities (developers aimed, hybrid node-based, for näıve users,
etc.);

• scene creation and organization tools (hierarchical structures, procedural
definition, geometry instancing, etc.);

• hyperlink-based integration between 3D and other media (text, images, etc.);
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• data encoding and transmission schemes (LoD formats, progressive streaming,
view-dependent refinement, etc.);

• provided object/scene interaction paradigms (inspection vs navigation);

• scene customization possibilities (shaders, materials, lighting maps, etc.);

• supported input/output modalities (touch-based, gesture-based, WebVR,
etc.);

• data pre-processing possibilities (client-side vs server-side);

• informative scene enrichment tools (annotations, hot-spots, etc.);

• supported publication aims (pure visualization vs digital content creation);

• data IPR management modes (watermarking, grant permission, access
passwords, etc.);

• scene-level interaction elements (toolbars, 2D maps, view-cube, etc.);

• annotation/hot-spot authoring tools (policies for implementation and use; pro
e cons);

• scene animations support (camera animations vs model animations);

• supported publishing experience (specialized analytical tools, distintive
interaction paradigms, community aimed features, etc.);

• data hosting costs (disk space footprint, payment fees, freemium plans, etc.);

• data storage and access protection (data encryption, data center secure
location, threat prevention, etc.);

• distribution terms and costs (open-source, freemium, commercial, etc.).

Given the variety of features, instead of building a hard-to-read (and full of
foot-notes) table, we decided to structure the discussion of the following sections by
grouping the features in few sensible macro-groups, related to their scope and usage.
This harmonization process defined the following five groups (also schematized in
Figure 2.4):

DATA LEVEL = functionalities related to the 3D data handling, ranging from
the transferring schemes to the rendering modalities adopted to efficiently port
and represent the 3D models. This level also introduces higher-level policies
for data management ;
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SCENE LEVEL = functionalities needed to define a structured scene (as a
composition of a number of basic 3D components) and to personalize it
(modifying for instance the shading techniques). This level includes the
possibilities to manage the interaction between those components (like in the
case of scene animations);

INTERACTION LEVEL = functionalities concerning the interaction of the
final user with the represented 3D scene/object. This level introduces also
the interfaces and the elements required to drive specific input devices and
advanced output modalities (like in the WebVR case);

INTEGRATION LEVEL = functionalities implemented to provide a full
integration between the 3D content and the other multimedia content
present in a webpage. This level investigates all the linking and embedding
capabilities, ranging from annotation tools to hot-spot definitions;

PUBLICATION LEVEL = publishing functionalities analyzed at the higher
abstraction level. This includes the more general concepts of publishing
target, intended as modality of publication provided (node-based,
coding-aimed, etc.), type of publishing promoted (assisted, collaborative,
etc.), or class of experience supported (directed to analysis, community
oriented, etc.).

Figure 2.4: A graphic representation of the five macro-classes of features defined. The
scheme proposed covers the whole ecosystem of Web3D solutions, ranging from low level
to higher level functionalities.

Obviously, each of these groups cannot be considered an absolutely isolated
container. As expected, also in this case the boundaries of these groups are fuzzy,
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and many of the discussed features often exist only if strictly correlated with
characteristics listed in a different group of features. At the same time, some other
features could be spanning across more than one single group. But, in the end,
this simple schema, considering five areas commonly shared by almost all the
Web3D solutions we analyzed, proved to be an effective way to analyze the whole
landscape of of the published 3D content online.

2.4 Analysis of the Features

In the previous sections we introduced a per-feature presentation and
categorization approach. After listed a potential set of features, we established five
macro-groups, to better organize the discussion. The following sections will thus
be aimed at discussing each of these macro-groups, detailing each feature and
providing relevant example of how the same capability/issue has been addressed
by the different existing Web3D solution.

2.4.1 Data Handling

To discuss the Web3D publishing features we follow a logical order, starting from
the innermost component of the Web3D tools and services, which is the data level.
Analyzing this level we will touch both low-level features (data representation types,
rendering techniques, transferring schemes, pre-processing optimizations, etc.) and
higher-level functionalities (storage policies, IPR protection, etc.).

Studying the Web3D context, the first thing that catches the eye is the difficulty
to manage inherently complex data in a computationally poor environment, such as
the Web. Over the time, this issue has led to systems tailored to the specificity of
the data to be managed, proving that the data involved in the publishing process,
and the related design choices, play a central role in characterizing each Web3D
solution.

While approaching Web3D publishing, content creators face a preliminary basic
characterization, strongly dependent on data types and representation
schemes . Indeed, the visualization of different dataset would require different
representation and rendering techniques, influencing also the choice of the proper
publishing channel.

For instance, volume visualization (very popular in medical applications, but
also in geographic and meteorological visualizations) often relies on volume
ray-marching rendering algorithms, i.e. GPU-based techniques that use textures
for data storage (MEDX3DOM [Con12] and X Toolkit [HRA+14, XTK12] are two
examples of medical solutions adopting this rendering approach). If, conversely,
the aim is to visualize a particle system, it would be preferable to use the
ray-casting technique (another GPU-based technique, that defines objects using
implicit primitives, and then generates their surface by computing ray-object
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intersections). Examples that fruitfully exploit this approach can be found in the
biomedicine/molecular visualization domain, where atoms are approximated with
spheres and center/radius of these spheres are the parameters to send to GPU
(examples include the systems by Mwalongo et al. [MKB+15] and Chandler et
al. [COJ15]).

Even though data-specific rendering techniques are frequent, recent advances in
Web technologies (once again, JavaScript improvements and WebGL availability)
have made the triangle-based approach more and more efficient, making it the most
widely used approach, not only when “classical” mesh-based 3D models are involved,
but also extending this representation to the visualization of other types of data:
geospatial maps [JvL16], city models [GVB+15], marine data [RWW14], and many
others, including the very same volumetric 3D datasets [HKBR+14] and the particle
systems [RH15] previously mentioned.

However, despite the increase in performances due to the adoption of
GPU-enabled rendering solutions, the efficiency of the rendering system remains
tightly coupled with the intrinsic characteristics and granularity of the data, thus
maintaining relevant the importance of a keen choice of the data representation
and rendering strategy.

Strongly related to the adopted rendering techniques, data encoding and
transmission approaches induce another basic characterization of the Web3D
systems. As already stated in §2.2.2, an efficient data handling is fundamental for
interactive Web visualization, mainly because, without a performing data transfer,
low bandwidth and latency issues can lead to long waiting times until data is
available to the browser.

As we have discussed, a number of algorithms have been formalized specifically to
face this bottleneck, mostly proposing transfer formats able to support a progressive
streaming of simplified versions of the handled 3D geometry, such us P3DW (derived
from [LCD13, LCD14]), or SRC (derived from [LTBF14] and used in [Fra09a]).

Some of those representation schemes also provide additional features for LoD
or multi-resolution encodings for progressive rendering. They may include network-
oriented compression and decompression algorithms, that ensure efficient decoding
and rendering rather than only optimizing the compression ratio, like it happens
in the WebGL-loader [Goo11c, Chu12], a solution developed in the context of the
Google Body project [BCK+11] (based on UTF-8 coding, delta prediction and GZIP,
produces compression ratio of around 5 bytes/triangle for encoding coordinates,
connectivity and normals). Other optimizations related to progressive rendering
techniques concerns the refinement criteria: they may be view dependent (refine
the geometry resolution depending on dynamic camera specifications) or based on
the system rendering load (provide a high resolution representation for more static
visualizations, and a lower resolution for more demanding computational conditions,
as in the example presented in Figure 2.5).

Nowadays, almost all the main Web 3D viewers adopt LoD/multi-resolution
representation schemes (often developing proprietary transfer formats).
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Figure 2.5: Example of selective LoD rendering driven by animations or user interactions
in the ThreeKit [Hou15] viewer (an online 3D configurator based on discrete layered
models, built on the top of the Clara.io viewer introduced in §2.3.1). Whenever the
final user starts to interact with the model the system switches from a higher (left) to a
lower (right) resolution representation, to keep pace with the more frequent image refresh
rate required by the interactive session.

Nevertheless, for specific cases where the original coherence/precision of the 3D
data is more important than minimizing the download times, or when the kind of
primitives are difficult to simplify, single-resolution representation are still
adopted. An example is Autodesk Tinkercad [Aut11] (a browser-based 3D design
and modeling tool oriented to 3D printing), as well as most of the Computer-Aided
Design (CAD) solutions. Consequently, those system expose the final user to
considerable data transmission times in spite of a solid precision of the downloaded
3D data.

Another justification for using a single-resolution approach is that the conversion
of a model to a LoD/multi-resolution scheme is usually a bit complex in time, and
thus improper to be done on the fly in the case in which we are dynamically changing
the base mesh (such as in a modeling session of a CAD tool).

Indeed, the main drawback with LoD/multi-resolution approaches is that they
require heavy 3D data pre-processing before the Web publishing. Data pre-
processing, however, is often necessary for highly specialized viewers (like the ones
mentioned at the beginning of the section), which, relying on highly optimized and
custom-tailored rendering, generally require converting data to specific, optimized
formats. This step can be performed locally on the client device or, rather, remotely
(usually performed by the server that hosts the Web3D publishing service). Both
approaches have pros and cons.

In client-side conversion the data optimization is performed on the client, thus
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the content creator needs to download and run additional software for converting
the 3D data into a layered or multi-resolution format. Converting the data on the
data-owner device prevents to upload online the often huge single-resolution 3D
model (usually, the progressive encoding is compressed and, thus, the final encoding
is much smaller than the original data file).

In the server-side case instead the data conversion process is run on the server: it
is just required to upload the data file and no clues on the data conversion process are
provided. The pro is that content creators should not be aware of the technicalities,
should not bother ensuring availability of the required resources (memory space or
processing power) and do not have to install the required software tools for data
conversion. Therefore, this approach increases the perceived degree of automation
of the Web publishing process.

For those motivations this latter option is typically preferred to the first one by
end-products supporting the online 3D publishing in the form of one-click
publishing services. An representative example of solution adopting this approach
is the Sketchfab platform [Ske14] for community sharing of 3D model, that
converts data to a rendering-optimized and compressed representation. However,
especially if uncontrolled and undocumented (like often it is in commercial
systems), data conversion can somehow affects data integrity. This may be
perceived as a quality degradation or even represent an issue by some specialized
applications field (such as medical diagnostics data visualization and analysis).

The migration of 3D data towards Web friendly representation formats
(simplified and/or compressed) is fundamental when storage and data transmission
requirements are critical issues (as it is the case of service-oriented platforms). So,
also considering the peculiarities of 3D data, the cost of models online
(intended as disk space footprint) can easily become a relevant discriminant in the
choice of the most appropriate publishing approach. Usually, commercial Web3D
platforms that offer publishing space to share 3D creations, propose to their
customers freemium or payment plans diversified on the required storage space or
the provided rendering quality (e.g. PlayCanvas [EEKI+11], a game engine for
creating, publishing, and sharing on the Web interactive 3D applications).
Disk-space and bandwidth efficiencies remain a central issue also when working
with open source solutions (which usually let the developer embed in its webpage
the 3D viewer for free), since also in this case the server storage and bandwidth
resources are usually outsourced to an external fee-based service.

The policies adopted for 3D data encoding have a potential impact over
another important Web3D feature, the IPR management issue. Indeed,
exploiting LoD/multi-resolution and view-dependent techniques may represent not
only an advantage in term of performances, but also a sort of implicit data
protection. Since with these approaches the full 3D model is never sent for
rendering in its entirety (in fact Web3D systems send to the client only model
chunks customized over the current view specifications), the fraudulent copy of
original data would need more advanced methods (reverse engineering techniques).
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But when LoD/multi-resolution is not needed and the 3D object used has a
“plain” geometry, then IPR protection becomes a problem. This crucial point,
common to all the media-hosting services, in recent years has also become relevant
in the Web3D world, driven by the explosion of sharing platform for 3D printing
(Thingiverse [SP11], Shapeways [Sha13], Threeding [Thr13],
MyMiniFactory [MyM13], etc.). IPR protection of online 3D data is a hot topic for
Web3D, 3D watermarking can be a (partial?) solution, but anyway the current
approaches to build a defense are often based on set of progressive barriers. Many
solutions try to protect the uploaded content from unauthorized replication (by
other users), for example giving the opportunity to make published material
private (non indexed, or accessible only through temporary links) or
not-downloadable. In some cases the adoption of proprietary file formats
(preferably LoD/multi-resolution, as we have seen), or the use of
password-protection for every model, can add additional security to the
management of the uploaded 3D content. The ShareMy3D [AH15] platform for
publishing (and storing) 3D meshes online is an example of system offering all
these features (although only for paying users).

The characterization of the security policies of the Web3D approaches should
also take in account the more general and higher level data storage and access
protection (i.e. related to the cloud servers used). Nowadays these infrastructure
should be compliant with specific ISO Standards for Information Management
Security (ISO/IEC 27001), able to ensure a number of security mechanisms,
including the physic data centers secure locations (perimeter fencing, patrolled
security guards, biometric entry authentication, laser beam intrusion detection,
etc.), data encryption (automatic encryption under a 256-bit Advanced Encryption
Standard, regularly rotated set of master keys, etc.), and the threat prevention
(uninterruptible power and backup systems, fire/flood detection and prevention,
etc.).

2.4.2 Scene Setup

In the previous section we analyzed the core features of the 3D data management.
But that what is presented to the user is often not just a single 3D model, but a
more complex set of entities. Consequently, most 3D viewers rely on the concept of
3D scene. A scene is, basically, a “container” defined in three-dimensional space,
used by the 3D application to arrange all the entities that are needed to represent,
manage, display and interact with a three-dimensional environment. To this
extent, it may be considered the atomic unit of a 3D publishing project. A scene
contains one or more 3D entities (mesh models, but also particle systems,
impostors, volumetric data), arranged in a reference space, plus all their related
assets (textures, materials, shaders, animations), but also contains all the entities
used to compute their appearance (such as lights), one or more cameras (the point
of view of the user), and all the other 2D and non-dimensional entities used for
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interaction and rendering.
This section presents the 3D scene setup possibilities provided by the various

Web3D approaches, including scene appearance (color, reflectivity, transparency,
etc.), logical and spatial organizational structures, composition customizations, etc.

Many applications require the 3D scene to be organized into some kind of
hierarchal structure , which is used to organize the different elements of the
scene following a spatial or logical arrangement.

Scene graphs are the most popular among this kind of structures: they organize
the scene as a complex graph that includes all the elements of the scene as a set
of nodes, possibly resembling an identifiable rooted tree. Scene graphs approaches
are frequently used in 3D rendering engines, and are generally based on a logical,
rather than spatial arrangement of the data nodes. Many scene graphs also provide
geometry instancing : a system in which the scene graph nodes represent entities
or objects in the scene, that refer to a single copy of the data (made up of a 3D
mesh, textures, materials, etc.) kept in memory just once. This allows to reduce
memory budget and to increase rendering speed, but also to organize and manage the
handling of physic interactions, collisions detection and large scale animations. For
these reasons, scene graphs are particularly useful to manage increasingly complex
3D scenes, for instance, those of modern 3D games.

Although there exists specific libraries (e.g. OSGJS [Pin11]) developed to port
scene graph concept in WebGL, nowadays many Web3D approaches are based on
proprietary inbuilt scene graph managers. This tendency follows the same idea
expressed in the previous section, of tailoring the data management to the specific
characteristics of the target data and the specific application, sacrificing generality
for more efficiency. Examples of solutions adopting this approach are:
SceneJS [Kay10], an open-source low-level scene graph based engine for 3D
visualization; or, at a higher level, the already mentioned Unity3D [Uni05] engine
(a freemium multi-platform authoring tool, initially designed for 3D games but
currently used for generic purpose interactive 3D creations and installations).

However, scene graphs are not the only strategy followed in the Web3D
environment and, in some specific situations, these logical-hierarchal structures
may also complicate the content creator life, for instance, enforcing a higher level
of hierarchy, when a much finer, or spatially-aware level of control over the
execution flow is instead needed. Therefore, some solutions, such as the already
introduced Lightgl.js [Wal11] or Stackgl [Sta15] (a WebGL software ecosystem
inspired to the Unix philosophy), do not explicitly provide a scene graph, and leave
to the content creator the freedom to built it on top of a basic functionalities layer
(just like the previously mentioned WebGLStudio [Age13] system does, featuring
scene graphs despite being based on Lightgl.js).

A frequent alternative to the support of the scene graph concept is to enable
the procedural definition of the 3D scene. This approach exposes several
fundamental components, then combined in a procedural way to form more
complex entities. Solutions adopting this composition scheme (which also includes
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a geometry instancing system), propose a more flexible way for creating
content-rich scenes and representing 3D objects, offering a performance-wise data
structure that can be effectively used in applied research or algorithm prototyping.
An excellent example of this kind of approach are those systems in which the goal
is not to present a large 3D scene, but rather to find a way to visualize efficiently
very complex 3D datasets, such as the Potree system [Sch13], an open-source
viewer for large point clouds, that uses multi-resolution octree-based algorithms for
displaying at interactive rates enormous unprocessed 3D point clouds.

A structured 3D scene can also include the definition of the visual
representation appearance of its 3D content and, in some cases, it may also
allow for a complete run-time control of the rendering appearance at object or
scene level. It may be argued that, in some contexts, the appearance (material,
texture, shader) should be considered part of the 3D model data. However, more
often than not, in Web3D applications the shaders, materials and textures are
assets that are associated to the 3D model only at the level of the scene, and
mostly at publishing time; moreover, the possibility of changing in real-time the
rendering appearance of the scene elements is certainly a scene-level functionality.
This “soft” link between 3D data and appearance certainly derives from the nature
of the WebGL rendering pipeline, that is completely based on shaders.

To customize the 3D scene visual representation appearance involves the ability
of a Web3D solution to modify the GPU rendering pipeline, personalizing the
adopted shaders, materials (mapping enhancements that allows for objects to
simulate different types of realistic materials), and lighting maps (techniques used
to create various rendering effects defining different types of light sources).

For a Web publishing software, the more this rendering stage is
programmable/configurable, the more it is easier to achieve complex visual effects,
at the cost of requiring a much deeper knowledge of rendering concepts from the
the content creator (shifting the bar from Web programming to CG programming
expertise).

Some Web3D solutions provide a complete set of customizable parameters,
comparable in all and for all to the classics stand-alone 3D creation suites.
BabylonJS [CR13], a relatively new open source JavaScript/TypeScript 3D engine
oriented to game design, is a good example of those. It allows developers to fully
personalize the rendering/shading process by creating custom shaders, materials,
and lighting; providing explicit features to set: diffuse, ambient and specular
lightning; opacity, reflection, mirror, emissive, specular, bump, and lightmap
textures; unlimited lights (points, directionals, spots, hemispherics); Fresnel term
for diffuse, opacity, emissive and reflection; etc.

In this kind of solutions, usually the set up of the 3D scene appearance is
defined simultaneously with the geometrical scene definition. Some other Web3D
applications also provide the possibility to change the initial settings in real-time
during the visualization, using external variables or textures for modifying the
algorithms defined in the shaders. Obviously, in this case the set of actions allowed
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to the final user is considerably smaller than in the previous case.
The already mentioned Sketchfab [Ske14] publishing platform, offers the

possibility to choose between few predefined shading methods, each one with a
series of customizable parameters. The content creator, at upload time, beside
configuring the optimal shading method for its 3D model, may also choose which
method and parameters will be available to the content consumers, when exploring
the scene/object.

Conversely, the Smithsonian X3D [Smi11] viewer (developed by Autodesk for
this cultural institution), has a single shading pipeline but offers to the final user
a lot of real-time editable shading parameters, material properties, and the control
over multiple lights position and color.

Figure 2.6: Four rendering possibilities provided by Autodesk ReMake [Aut15] (in
clockwise order starting from the upper left): textured, solid, wireframe, and X-Ray mode.
Interacting with the viewer controls the final user can select in real time to visualize one
of these options.

ReMake [Aut15] (again by Autodesk), an end-to-end solution for creating
(offline) and publishing (online) 3D scenes, provides a single shading method, and
only offers the chance to switch on the fly between a predefined set of rendering
modes (see Figure 2.6).

As said above, a 3D scene also contains the specifications of a viewpoint or
camera. This element is not only important for rendering the scene, but also to
specify others characterizing features, such as camera animations . Camera
animations may be: simple predefined views; smooth view interpolation between
predefined positions; or pre-computed camera paths. Even if this kind of
animations seem to be relatively simple (when compared with complex or large



Analysis of the Features 29

scale animations of the 3D scene objects), they result extremely useful to
transform a simple 3D viewer in an effective publishing tool. Thanks to their
simplicity and high effectiveness, they are available in many systems. The
availability of this feature allows the creation of bookmarked views or Points Of
Interest (POI) inside the 3D scene. These predefined views can be linked to other
Web media/components outside the canvas element, or also interconnected in a
smooth, animated, and immersive view path inside the 3D scene: the
Archilogic [Arc14] platform (focused on 3D architecture and interior design)
provides a functional implementation of this kind of guided presentation.

Of course, cameras are not the only animation that is available as an asset in
a 3D scene, and the more complete platforms (particularly the ones oriented to
gaming) provide to the users features to animate all the elements in the scene.
An exhaustive review of animations possibilities on the Web is presented in the
recent work by Ahire et al. [AEB15]. However, for the sake of conciseness, the main
approaches to 3D online publishing (such as the Sketchfab [Ske14] platform) support
just these animation modalities:

• skeleton-based : the skinned 3D surface of the model is connected to an
animated multi-joint structure, generally used for character animations;

• rigid : animate model translation, rotation and scale, generally used for
mechanical animations;

• morph to target : morph shapes from one state to another, generally used for
facial animation.

The availability of camera and objects animations is a fundamental requirement
while evaluating different Web3D solutions, because by means of these features the
content creator can cross the borders of the 3D rendering container, introducing
elements of digital storytelling and moving the published content towards an
interactive and integrated experience. The “Experience Curiosity” [NAS15] (a 3D
online serious game shown in Figure 2.7) is a brilliant and simple storytelling
example achieved combining together camera and 3D model animations; developed
by NASA’s Jet Propulsion Laboratory using the Blend4Web [Tri14] publishing
solution; it was presented at the WebGL session at SIGGRAPH 2015 [Khr15b].

2.4.3 User Interaction

Strongly connected to the scene, the interaction level is one of the most
characteristic features of a Web3D solution. While the features at this level may
be tailored to specific types of 3D data/content/application, we can envision, also
in this case, some common elements and some characterizing features. User
interaction in a Web3D solution happens at different levels: it includes features
supporting interaction paradigms that works at object or scene level (trackballs,
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Figure 2.7: The interactive 3D Web application developed by NASA exclusively using
open-source software (including the commercially licensed Blend4Web [Tri14]). This
application was released in 2015 to celebrate the 3rd anniversary of Curiosity rover landing
on Mars. The final user can control both the rover and the camera, driving the rover across
the bookmarked views placed on the virtual scene (marker number 3 in Figure).

first person controllers, manipulators, etc.), but it is also present as interface
elements focused to the interaction between the webpage and the 3D layer
(toolbars, hypertext-based functions, etc.), or it even may concern the interaction
of the Web3D environment with novel technologies and input/output devices
(touch surfaces, VR devices, gyro sensors, etc.).

Interaction with 3D Content

In the last two decades, several research groups have studied an effective
interaction with 3D objects or scenes [Han97, BKLP01, BKLP04, JH13, JH15],
leading to design approaches able to cover most of the relevant combinations of
data and workfields. Nowadays many of these interaction approaches have been
transposed online, implemented in the various available Web3D solutions.

The interaction in a 3D environment can be characterized in terms of universal
interaction tasks : the process of getting around a virtual environment is one of these.
In the variety of existing interaction paradigms deriving from this task, exploration
approaches addressed to general movements are the most exploited. In particular,
two main exploration techniques are widely supported in 3D Web systems:

• the interactive inspection (rotate/pan/zoom), where the user interaction moves
the object/scene in front of the camera;
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• the interactive navigation (walking/driving/flying), where the user moves the
camera through the scene.

This dichotomy is often called World In Hand (WIH) vs Camera In Hand
(CIH) [WO90, GCPDB14].

Interactive inspection. Rotating, panning and zooming are the basic view
movements, used in almost every 3D software. These operations, applicable at the
object level and at the scene level are also extremely common in the Web3D world
because, being easy to map them to two-dimensional operations, they work well
with common pointing devices (such as a mouse). This paradigm generally
implements the concept of a virtual sphere containing the object to be
manipulated, also known as trackball, a seminal technique designed for moving
around 3D objects (based on the Chen et al. [CMS88] Virtual Sphere and
Shoemake [Sho92] ArcBall).

This interaction method is perfect for solutions aimed at the inspection of a single
object, or of simple scenes (like in the case of the viewer developed by the University
College London for the 3D Petrie Museum [Uni09] project), where the object/scene
can be fully explored with the camera from the outside, looking towards a center of
interest.

On top of this basic behavior, it is possible to implement more sophisticated
and customized interactive inspection modes, maybe directly related to the
characteristics of the object to be inspected, or to the application field. The 3D
Web viewer developed, for instance, in the Visionary Cross
Project [Vis15a, LCD+15] (an international cross-disciplinary project aimed to
exploit recent developments in the Digital Humanities to study of a key group of
Anglo-Saxon texts and monuments), adopts a specific trackball that allows to
inspect the elongated object present on the virtual scene only through constrained
panning movements.

However, despite most systems do provide an interpretation of the virtual
sphere/trackball, a standardization of its components and behavior is still missing.
In fact, moving from one 3D enabled application to another, usually the behavior
of the virtual sphere doesn’t remain concordant, and small details (such as
keys/buttons mapping or inertia) are often different.

Interactive navigation. On the other hand, when the scene or the 3D models
represent a 3D environment, it may be useful to let the camera viewpoint travel
inside the scene, to bring its point of view in relevant and natural positions.
Therefore, the other common approach for allowing final users to navigate a 3D
environment is the walking/driving/flying paradigm.

One interpretation of this approach, directly derived from the video game
development world, corresponds to the First Person Perspective (FPP) navigation,
where the view position of the player is usually controlled with arrow keys (for this
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reason, also known as WASD paradigm) and the view direction is controlled with
the mouse. Implemented by all the game-oriented Web3D solutions (like the
previously introduced PlayCanvas [EEKI+11]), despite being versatile and
powerful, it requires multiple simultaneous inputs, and it is often deemed too
complex for some classes of final users.

Considering that these interaction paradigms are highly specialized on the
handled dataset and on the experience that the publication wants to convey, since
the Web3D beginning multiple options have been provided by the various
solutions. As an example, VRML [Rag94] already provided the possibility to set
the navigation node (the element containing informations describing the physical
characteristics of the viewer’s avatar and viewing model) with at least four
different types of user interactions: “WALK” (interactive navigation with gravity),
“EXAMINE” (interactive inspection), “FLY” (interactive navigation without
gravity), and “NONE” (interactions disabled, system in guided tour mode).

Interactive inspection and navigation modalities are widely distributed because
of their effectiveness for general cases, but many other more specialized paradigms
are available on the Web. For example, 3D maps softwares, like the popular
Google Earth [Goo11a] application, usually provide POI logarithmic movement (a
targeted interaction for smooth shifting, also known as Go-To/Fly-To), while CAD
systems and 3D editing softwares (like WebGLStudio [Age13]) generally use
specified coordinates (x, y, z points supplied by the user via dialog boxes, or other
kinds of 2D interface) both for positions and orientations displacement.

Specific coordinate movements are also the base for the selection and
manipulation task, interaction technique different from the approaches presented
so far, consisting in choosing an object and specifying its position, orientation, and
scale through explicit and direct translation, rotation, and scaling tools, called
manipulators [Bie87, NO87, CSH+92, SC92]. Especially used during scene
construction in 3D modeling softwares (like Autodesk Maya [Aut98]) and game
development environments (like Unity3D [Uni05]), this paradigm results very
efficient in designing 3D scene with multiple objects, in which users have to
repeatedly realign and adjust different parts. Nowadays the implementation of this
manipulation technique almost always relies on visible graphic representations of
the operations on (or the state of) an object displayed with the 3D model and able
to control it via graphic interactions [SIS02].

The interaction with 3D content may also happen on another level, i.e.
characterizing the system through the application/system control task, which
describe the interactions in a virtual environment in term of communication
between a user and a system, which is not part of the virtual environment. This
technique, widely exploited in 2D “point-and-click” WIMP (Windows, Icons,
Menus, Pointer) graphical user interfaces, has been adapted also in 3D
applications, where control interface components are placed in a conventional 2D
interface presented in screen space on a 2D plane called HUD (Head-Up Display).
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This WIMP application control approach splits the interface into two parts with
very different interaction metaphors, since the navigation and manipulation
functionality is accessible through the 3D scene while the rest of the environment
controls can only be interacted through the screen space interface overlaying, or
side-by-side with, the 3D scene.

The online game World of Warcraft [Bli04] represents a successful example of this
interaction approach, interesting also because the implementation follows the design
concept described as “layered approach to learning” [Shn83], in which, to overcome
the usability issue and optimize the learning curve, at the beginning of the game
the interface is quite simple, but it acquires more functionality and elements as the
players gain experience.

Indeed, if on one hand the availability of all these possibilities is a resource, on the
other hand it also makes steeper the learning curve for more näıve users, which often
find it difficult to manipulate and interact with 3D environments. Quite often, this
is the result of a non properly designed user interface, unable to efficiently associate
these paradigms and the represented scene, or unable to conform the interaction to
what is expected in the publishing target ecosystem.

Web-Based Interfaces

In an ideal world, the selection of the best interaction mode should be tightly
connected with the handled 3D content and with the publishing purpose. But in a
Web3D system, it should be also tailored with the Web characteristics, possibly
adopting techniques that are optimal for the hypertext-based Web interface.

From a research point of view and focusing on the more recent years,
Jankowski probably has been the most active in trying to bring together hypertext
technology and interactive 3D graphics. He aimed at clarifying some of the
foundations of 3D Web user interface design [Jan11], focusing on an understanding
of the fundamental tasks users may be engaged in while interacting with
Web-based 3D virtual environments, and then introducing his interface
management approach. His work proposes a Dual-Mode User
Interface [JD12a, JD12b] that follows the usual hypertext-based interactions mode,
with the 3D scene embedded in the hypertext, but also exploits an immersive 3D
mode, which moves the hypertextual references directly into the 3D scene.

Indeed, although hypertext-based Web interfaces are optimal in linking
together Web and 3D (implementing a step towards the essential integration
between 3D and other media, as we will see in §2.4.4), in some situation they may
not be enough in providing a full interaction with the 3D scene. In these cases
toolbars and other clickable graphical commands/elements/buttons immersed in
the virtual scene (or, as we have already seen, superimposed in screen space), are a
practical solution. This is nowadays provided by a large number of systems:
Autodesk Tinkercad [Aut11], Clara.io [Exo13], Archilogic [Arc14], etc. They
usually make available a set of actions aimed to help interactions with the 3D
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scene, orienting the final user in using the adopted exploration paradigm (without
preventing to jointly exploit the hypertextual approach).

Two representative examples of this class of additional elements enabling an
improved interaction are: the overview-plus-detail components (allow to
simultaneous display an overview and a detailed view of an informative space); and
the orientation widgets (help to address the problem of disorientation, especially in
WIH interfaces). Both of them are supported and exploited in a good number of
Web3D solutions.

2D MiniMaps are a good example of the first group of overview-plus-detail
elements. Often superimposed in a corner of 3D viewers addressed to interactive
visualization of planar dataset (terrains, floor plans, geographical systems, etc.),
these alternative media support easier transitions between different locations of
interests, providing an improved self-localization of the final user in the
represented space (see the Potree [Sch13] example in Figure 2.8).

Figure 2.8: The Potree [Sch13] basic viewer showing a running example of 2D MiniMaps
(in the top left corner of the image). This additional interface element is useful to
georeference the 3D model, but also to provide a visual feedback of the camera (represented
by the triangle shape in the map) position and orientation into the virtual space. MiniMap
elements refresh their position every time final user interacts with the 3D scene.

A proper representative for the orientation widgets could instead be the 3D
ViewCube element. Introduced by Khan et al. [KMF+08], this cube-shaped
component is both an orientation indicator and controller generally placed in a
corner of the scene window; the Smithsonian X3D [Smi11] is an example of 3D
Web viewer using this interface component (see Figure 2.9).

Additional interface elements like these, can be also exploited by Web3D
solutions to develop and provide specialized features aimed to specific application
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Figure 2.9: Smithsonian X3D [Smi11] is an example of 3D Web viewer using the
ViewCube interface component (in this case presented at the top right corner of the 3D
rendering window). The 3D cube widget rotates synchronously with the 3D model; it has
the primary purpose to provide the final user with a feedback on the orientation of the
3D scene. The component can be used also to directly drive the scene interactions (by
rotating the 3D cube the final user applies a corresponding rotation to the 3D scene).

domains, some of which often requires more technical or analytical presentation
tools. A system designed to present Cultural Heritage (CH) 3D artifacts, for
instance, usually need features able to support annotations and metadata (like the
Aton [Vir15] front-end software has), or even technical measurements and
visualization of sections, like the ones provided by the aforementioned Smithsonian
X3D [Smi11] platform. A solution addressed to handle 3D chemical structures
instead, possibly should provide tools for visualize vibrations, orbitals, schematic
shapes, and symmetry operations, as well features for assisting the management of
molecules, crystals, and materials (like JSmol [Jmo13], a browser-based biomedical
viewer, does).

A general issue with these screen space controllers is often related to the user
immersion in the 3D context [Han97]. Indeed, requiring to switch from interacting
directly with 3D objects to indirectly interacting with them, these interfaces may
easily lead to lose the user engagement (a relevant problem in more immersive 3D
applications). To overcome the “cognitive distance” due to map 3D tasks and 2D
control widgets in a 3D space, in 1997 Van Dam [vD97] introduces new user interfaces
(not dependent on classical 2D widgets such as menus and icons) called “post-
WIMP”, which in the last years have reached also the Web3D [BCR05] world. These
interaction techniques strongly rely on the latest I/O devices and technologies, like
for instance, gesture and speech recognition, eye/head/body tracking, etc.
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Specialized I/O Devices

For governing the interaction, modern 3D Web environments exploits common
general-purpose hardware devices, like the mouse and the keyboard, but also more
recent input/output technologies, like touch or multi-touch input surfaces. The
extremely rapid market penetration of the latter kind of devices, occurred mostly
because of the widespread diffusion of mobile devices, is redefining the way people
interact with digital content. Now, thanks to the last generation of mobile devices,
equipped with browsers supporting WebGL, this technological evolution is
beginning to involve also the 3D medium.

As most of the interaction methods in the Web3D environment derive from
(older) PC interfaces, they are undergoing a radical redesign process (like in [Mal13])
in order to enable also touch-based input devices. However, if it is true that these
novel technologies open new possibilities, they also lead to new challenges and issues.

For instance, touch inputs favor direct and fast interaction with the
manipulated content, but at the same time introduce some constraints: with
respect to a mouse and keyboard, they possess a much smaller expressiveness
(even considering gestures, we are far from the multiple keys and modifiers) and a
lower precision (a mouse positioning can be pixel-perfect, a finger touch cannot).
Moreover, they also require creating “switching” versions of the source code to
enable multiple input/output devices configurations, that is an open issue
particularly relevant for systems requiring to operate on very different hardware
platforms, such as Web3D software does (the Seo et al. [SYCK16] work with super
multi-view autostereoscopic displays is just a confirmation of that).

Nevertheless, touch based systems represent just the tip of the iceberg of new I/O
technologies, especially considering the increasing number of novel devices, sometime
specifically addressed to 3D applications, that are making practically mandatory
to redefine the obsolete WIMP paradigm. Among these, there are the new devices
supporting gesture-based interfaces by the means of fingers, hands, or body motions,
which often do not require touch contact for generating an input signals, or that ones
for enabling immersive virtual and augmented reality, or again the ones providing
access to the wide set of sensors (gyros, accelerometers, etc.) available in portable
devices.

All these new I/O methods, after being successfully tested in research
applications (like [WWV+10], which presents techniques for exploiting the motion
sensing capabilities of a console controller, the Wiimote by Nintendo, to enable a
3D user interface), and stand-alone devices (like Gravity Sketch [Gra14], a 3D
creation tool focused on mobile and VR platforms that offers an innovative and
intuitive design experience), are now arriving on the Web with device-mapping
JavaScript libraries. A brilliant example of that can be find in the paper by
Kwan [Kwa15], which describes how to use the Leap Motion device [BH10] (a
low-cost commercial hardware device supporting hand/finger tracking) inside of
the Three.js [Cab10] ecosystem.



Analysis of the Features 37

Among these libraries, a good number are still working draft specification for
the Web. It is the case of the DeviceOrientation [Moz16b] and
DeviceMotion [Moz16a] event handlers for accessing orientation and motion
sensors directly within the browser, or of the WebVR API [Moz16c] for providing
support in generating stereo pairs images (couple of offset images that combined in
the brain give the perception of 3D depth) for virtual reality devices, like the
Oculus Rift [Ocu16] and HTC Vive [HTC16] head-mounted displays (HMD).

However, despite that, the chance to exploit new devices and I/O methodologies
has been caught by several platforms, and, it is not unusual today to have access to
Web3D implementations able to support them. Some examples are: Patches [Viz14],
an online programming node-based editor expressly designed for building WebVR
experiences; or Parallax [Tos12], a cross-platform Java 3D SDK that provides in
its demo the possibility to switch between several different 3D effects: anaglyph
(encodes each eye’s image with filters of different colors to percept three-dimensional
scene by composition), parallax barrier (consists of a series of spaced slits allowing
each eye to see a different set of pixels to create a sense of depth through parallax),
and the already mentioned stereo pairs.

2.4.4 Multimedia Integration

Over the years many initiatives approached the integration of 3D data in the
standard Web publishing ecosystem. Several of them failed to reach their goal,
mostly because they were focused on managing 3D content alone, keeping it
isolated from other multimedia layers. Nevertheless, nowadays people working on
3D data online are aware of the need of a complete integration of the 3D content
in the Web environment. Consequently, they also are aware of the importance to
establish bidirectional channels able to logically and functionally link the 3D layer
with the other media typically composing a webpage. Following this idea, this
section will describe all the features aimed at transforming a simple embedding of
3D data online in a real integration of 3D content on the Web, discussing and
comparing the strategies adopted by some pioneering Web3D solutions to breach
the HTML CANVAS borders (like for instance hot spots deployment, annotation
possibilities, etc.).

Designing a webpage it is possible to simply spatially arrange the various media
inside it, but this would be a very limited and trivial take on the “multimedia”
approach. While, for more classic media like text and images, their arrangement
is fluid and shaped by the analogy with the composition/layout of a physical page,
less static media like videos and 3D often are enclosed in rigid boundaries (or on
dedicated single-page viewers). In particular, the integration of 3D is problematic,
because the view area represents a window over a 3D space, while the rest of the
webpage has a 2D nature.

A way to effectively connect the different media on the page is to try to exploit
hypertextual links for connecting them, thus achieving a trans-media storytelling
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behavior. Hyperlinks can be considered the game changing component of the Web,
able not only to transform a linear and passive fruition of informations in an
interactive navigation, but also to convert from spatial to logical the relationship
between the elements on the page.

To enable this vision, a Web3D viewer should define a set of elements that may
be useful to connect its components, events, and states with the rest of the webpage,
for instance providing:

• A 3D analogous of a hypertextual link (e.g. a clickable geometry, a shape, or
a marker) visible/highlighted in the 3D scene, that should be easily visually
identified by the user.

• A series of exposed functions able to change the state of the viewer (e.g. the
change model visibility() method to modify the visibility of an object on
the 3D scene). These functions may be called by other components of the
webpage to drive view/camera controls (maybe using the camera animations
introduced in §2.4.2), data behavior, visual appearance, etc.

• A series of exposed functions able to read the current state of the viewer, or
access some of its data (e.g. the is model visible() method to read the
visibility informations of an object on the 3D scene). These functions may be
used by other parts of the webpage to display 3D information contained (or
created) in the viewer.

• A series of function hooks to track the events generated by the viewer (e.g.
the on change model visibility() method to check if an object on the 3D
scene changes its visibility state). These handlers may be exploited to check
whether an animation has terminated, the user has clicked over an object, or
an instance has reached a certain state.

Through these elements a publishing system can make available different
strategies to integrate 3D and Web content, for example proposing
hyperlink-based schemes that let the webpage to manage the 3D scene from
outside the CANVAS. Exploiting this technique the aforementioned functions
would be called by HTML elements, making it possible to control the viewer
behavior or composition from the webpage content.

For instance, in the case of a single model 3D scene associated to external textual
information, could be possible to connect the action of clicking a text area that
describes a detail of the presented 3D element, to the position change of this latter,
with the aim to show the described detail. Or even, in the case of a 3D models
gallery published in a webpage also containing pictures of these models, may be
possible to link the mouse-over event, triggered when the mouse pointer enters one
of these pictures, to the retrieve of the related 3D model from the gallery.
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Among the solutions allowing this level of multi media integration there is the
already introduced ShareMy3D [AH15] system. It provides a basic set of JavaScript
functions (well documented, with running examples on its official websites), that are
able to drive the 3D scene through webpage components external to the CANVAS
area. But obviously, this kind of hyperlink-based scheme is not the only way to
integrate 3D content and other media in a webpage.

Nowadays the dominant approach, alternative (but not concurrent) to the one
previously presented, pursues an inverse path. It consists in bringing the other
media into the 3D scene, rather than migrating the viewer commands outside of it.
This technique makes use of the Web3D immersive interfaces (introduced in §2.4.3),
designed to embed or to superimpose graphical elements directly as floating elements
in the 3D scene. As stated by Jankowski et al. [JD12a], in these interfaces 3D
graphics is the main information carrier, able to provide to the content-consumer
both the freedom to navigate the 3D environment and the hypertextual-like data
(directly immersed into it).

The implementation of this approach for multimedia integration rely on the
possibility to attach, at the scene level, information to 3D environment and 3D
objects, a mechanism that is the base of the annotations/hot-spots systems,
features currently offered by many Web3D solutions (A-Frame [Moz15],
BabylonJS [CR13], Blend4Web [Tri14], PlayCanvas [EEKI+11], etc.). These
systems provide notes to “stick” on 3D models, useful for adding information to a
specific part of them (see Figure 2.10). Each note usually has a position, a camera
position, a title, a (multi-) media content, and, sometimes, also an order in a
numerical list. Final users can view the attached information by interactively
recalling these notes during navigation. In response to this action, the additional
content is presented (typically in screen space) adjacent to the associated object.

The connection between multimedia data and 3D scene can be achieve adopting
different strategies. One of them consists in placing on the 3D environment labels
(or other hyperlink-based 2D elements) connected to objects of interest via
placeholders (usually anchors to specific 3D points in scene space). Generally these
clickable components are HTML (or HTML derived). This allows Web3D solutions
to exploit, without much effort, the native interaction methods provided by the
markup language. Another possibility is to transform the 3D objects on the scene
in clickable instances. This strategy does not need placeholders but, for driving the
user interaction, it requires that the 3D system provides a set of event handlers
specifically related to the 3D environment (this feature is usually provided just by
the more complete Web3D solutions). Implementations of the labels and clickable
instances approaches can be respectively found in: Cl3ver [IN13], a Software as a
Service (SaaS) to edit and display 3D content online (see Fig. 2.10); and
WhitestormJS [Buz15], a JavaScript framework for simplifying 3D Web publication
deployment (it adds physics and post-effects to the Three.js [Cab10] technology).

One of the biggest weak point of the multimedia integration methods introduced
in this section concerns their usability, intended as easiness of setup in the publishing
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Figure 2.10: Multimedia integration via annotation system in the Cl3ver [IN13] solution.
In this example clicking on the circular 2D graphical placeholder anchored to a specific
scene space 3D point of the scene (left) the final user can get the additional information
presented in screen space as superimposed HTML element (right).

creation stage. All the presented methods require the content creator to spend a
significant amount of time and effort, to upload, link and configure the additional
layers of information. While this may be irrelevant for a professional content creator,
a casual one may find this work overwhelming.

Many systems, trying to get coexisting multimedia integration and
democratization of use (both pillars of modern Web3D), have resorted to specific
authoring tools , able to interactively guide the connections between 3D and
other media step by step. This approach seems to perfectly meet the intent, and
has been fruitfully implemented by systems like the already mentioned Autodesk
ReMake [Aut15] or Sketchfab [Ske14]. In these solutions the authoring tool covers
all the areas related to the Web publishing. However, the implementation and
maintenance of an authoring system are cumbersome tasks, and require a server
infrastructure able to run them, narrowing the feasibility of this approach to the
solutions deployed as services (or, in alternative, to stand-alone offline software
equipped with a wizard).

How to support these needs remains an open issue for all the other
self-publishing or serverless approaches. But, more in general, the 3D layer
informative enrichment in his whole is still today a very active research field.
Indeed, in the last years, several works have been addressed to improve the
technology behind interconnection systems between 3D and other media (not
always specifically aimed to the Web world). Russell at al. [RMBB+13], for
instance, have explored the possibilities provided by automatic annotations,
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Lehmann and Döllner [LD13] have tried to increase the potentiality of labeling 3D
content in virtual worlds (not necessarily online), while more recently Seo et
al. [SYK15] have proposed a method to enhance the annotations perception by
rendering them with a 3D layout context and a camera perspective common to the
related object.

2.4.5 Publishing Context

The characterization discussed so far has been mostly based on specific technical
choices of the visualization system, considering the published data as the core of the
Web3D environment. Nevertheless, to get a complete overview of the such ecosystem
it is necessary to take a step backward, and to look at the online publishing phase.
This section addresses the main aspects of the publication process, including:

• the publication modalities available (coding aimed at, node-based, full
graphical user interface);

• the publishing purposes (pure visualization, assisted content creation,
collaborative editing);

• the level of experience (specialized analysis, interactive presentation, social
sharing).

One of the preliminary discriminating points of the 3D Web publishing process
is related to the target content creator expertise level. This results in software
systems addressed to näıve users and others designed for skilled developers. At
publishing time, it is possible to choose among different development styles, that
range from pure coding proposals to GUI/wizard approaches, passing through node-
based editing and block programming.

The list of systems where the viewer is created by coding, includes a wide set of
softwares, like for instance MathBox [Wit12], a library for rendering presentation-
quality math diagrams in the browser, or LayaAir [CH15], a dedicated open-source
API for games and multimedia routines modules. These tools are usually aimed to
develop more complex or highly specialized applications (like are online games or
analytical tools). Such solutions in one hand allow for a higher customization and a
greater control of the resulting publication, but on the other hand require knowledge
of one or more coding languages (JavaScript, HTLM, TypeScript, etc.) and, for this
reason, are generally targeted at specialized/professionals users.

Less demanding, from the creation/setup point of view, are the node-based
solutions, like for instance Goo Create [Goo12], a complete 3D authoring platform
for cloud-based 3D content creation, or CopperLicht [Amb10], an open source 3D
library equipped with a full 3D world authoring editor. These systems do not
require writing code (even if often include sections where this is still possible) but
provide the content creator with a drag’n’drop interface for visual programming,
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where the scene, its behavior and interaction is defined by assembling and
configuring predefined elements.

Finally, there are solutions which do not require the use of a programming
environment, like for instance Koru [Box16], an authoring software that helps to
prepare 3D models and to export the result online, or Kokowa [ZFF15], a
publishing platform for non-programmers, aimed to create and share 3D and VR
spaces. In these tools, a GUI is used as a wizard setup to drive the publishing step
by step (typical of SaaS systems). These approaches do not require any kind of
coding, resulting ideal for näıve users; the drawback is that they are more general
purpose and do not allow to fully personalize the published viewer.

An alternative categorization of the Web3D systems can be based on the
publication aim they promote, intended as basic purpose/target of the
publishing. This means differentiating, for example, the solutions more focused
towards Digital Content Creation (DCC) from others specifically addressed to pure
visualization, characterizing all of them depending on the degree of DCC support
provided (intended as real-time object/scene editing possibilities).

Indeed, for a number of systems the presentation feature is predominant with
respect to the digital content design component (very basic and often only related
to the customization of the scene). Kubity [Kub13], a cloud-based 3D player mainly
aimed to enable final users to experience models in AR/VR online, could be a perfect
example of that.

In many other cases, more technical and specialized, the ratio between
presentation and creation support result inverted. In these latter solutions the
Web viewer has the primary purpose to support the content creation process,
whose final result could even not to be a public online publication (like in the case
of the MeshLabJS [Vis14b] editing platform). Such systems are often addressed to
technical users and usually provide support for collaborative DCC. A brilliant
example of one of these was the Lagoa [DC11] platform (the cloud-based system
for online CAD designing shown in Figure 2.11, whose professionalism has been
recently acquired by Autodesk Fusion 360 [Aut13]).

Of course, a full set of hybrid systems exists between these two extremes, where
the proportion of the ingredients is more balanced. This group includes solutions
focused on Web visualization, but at the same time able to provide technical
features oriented to assist the digital content creation, for instance supporting
modeling and animation (the already introduced Clara.io [Exo13] platform could
be a representative example for this class).

An additional categorization of modern Web3D software may be driven by their
specialization. Indeed, nowadays these systems are more and more designed to
satisfy specific needs, or focusing on peculiar goals, that go beyond the general-
purpose visualization. This can lead to a characterization based on the target uses
of the analyzed platforms, that may be applied not only to the basic aims of a
publishing solution, but also to its ultimate target purposes, intended as type of
supported experience .
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Figure 2.11: Collaborative DCC implementation in the Lagoa [DC11] Web3D system.
This cloud-based solution aimed to CAD design guaranteed a performant real-time multi-
user synchronized scene editing.

For instance, as already stated in §2.4.3, solutions aimed to specialized
technical fields generally provide specific presentation or analysis components.
Systems aimed to Geographic Information System (GIS) visualization (like
Cesium [Ces11], a JavaScript library for 3D globes and maps creation) often assist
the development with a set of features (geo vector formats, map projections,
Columbus view, large distances and coordinates handling) hard to find in other
contexts. Instead, a solution designed for creating games and similar interactive
3D applications, such as Unity3D [Uni05] or the Unreal Engine [Epi14] (another
multi-platform game engine equipped with a WebGL exporter), usually offers very
different components, like for instance integrated physics, networking, or even
spatial audio.

In §2.4.3 we have also seen that characterizing features connected to specialized
types of experiences may be related not only to peculiar presentation or analysis
elements, but also to distinctive interaction paradigms. For example, a Web3D
solution designed to present architectural models will exploit the first person
navigation mode, to let the user walk through the 3D scene. The already
introduced Archilogic [Arc14] system can be taken as example of that category.

Interpreting the concept of supported experience in the broadest sense, also
side elements of a publishing platform can concur to integrate this level of
characterization. For instance, solutions aimed to the online sharing of 3D
creations often propose social media related tools (with linking or embedding
capabilities) and virtual spaces (models galleries or showcases) for supporting the
(profiled) users. These “community-oriented” features, external to the rendering
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context, even if seem to be apparently disconnected from it, actually represent a
characterizing factor as important as the other in the virtual Web environment,
able to make the difference in the choice (and in also in the success) of a Web3D
platform (in this sense the Sketchfab [Ske14] case can be considered a
representative example).

A final high-level classification of the available solutions can be drawn out
considering eventual costs and distribution licenses of the reviewed systems.
Like for any other software product, also in this case the usage terms and costs are
important characterizing factors.

Among these costs, the choice between a client-based and a server-based platform
can influence in a relevant way the costs of a specific solution. As we have already
seen in §2.4.1, the need for server-based capabilities (storage, computation, user
management, database support) of some of the existing solutions often leads to non-
trivial expenses (for content-creators interested in self publishing), or to the payment
of a subscription (for final users of commercial services). From the point of view of
users, current trends generally contemplate the combinations of a basic services for
free (with terms restrictions) and more specialized features which become optional
and fee-based (with less or no term restrictions). The PlayCanvas [EEKI+11] system
is just one of many adopting this policy.

Some on-line platforms are offered free-of-charge, even if they require high
maintenance cost, because they may be used as a “beachhead” to promote
ancillary products or other paid services. As an example, this is the case of
Thingiverse [SP11] (created and maintained by a 3D printer manufacturer to
provide the users with usable content, thus promoting the sales of 3D printers) or
ReMake [Aut15] (created and maintained by Autodesk as a way to introduce their
software to possible clients).

Fortunately, thanks to its wide landscape, the Web3D field has solutions
offering any kind of available possibility, with solutions open-source (e.g.
CopperLicht [Amb10]), freemium (e.g. Sketchfab [Ske14]), or commercial (e.g.
ShareMy3D [AH15]), and licenses like Apache (e.g. BabylonJS [CR13]), MIT (e.g.
A-Frame [Moz15]), or GPL (e.g. Blend4Web [Tri14]).

2.5 Discussion

As already discussed in §2.3, a single, organic description of the Web3D panorama
is complex, due to the necessity of building a low- to high-level categorization of
the available solutions. For this reason, we tried to look at this heterogeneous
landscape from two different points of view. In the previous section, we presented
an analysis of the different features, organizing them in functional macro-classes.
Conversely, in this section we try to work orthogonally, synthesizing the topics
introduced in §2.4 into a general reference scheme, and use it to outline the profile
of the various existing approaches/systems, connecting each of them with their
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characterizing features. These same features will be finally projected on a
representative number of application fields which more than others benefit from
Web3D technologies, in order to assess the ideal approach for each of them and
also to enrich our classification pattern.

2.5.1 Classification

In order to provide a map enabling the assessment of the Web3D solutions introduced
so far, we propose a classification based on the features previously selected. This
reference scheme, connecting these features to fully qualified products, is also useful
to evaluate how characterizing these aspects could be for real world 3D Web systems.
Thus, our classification is primarily based on the characterizing points introduced
in §2.3.2, represented in a table able to provide an overview of the amount of support
given to each of them by the reviewed systems.

Ideally, we could have mapped each feature on each one of the Web3D solutions
reviewed so far, but we decided not to follow this avenue mainly because of the
difficulty to represent in a visually accessible table the large number of crossings
eventually obtained (approximately one hundred, since we should intersect around
twenty features with the around fifty systems introduced).

Moreover, also the considerations about the effective usefulness to explicitly
refer to existing solutions have led to avoid this kind of representation, condemned
to become quickly obsolete in a technological environment in rapid evolution such
as Web3D, where new solutions are systematically released and old ones are fast to
disappear. A brilliant example of that could be represented by the Autodesk
ReMake [Aut15] software, moved by the company to the new Autodesk Recap
Photo just during this thesis drafting (after it has already been moved from the
Memento test project in 2016).

Therefore, we decided to proceed in a different way, and, exploiting the
schematic representation proposed in Figure 2.2 and in Figure 2.4, we decided to
simplify and synthesize the reviewed approaches and features harmonizing them in
a representative number of reference classes (LIB/LIB++,
TOOL/TOOLKIT/FRAMEWORK, APP) and characterizing levels (DATA,
SCENE, INTERACTION, INTEGRATION, PUBLICATION). Table 2.1 shows
the result of this classification, giving an overview of the surveyed software based
on the aforementioned criteria. The scheme outlines which publishing feature or
technique is supported by which application domain. The amount of support is
expressed as a range between a couple of values selected among: no [-], low [*],
medium [**], and full [***] support.

Presenting the options that a practitioner has at hand when 3D content for the
Web has to be created, the table also provides an implicit understanding on which
level of complexity/difficulty of use is needed to obtain high quality results.

Analyzing the proposed scheme it is also possible to glimpse some interesting
trends. In particular, scrolling through the table from the features point of view
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Table 2.1: Web3D characterizing features mapped on the various publishing approaches.
The solutions are classified according to a representative selection of the criteria given
in §2.3.2 (bullet list). Software systems and features are grouped (respectively) as in
Figure 2.2 and 2.4 in order to provide quick overview of methodologies and options that
a content creator can access. Each cell shows the amount of support given by a group
of systems to every single features level, expressed as a range between a min and a max
value. The elements are sorted by supported features in order to show potential trends.
The gray cells represent the transversal behavior of stand-alone end-products (full GUI
applications mainly working locally, characterized by access and customization features
similar to low/middle level approaches).
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(row-major order from top to bottom), it attests that low level functionalities
(mostly DATA and SCENE related) are usually better handled by libraries, APIs,
or local solutions, while INTEGRATION/PUBLICATION features are generally
more broadly supported by higher level systems (mainly thanks to GUIs or
authoring interfaces). At the same time, moving to the systems point of view
(column-major order from left to right), the table points out that, while the
LIB/LIB++ and TOOL/TOOLKIT/FRAMEWORK supporting curve decreases
its values going from top to bottom (i.e. from low level to high level features), the
APP trend follows the opposite principle, significantly increasing the support
amount given to each characterizing level shifting from from top to bottom.

Finally, this schematic visualization is important also to confirm the point
stated in §2.3.1 concerning the issues in clearly classifying all the wide range of
solutions in a universal fixed scheme. Indeed, seeking to represent in the table, for
instance, stand-alone softwares aimed to a two steps 3D Web publishing (local
model/scene processing and following online exportation), we would get an
unusual characterization. The level of support for this class of solutions
(essentially full GUI applications providing customization possibilities equal to
middle level systems and data/scene access comparable to low level approaches), in
fact could be ported in the proposed scheme only following a transversal
representation. The (gray) colored cells in the table just serve to highlights such
particular case, in which we can convey all these commercial end-products that
have to be downloaded and installed, like for example Unity3D [Uni05] or
Autodesk ReMake [Aut15].

2.5.2 Application Fields

In order to specialize the reference scheme introduced in §2.5.1 we apply its features
to some representative application fields. In addition to provide an overview of the
systems best fitting each specific field of application, we also want to define the full
set of features that content creators could have at hand while creating specialized
3D Web content. We notice that for some of these fields the solutions tend to be all
of the same type, while other fields present more heterogeneous set of solutions.

Cultural Heritage

Cultural Heritage applications, and related solutions, are mainly related to
publication of content (with some degree of personalization). Usually the 3D data
involved in this kind of publishing are high resolution 3D models coming from real
world acquisitions (digitized with photogrammetry/structure from motion
approaches or active scanning devices). Handling online these dataset (big size,
huge complexity) requires to adopt multi-resolution representations and
performant data transfer formats (so, a pre-processing phase is usually needed).
Since often the 3D model to be published represent copyrighted objects, the IPR
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protection and the infrastructures security are relevant in CH systems that offer
cloud services. Other central elements concern the possibility to integrate
informative content to the 3D layer, and to support innovative I/O devices (these
two aspects are of fundamental importance while building virtual museums).
Camera animations can also be really useful, while model animations are not a
strict requirement. Effective interactive 3D scene inspection and navigation are
both mandatory features (for architectures and artworks 3D models). Conversely,
scene customization and editing tools are not so important, due to the need to
convey the proper message and to pursue high fidelity in the visualization (they
can also be dangerous since they could produce model appearance modifications).

CH is characterized by an heterogeneous set of application cases and
requirements, and still by a low economic value (since most of the applications are
implemented on a low budget: as an application domain it does not attract much
interest from commercial companies and the commercial tools specifically designed
for this application are still a small set. For this reason, the CH community is very
often using tools developed for other purposes and domains, such as games or
animation (immediate examples are Unity3D [Uni05] and Unreal Engine [Epi14]).
This does not prevent that systems not specifically designed for CH (such as
Sketchfab [Ske14] or Autodesk ReMake [Aut15]) actually fit quite well the CH
application needs (e.g. Sketchfab has a dedicated section only for supporting Web
publishing of Cultural institutions). Some academic solutions, like Potree [Sch13],
even if don’t explicitly refer to CH, at the end are mostly used to publish CH 3D
models. However, also ad-hoc CH-oriented solutions have been proposed: mostly
ignited by cultural or academic institutions, unfortunately they often are
“blackbox” systems of restricted use (like in the case of 3D viewers by the Petrie
[Uni09] or the Smithsonian [Smi11]).

Biomedical

The biomedical applications are typically focused on visualization, enabling the
rendering of particle systems (by ray-casting) and volumes (by ray-marching).
This could direct the choice of the proper publishing platform on systems able to
profitably handle these dataset on the Web (even if, as we have seen,
triangle-based techniques could be also exploited). Due to the technical nature of
these publications, the presence of specialized analytical tools (enabling visual and
numerical data analysis, such as unit cell operations, computation of distances and
angles, torsion angle measurements, etc.) plays a key role, as well as the possibility
to use interaction paradigms tailored on inspecting this specific 3D content. For
the same reason Web3D solutions providing interactive (or collaborative)
annotation systems may be preferable. Finally, animations features results also
extremely useful in biomedical presentations, especially when they are
characterized by didactic and dissemination purposes.

Among the systems presented so far (besides the more research-oriented
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proposals, like X3DMMS [ZCGC11] and MEDX3DOM [Con12]), it worth to
mention a couple of open-source projects, like X Toolkit [XTK12] (framework for
visualizing and interacting with medical imaging data, it provides a simple API
offering native support for neuroimaging file formats), and JSmol [Jmo13]
(molecular viewer for chemical structures in 3D with features for molecules,
crystals, materials, and biomolecules).

GIS, Maps and Architecture

This publishing field covers an heterogeneous set of Web3D systems, all them
somehow dedicated to the creation of maps-based applications (at different levels
of detail and complexity). Almost all these approaches require to handle dataset
structured as LoD tree for progressive view-dependent refinement, that probably
need to be georeferenced (particularly in Web GIS solutions). Maps apps often
make extensive use of geometry instancing for repeated object on the 3D scene,
and not rarely exploit camera animations supporting “spatial” storytelling (the
recent Voyager function in the popular Google Earth [Goo11a] application brightly
implements this feature). Of course, the navigation component (usually
first-person/walk-through) is equally important enabling the interactive
exploration of these dataset (especially for architectural models). Finally, also this
domain requires a peculiar set of specific presentation/analysis features, like for
instance: individual object picking, atmospheric elements drawing, precision
handling of large view spaces (avoiding z-fighting) and large world coordinates
(avoiding jitter), or time-line controls for the simulation of time-varying
phenomena.

Nowadays, GIS visualization and analysis on the Web can be exploited using a
number of interactive systems specialized on vast volumes of geospatial data and
able to provide vector graphics, surface models and 3D buildings. We have both
commercial solutions, such as GeoWeb3D [Geo12] and GeoBrowser 3D [Gra16], as
well as open-source resources, like OpenWebGlobe SDK [Uni11] and the already
mentioned Cesium [Ces11].

Maps-based Web3D approaches can be aimed not just to geographical
visualization (like the popular Google Maps API [Goo11b]), but also to visual
explanatory generic-data analysis, like in the case of Deck.gl [Ube15] (complex
visualizations of large datasets rendered as stack of visual layers) or
Seerene [HB15] (source code interactive analysis software maps-based).

Maps driven visualization is also useful platforms addressed to architecture, such
as the systems Archilogic [Arc14] and 3D Wayfinder [3D 12a], both specialized in
floor plans and 3D buildings interiors and exteriors exploration.
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CAD

CAD solutions span a wide space, going from simple to professional systems. This
mainly depends on the complexity of the operations and task required. Web3D
publishing solutions reflect this point. Models exploited in this application field
are 3D meshes, usually characterized by a relative structural simplicity (in term
of number of triangles/faces), since they are generated (and serve) in design and
modeling process. For this reason, and mostly for need of ensuring coherence in
the geometric editing, they generally rely on single-resolution formats. A central
feature for this kind of application is for sure the support to DCC, intended both
as specialized tools (kinematic assembly, geometric constrains, distances and angles
offset, etc.), and higher level features, like collaborative editing and version control.
For more technical uses (for instance in industrial pipelines aimed to photorealistic
publication) it is fundamental also to be able to steer the 3D object/scene appearance
editing (shaders, materials, lighting, etc.), as well as the possibility to have access
to the proper authoring tools able to drive these specialized operations.

The landscape of solutions addressed to CAD design includes systems ranging
from unskilled users (e.g. Autodesk Tinkercad [Aut11]) to professionals (e.g.
Lagoa [DC11]). Some of the proposed approaches are more oriented to
editing/modelling (e.g.Autodesk ReMake [Aut15]) while some others are more
focused on the publishing stage (e.g. Koru [Box16]). Commercial solutions, like
ThreeKit [Hou15], and free softwares, like OpenJsCad.org [MJM13] (JavaScript
Web interface for programmatic modeling), are both provided.

3D Printing

3D printing -oriented Web applications are, generally, easy to use platforms, where
the aim of the publication is mostly focused in supporting user-uploaded sharing (or
selling) of printable content.

These systems, mostly implemented as services, provide hosting services and a
number of related high-level features (like IPR management strategies, users
profiling, community-oriented tools). Since printable objects must be simple single
item, Web3D printing solutions often propose bare-bone viewers aimed to pure
visualization of a fixed-resolution model.

3D printing models have gained momentum in the last years. Due to this
explosion of interest, have been released a lot of SaaS sharing platforms where final
users can interactively visualize this content before to download it. Generally these
system are marketplaces where upload and sell 3D object related files (like
Pinshape [MSY13]), but there exist solutions implemented as open virtual space
where to share them for free (like MyMiniFactory [MyM13] or Thingiverse [SP11]).
The Threeding [Thr13] platform in addiction to allow to share 3D printing models
and files (for free and paid), also provide a service for on-demand 3D printing (for
users without 3D printer). The Shapeways [Sha13] startup instead is completely
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based on the concept of printing (and selling) service, giving to the users the
possibility to upload 3D printable files, and printing the out-coming objects (in
over 55 materials and finishes) for themselves or for others. However, not only Web
service platforms are characterized by 3D printing features. Online CAD systems,
for instance, often provide simplified creation features just to make possible to
print the designed models (Autodesk Tinkercad [Aut11], Leopoly [Leo15], and
BlocksCAD [Blo17] belong to this category). Sometimes also less specialized
solutions may provide support to 3D printers standard (STL) file formats and to
3D printing models preparing, like for instance Autodesk ReMake [Aut15] does.

Games

Web3D solutions aimed to games developing are generally systems able to handle
elaborated 3D scenes made of a large number of modeled geometries. For that
reason they often provide features focused to complex scene composition (geometry
hierarchically instancing). Particular care is addressed to components for
customizing scene appearance (rendering/shading processes), animations (both
cameras and models) and exploration (mainly ambients navigations). Of course,
building a game experience also play a central role the possibility to access to
specialized features like physics, networking, and audio control.

Several solutions can be exploited or adapted to Web3D games developing.
Almost all the typologies of approaches are available: from low level engines (like
PhiloGL [Bel11] or KickJS [NJ11]) to GUI based applications (like Goo
Create [Goo12] or CopperLicht [Amb10]), from more general systems (like
BabylonJS [CR13] or Blend4Web [Tri14]) to highly specialized softwares (like
PlayCanvas [EEKI+11] or LayaAir [CH15]). Even if in this specific field the most
popular solutions remain systems not specifically designed for Web3D, like
Unity3D [Uni05] or the Unreal Engine [Epi14] (both the softwares are just
equipped with a WebGL exporter), is easier to find Web targeted applications, like
for instance Turbulenz [Tur09], a modular 2D/3D framework focused on HTML5
game development for desktops and mobile devices, or Voxel.js [Vox13], an game
building toolkit that make it easier to create 3D voxel Minecraft-style games.
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Chapter 3

3DHOP: 3D Heritage Online
Presenter

As we have seen, the adoption of WebGL has, at long last, made the Web3D steer
away from the trap of proprietary heavy-weight plugins, facilitating the development
and the spread of Web publishing solutions, and also ensuring a noteworthy thrust
for the the online deployment of 3D content in many contexts formerly forgotten.

Looking at the wide variety of features and approaches presented in Chapter 2,
it may seems that, due to this explosion, every issue has already been covered by
existing solutions. Conversely, at a closer inspection, it is possible to note that the
rapid development of Web3D has left out many niches for specialist and technical
users, and has restricted some of the analyzed features only to a specific field,
neglecting others. From this point of view, many empty spots can be found in each
one of the previously analyzed areas, and some “missing links” appear obvious.

At data level for instance, the efforts made so far have been mostly focused on
mainstream (i.e. entertainment oriented) geometric structures, that are often
characterized by low-poly textured structured content, failing to address a different
kind of geometry, coming from digitization and survey, characterized by
high-resolution and unstructured data. Moreover, the application of efficient
LOD/multi-resolution schemes, that could be able to cope with these other
geometries, mostly rely on closed/proprietary formats that often require
unknown/uncontrolled data transformations. At scene level instead, the existing
solutions, influenced by the declarative/imperative dichotomy, have finished for
clustering in Web friendly systems (simple to use but limited in customizations) or
CG aimed software (highly programmable but addressed to professional content
creators), forgetting to explore more flexible and scalable solutions. At interaction
level the main issues seem to be related to the specialization of the available
approaches, able to provide, at the same time, ready-made paradigms too much
tailored on a specific type of 3D content and barely customizable, but also user
interfaces poorly specialized on the applicative domain. Concerning integration
level instead, the trend to mimic offline applications has mostly led to solutions at



54 3. 3DHOP: 3D Heritage Online Presenter

best focused in bringing basic media connections into “dumb” 3D viewers,
generally disconnected by the page logic and extremely deficient in exploiting the
hyperlink-based possibilities and in providing developers with Web style
functions/events handler. Finally, analyzing the existing approaches at an higher
abstraction level (publishing level), a relevant issue can be traced back to the
searching for the best trade-off in content creator usability (meant as the inability
of a single solution in covering a wide gamma of target user technical skills).

Although few of these gaps find partial solutions in the Web3D landscape, as
seen in the previous chapter, it is also true that a single solution, able to effectively
face all these issues, does not exist. Starting with this premise, and following the
brief analysis of requirements just exposed, we have defined a research space with
the aim to propose a functional solution able to provide sensible answers to the listed
needs. Designing a viable implementation of this new tool, and then developing and
testing it, we pursued the idea to create a flexible and efficient system, able to lead
step by step to a fast and easy integration of 3D models into a webpage, expressly
addressed to the online environment, and finally, tailored on one of those specific
niches of technical users which are somehow far from the mainstream use of 3D
data. Concerning this latter point, our choice has fallen upon the field of Cultural
Heritage.

Indeed, thanks to its peculiarities, the Cultural Heritage field results particularly
suitable to be exploited as concrete reference case. In this domain, digital 3D models
are nowadays widespread and, beside their more “technical” use (documentation,
restoration support, study and measurement) they are becoming very valuable in
dissemination, teaching and presentation to the public. So, publishing 3D content
online is more and more becoming an usual action for CH professionals. Moreover,
since these 3D data are published on the Web for presenting museum collections,
displaying virtual reconstruction of ancient sites, or showing connections between
artifacts of interest, they also need to be strictly paired by (and communicate with)
other multimedia information. But the most characterizing features for this domain
probably concerns the need for a higher complexity of the 3D content to be handled
online. While in many other applicative fields lower-resolution hand-modeled 3D
objects may suffice, in the CH field the digital geometries, often digitized versions of
real-world artifacts or environments, have a much higher resolution, both for keeping
a scientific validity, and to convey to the public the correct information. Thus, by
choosing Cultural Heritage as our target field, we had the possibility to face all these
interesting problems:

• challenging situations for the management of the data level: high-resolution,
complex, diverse data;

• the need for multi-level access: dissemination for final users, technical access
to experts, and everything in between;

• conflicting requirements for simple-yet-flexible interaction methods and tools;
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• different levels of publication needs: from the simple, single-object, “dumb”
viewer, passing through the specialized viewer with customized interaction, to
reach the large-scale publication support, for collections and institutions;

Finally, Cultural Heritage was a suitable field also because, thanks to the connections
and collaboration of our research group, we had plenty of test cases and opportunities
to validate our tool.

3.1 Overview

The final result of our work is 3DHOP (3D Heritage Online Presenter) [Vis14a,
PCD+15a], a software framework specifically designed to simplify the creation of
interactive visualization webpages displaying high resolution 3D models. It provides
intuitive user interactions and also a deep integration between 3D data and the
rest of the webpage elements. The most interesting characteristics of the 3DHOP
framework are:

• the ability to work with extremely complex 3D meshes or point clouds (tens of
million triangles/vertices), using a streaming-friendly multi-resolution scheme;

• the ease of use for developers, especially those with background in Web
programming, thanks to the use of declarative-style scene creation and
exposed JavaScript functions used to control the interaction;

• the availability of a number of basic building blocks for creating interactive
visualizations, each one equipped with sensible defaults, providing a
comprehensive documentation, and mostly, widely configurable.

Since 3DHOP is targeted on Cultural Heritage users group, most of the design
choices address specific peculiarities of the CH domain, providing a series of features
that are extremely relevant to this sector. However, CH is not the only application
field dealing with very high resolution models and requiring a dense interconnection
between those models and other data or media. In this sense, CH is a major domain
of inspiration and assessment for our activity, but not the only application context
for the 3DHOP technology.

3DHOP is based on the WebGL [Khr09] component of HTML5 and on the
SpiderGL [Vis10] library (introduced in §2.1.2). This makes the framework
extremely lightweight in terms of dependencies, and able to run on major browsers
(Chrome, Firefox, Edge, Opera, Safari) and platforms (Windows, MacOS, Linux).
It does not need plugins or additional components installed in the client, nor
specialized servers.

3DHOP, started as an experimental tool for internal use, evolved during this
PhD thesis into a fully qualified solution, released with an open source GPL license.
The downloadable package, with documentation, a series of tutorials (how-to) and
a gallery of examples is available at the project official website [Vis14a].
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Figure 3.1: The Tutankhamun viewer: using 3DHOP [Vis14a] to publish on the Web a
high resolution 3D model interactively explorable and multimedia connected (the artifact
is linked to additional information through hot-spots).

Situating 3DHOP w.r.t to the State Of The Art

3DHOP is not a “silver bullet”, able to support any possible application or visual
communication project, but a framework designed to deal with specific needs.

It is an ideal tool to visualize high resolution single objects (especially dense
models coming from 3D scanning, as shown in Figure 3.1) or, more in general, a
simple scene composed of complex models. Conversely, 3DHOP is not suited to
manage complex scenes made of low-poly objects (this is a common case when
working with CAD, procedural or hand-modeled geometries), as the Web3D
landscape already offers different solutions aimed at this niche.

3DHOP makes possible a fast deployment process when dealing with simple
interaction mechanisms, making it a good choice for quickly creating interactive
visualizations for a large collection of models. Additionally, 3DHOP integrates
extremely well with the rest of the webpage, thanks to its exposed JavaScript
functions. The ideal situation is having the logic of the visualization scheme in the
page scripts, and using 3DHOP for the 3D visualization. Trying to build an
interface directly in the 3D space using its components (i.e. clickable geometries
used as buttons) is certainly possible, but the results do not scale well with the
needed configuration work. In the following, three existing alternative solutions
(already introduced in Chapter 2) are analyzed, in order to better stress
similarities and differences.

Unity3D [Uni05] is one of the most common tools for displaying interactive 3D
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content on the Web for CH applications, a de-facto standard in this specific field. It
is natural, then, to compare 3DHOP with Unity3D. Unity3D is a full-fledged game
engine, extremely powerful and complete, providing advanced rendering, sound,
physics and a lot of pre-defined components and helpers. Unity3D supports the
implementation of interactive visualizations holding the same level of graphics and
interaction complexity as a modern video-game. It has a rapid development time
when creating a simple visualization, but the complexity of use/development ramps
up if it is necessary to employ the more complex interaction features. Moreover,
Unity3D is not well suited to manage high resolution sampled geometry (except
for terrains), while it is really good with hand-modeled geometry. Its streaming
capabilities requires to pay a fee, and it also requires server-side computations.
Finally, even if there are different ways to interconnect the 3D visualization with the
webpage, this is one of the more complex features to set up in Unity3D, conversely
to the otherwise user-friendliness of the tool. All these features make Unity3D
somehow complementary to 3DHOP: the Web-integrated visualization of single,
high-resolution artifacts finds in 3DHOP a better support, while the exploration
of complex modeled scenes or even immersive environments are better managed in
Unity3D.

Another popular solution, widely used even by the CH community, is
Sketchfab [Ske14]. It is indeed extremely simple to use and offers fast online
deployment of 3D models and data storage support. On the downside, Sketchfab
has a limit on the geometrical complexity of the input models, making it difficult
or impossible to upload 3D scanned models at full resolution (despite a blind data
pre-processing, imposed by default). Moreover, the interaction with the 3D models
is only partially configurable, making it difficult to tailor the interaction to the
specific shape and characteristics of the model. Additionally, models are stored on
a remote server, raising issues of data privacy and data property. Finally, being
the result of a commercial initiative, the more advanced features, including the
handling of more complex geometries, are available only in the Pro (paid) version.

X3DOM [Fra09b] is another development platform that gained a quite broad
range of applications. As already stated, the X3DOM structure derives from a
declarative approach and the definition of the scene is obtained through a scene
graph concept and related commands. X3DOM has several points in common with
3DHOP: for instance, also X3DOM has a ready-to-use solution to handle
medium-sized and large 3D datasets (over the time it introduced several binary
container nodes, like Binary Geometry [BJFS12], Pop Geometry [LJBA13], and
the more recent Shape Resource [LTBF14]). However, it is misleading to compare
them directly, since X3DOM is more akin to programming language (based on the
declarative paradigm), while 3DHOP is a set of configurable components (built
using a different paradigm). X3DOM does implement default field values
(following the specifications of X3D [Web04]), and it provides most of the basic
components of 3DHOP. Nevertheless, even creating a simple visualization requires
dealing with the complete setup of the rendering and interaction, making it
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difficult for those with limited programming skills to obtain a step-by-step
understanding (code for simple examples has been added to the official website
only recently).

3.2 Design Choices of the 3DHOP Framework

3DHOP has been designed with the aim of being easily and functionally integrable
in the Web ecosystem. Our core idea was to mimic the philosophy of those pre-made
HTML/JavaScript components available online, for example for image slide-show,
date or color picker, charts and graphs. These solutions can be simply plugged inside
a webpage including some scripts and adding few lines of HTML, and used by just
changing some variables; they interact with the rest of the webpage with a series of
exposed JavaScript functions and events.

As well as these components also 3DHOP wants to be easy to use, especially
from the point of view of people having a background in Web development, without
compulsorily requiring solid knowledge in CG programming. Most Web developers
have experience with similar components, and they are indeed extremely useful,
given their quick startup, different configuration level (from a simple parameter
change to advanced modding) and integration with the rest of the webpage. Just
the integration feature, meant as possibility to merge the component and its content
in the multimedia Web context, is another key factor able to impact more on the
3DHOP design choices.

Usability and integration of the presented framework have been pursued
through specific design choices, particularly relevant in the definition of the
3DHOP inner structure: oriented toward a Web-friendly development paradigm;
providing handlers aimed at linking the various webpage elements; possibly
equipped with sensible default behavior; and finally, built to be exploited in
heterogeneous applicative contexts and on different technical scenarios.

It is clear that directly using WebGL, or (better) relying on one of the higher
level libraries, frameworks and paradigms analyzed in Chapter 2 (like for instance
XML3D [Son10] or Three.js [Cab10]), it could be possible to create interactive
presentation like the ones made with 3DHOP (or the entire 3DHOP tool) from
scratch, but this would still be an “ad-hoc” effort. 3DHOP may be somehow
restricting, with respect to a project-specific custom viewer, but we believe the
ready-made components and behaviors and their reusable nature make it a
valuable tool.

3.2.1 Declarative-Style Setup

As previously stated, two main development paradigms support the development
of 3D Web applications: the declarative approach for the management of 3D
content (e.g. endorsed by X3DOM), and the imperative approach (supported by
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the introduction of WebGL in HTML5). The use of declarative 3D mimics the way
the rest of the webpage is composed and managed: 3D entities (geometries,
transformations, camera, animations, etc.) are declared and controlled as they are
part of the DOM structure (like, for example, a DIV or an image). This approach
makes things much simpler for people coming from the Web development side.
Conversely, the imperative approach works in a way that is more similar to the
implementation of stand-alone visualization software, by tapping into the
capabilities of the graphics card using a more low-level programming. In most
cases, it is like having the browser running an extremely powerful, stand-alone
software, disconnected from the rest of the information available on the website.

If we apply a strong simplification of the current status, we may argue that the
declarative approach is much easier for Web developers, not requiring specific
knowledge on 3D programming, and provides seamless integration with the
webpage, simplifying the development of interactive presentations of mixed data
(3D/text/images/videos). On the other hand, the imperative approach enables the
user to fully exploit the power of the graphic cards, at the cost of requiring much
more effort in application implementation. Of course, things are never so simple,
and, as we have already seen in §2.2.1, a lot of effort has been spent on both sides
to reduce the separation of these two development paradigms. However, this
dichotomy somehow is still holding and, depending on the personal background, it
is quite easy to approach 3D Web applications design only considering one of the
two paradigms, ignoring or misjudging the possibility offered by the other.

Our goal was to bridge the gap between these two worlds, by providing a
framework that aims to combine the ease of use of the declarative style (to define
the elements of the visualization and their properties), with the rendering power
provided by low-level programming. We will describe in §3.3.2 how the creation of
the scene follows a declarative style in 3DHOP, enabling a quick and intuitive (yet,
highly customizable) deployment. At the same time, the core of the rendering
exploits the experience matured in the field of CG programming (see §3.3.1).

3.2.2 Interconnection with the DOM

A quite common situation, especially when using imperative 3D systems, is the
strong separation between the 3D visualization and the rest of the webpage. In most
cases, the visualization tool is completely self-contained, not interacting with the
elements of the page. This leads to difficulties in creating multimedia presentations,
where an action on the webpage elements does affect the 3D visualization and vice-
versa.

The system presented by Callieri at al. [CLDS13] was aimed at establishing a
strong connection between what happens in the 3D viewer and the DOM elements,
thus creating an integrated presentation context for different media. While
succeeding in effectively connecting the imperative 3D to the DOM, the system
was still limited by its specialization. It was possible, by changing some
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configuration files, to display a different dataset, but the new object should be
quite similar in terms of structure and semantics (the tool was tailored to CH
artifacts with scenes carved on their surface, like, for example the Trajan column).

Conversely, 3DHOP has been designed to support the interconnection with the
elements of the DOM in a more extended and configurable way. 3DHOP can work
just as a “dumb” viewer (if the user does not configure any DOM interaction), but
it offers many ways to interconnect the visualization to the rest of the webpage. It
is possible to change the visibility of the different models (like in the example in
Figure 3.2); select, read and animate the trackball position; activate hot-spots and
detect clicks on the 3D models/hot-spots. Most of these features can be controlled
just by invoking or by registering event-handling JavaScript functions provided in
the framework. In this way, the Web developer has the complete freedom to integrate
3DHOP with the specific website logic.

Figure 3.2: The Luni Statues viewer: in this example, four figures of the frieze of the
Great Temple of Luni (Italy) are shown using 3DHOP [Vis14a]. Each statue has an
original part and an integration; by using the visibility control, it is possible to control
which subset of the pieces is shown.

3.2.3 Exhaustive Defaults and Level of Access

Another essential design choice of 3DHOP is to provide default behaviors, consistent
with the common needs of our target community. Each component of the viewer
is configurable, but it is never mandatory to modify/update each parameter. The
developer may just change a single needed parameter, and rely on defaults for the
rest of them. In a wide sense, we follow the batteries included philosophy of Python,
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since we aim to simplify the life of the developer providing ready-to-use visualization
components for online CH applications. In this way, our framework is much more
accessible, and can be easily learned step by step (using the provided examples and
the how-to resources). This also provides a fast startup when deploying new content
(in many cases it is only necessary to do minor changes to the provided examples)
and it is ideal to automate the creation of “3D galleries” when a large number of
objects have to be presented, since the basic visualization can be easily created by a
script. A completely unskilled developer may readily start using 3DHOP to visualize
his own dataset by simply downloading one of the examples and changing the name
of the 3D model file. Then, it will be easy to modify the parameters of existing
elements to achieve more advanced results. A Web developer could approach the
tool from another direction, by modifying the CSS/HTML to customize the graphic
of the visualization. By using JavaScript, it will be then possible to connect the
behavior of 3DHOP to the active elements of the webpage. A programmer with
some skills in JavaScript and computer graphics may modify the trackball or try to
add a new trackball to obtain a different interaction, or to customize the rendering
by changing the shaders or the rendering of the scene. More expert developers
can add new elements to the scene, setup new event hooks and heavily modify the
viewer.

3.2.4 Online and Offline Deployment

While the 3DHOP framework has been designed for online applications, we also
made possible its use on a local machine. Given its minimal interface, compatible
with touch screens, and the ability to work without a dedicated server, 3DHOP is a
good candidate for the creation of multimedia kiosks and interactive displays running
on local machines inside a museum or an exposition. When deployed on the Web,
3DHOP does not require a dedicated server or server-side computation; some space
on a Web-accessible server is enough to publish visualization webpages. This makes
deployment easier also for institutions without complex IT infrastructure (like most
museums); moreover, this self-publishing also avoids property and copyright issues
(extremely important in the CH domain) related to the storage of restricted-access
data to remote servers.

3.3 Inside the 3DHOP Framework

To harmonize the description of the features characterizing the proposed solution,
and also to promote a easy comparison with the systems introduced in Chapter 2,
once again we decided to resort to the schematic model proposed Figure 2.4.

The discussion will be so structured following the classic five macro-group
pattern (DATA, SCENE, INTERACTION, INTEGRATION and PUBLISHING),
as usual covering the full spectrum of peculiarities, ranging from low level to high
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level functionalities.

3.3.1 Complex Data Management

As we have seen in §2.2.2 the efficient visualization of 3D data over the Web is
mostly related to three key elements: poor computational resources, low network
capabilities, and size of data to process. The latter point arise to dominant factor
in the specialized context of CH, usually characterized by 3D content with relevant
intrinsic complexity. For this reason, one of the most important features of 3DHOP
is the ability to manage very high resolution 3D datasets by using a multi-resolution
approach.

The multi-resolution approach ensures efficiency of both data transfer and
rendering. Progressive schemes generally split the geometry into smaller chunks.
For each chunk, multiple levels of detail are available. Transmission is on demand,
requiring only to load and render the portions of the model strictly needed for the
generation of the current view. While this approach is key to being able to render
very large models at an interactive frame rate, of course it is also highly helpful
with respect to the data transfer over a possibly slow network, since the data
transferred will be divided into small chunks and only transferred when needed.
The advantages of using this types of methods are the fast startup time and the
reduced network load. The model is immediately available for the user to browse
it, even though at a low resolution, and it is constantly improving its appearance
as new data are progressively loaded. On the other hand, since refinement is
generally driven by view-dependent criteria (observer position, orientation and
distance from the 3D model), only the data really needed for the required
navigation are transferred to the remote user.

The 3DHOP solution is based on a multi-resolution data structure described
in [PD15, PD16], which allows the client to efficiently perform view-dependent
visualization. Together with the low granularity of the multi-resolution this
approach allows interactive visualization of large 3D models with no high
bandwidth requirements (a 8 Mbit/s is sufficient for good interaction with huge
models).

Smaller 3D models can also be managed using a single-resolution representation;
currently, 3DHOP supports single-resolution models in PLY format [Geo14] (but
more importers will be added as future work). In this case, the model file is fetched
from the server as a whole and parsed by 3DHOP. This solution is ideal for small
geometries (less than 1MB), generally used to give a context to higher-resolution
entities or small modeled 3D meshes. The management of geometries, may they be
multi-resolution or single-resolution, is completely transparent to the user.
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Background: Offline Visualization of Huge 3D models

To handle large geometries over a network is certainly a relevant issue for some
Web3D domain. However, the visualization of complex 3D content has been a
trouble in Computer Graphics well before the possibility to have peculiar Web-based
solutions.

Some of the issues related to 3D streaming had to be faced also in the offline
context, and different seminal approaches have been proposed, like LOD
based [RB93, FS93] methods, or the already mentioned solution proposed by
Hoppe [Hop96] (game-changing, introduces the progressive refinement of the
geometry during visualization). Following this work, a number of so-called
multi-resolution and multi-triangulation solutions have been proposed. They
mainly differ on the multi-resolution representation [SG05, CGG+05], on the
support of color encoding [BGB+05], or on other aspects (a survey on these
method was provided by Zhang [ZHXJ10]). Alternative research tracks are
devoted to other types of data, like point clouds [WS06].

More recent work on this topic was devoted to the issue of data
compression [LLD12] or to overcome the fact that multiresolution was mainly
created for visualization and not for processing [GS12].

In general, the data structures used for offline visualization may be adapted to
Web rendering, provided that they are compliant with its requirements (i.e.
latency, decompression time). An alternative proposed solution was to still devote
the rendering effort to a powerful server, and send to the user only a rendered
image of the high resolution mesh [KTL+04].

Large Models Handling in 3DHOP

Displaying high resolution models on a Web browser is not just a matter of
optimizing the rendering speed, but it also involves considering the loading time
and network traffic caused by transferring a considerable amount of data over the
network. While WebGL gives direct access to the GPU resources, how data is
transferred from a remote server to the local GPU is up to the programmer.
Loading a high resolution model in its entirety through the Web requires
transferring a single chunk of data on the order of tens of megabytes: this is
definitely impractical, especially if the user has to wait for this file transmission to
end before seeing any visual result.

Starting from these premises, we decided to implement one of the state of the
art multi-resolution schemes, called Nexus [Vis13], on top of the SpiderGL
library [Vis10], obtaining very good performance. Nexus is a multi-resolution
visualization library supporting interactive rendering of very large surface meshes.
It belongs to the family of cluster based, view-dependent visualization algorithms.
It employs a patch-based approach: the 3D model is split (according to a specific
spatial strategy based on KD-trees) into patches; these initial patches represent
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the highest level of detail of the multi-resolution representation. The number of
triangles in each patch is halved, and adjacent patches are joined, in order to keep
the number of triangles more or less uniform per patch. The different levels of
detail are generated by iterating this process (bottom-up). The result is a tree
structure containing each portion of the input object at multiple resolutions and,
more importantly, the patches are organized and built to always match on common
borders. This allows them to be assembled on-the-fly to build view-dependent
representations at variable resolution.

At rendering time and based on the current view, the system decides which
patches are better suited to represent the object given a target rendering speed and
the maximum geometric error. Moreover, the batched structure allows for aggressive
GPU optimization of the triangle patches, since the latter are encoded with triangle
strips thus boosting GPU rendering performance.

At initial loading time, the “map” of the patch tree is downloaded, together with
the lower-resolution patches. Then, depending on the view position, orientation and
distance, the rendering algorithm decides which patches have to be fetched from
the server to improve the current visualization, and queues a request. When each
selected patch has been downloaded, the rendering is updated. The system continues
this process of rendering-deciding-fetching-updating, trying to balance the amount
of memory/data needed, the quality and speed of rendering and the network load.

All the data is contained in a single file. 3DHOP exploits the HTTP protocol
capability to randomly access binary files to get specific data chunks inside each
file, thus transferring only the needed portion of data. In this way, the viewer is
able in a very short time to display a low-resolution version of the object, which is
then progressively refined according to the user interaction, since the updates are
view-dependent.

The conversion from a single-resolution 3D model to our multi resolution format
is a one-time operation, done in a preprocessing phase. The 3DHOP user will convert
its 3D assets using an executable (also open source, and included in the 3DHOP
distribution). The obtained file is ready to be deployed on the Web server. It is
important to note that our streamable multi-resolution encoding does not require
server-side computation and resident data-streaming daemons. It is the client that
automatically fetches data from the inside of the file, jumping from one location to
another in the data structure.

Furthermore, as we have seen before, multi-resolution allows also some degree
of data protection. Most institutions do not want their 3D data to be downloaded
without permission. When using a multi-resolution encoding, the high resolution
3D model is never transmitted to the remote user in a single file but in a set of pieces
encoded with a proprietary data structure. In this way, the malicious copy of the
3D data becomes quite complex and requires the design of ad-hoc procedures for
downloading the whole geometric data and recombining them in the original model.

The first Nexus implementation [PD15] has been followed by a number of
enhancements (mesh compression, point clouds support, textures handling), able



Inside the 3DHOP Framework 65

to further improve rendering possibilities and performances [PD16]. To give a
practical demonstration of these capabilities we provide here some interesting data
on a relevant selection of the introduced examples:

• Tutankhamun viewer (Figure 3.1): this example uses a multi-resolution Nexus
model (compressed, textures embedded), for a total of 5 million triangles and
32 MB size (original fixed resolution models overall size: around 250 MB,
textures included);

• Capsella Samagher example (Figure 3.6): this example uses 2
multi-resolution Nexus models (compressed, textures embedded), for a total
of 10 million triangles and 142 MB size (original fixed resolution models
overall size: around 270 MB, textures included);

• Helm viewer (Figure 3.5): this example uses 2 multi-resolution Nexus models
(compressed, per vertex color), for a total of 15 million triangles and 50 MB
size (original fixed resolution models overall size: around 305 MB);

• Luni Statues viewer (Figure 3.2): this example uses 8 multi-resolution Nexus
models (compressed, per vertex color), for a total of 50 million triangles and
168 MB size (original fixed resolution models overall size: around 1 GB).

Comparing 3DHOP and Existing Solutions

We tested our rendering framework comparing it with the current state of art, in
order to have tangible feedback about the effectiveness of our technical solution.

We chose to stream online the multi-resolution version of a relatively simple mesh,
the Happy Buddha model (1M triangles, vertex color, 22 MBytes as binary .PLY file,
previously used in similar comparison works [LCD13]), with some of the approaches
previously mentioned. In these test we used a limited bandwidth internet access
and, of course, the same hardware and software equipment (desktop PC equipped
with Intel Dual Core i3-3220 CPU at 3.30 GHz, 8 GB RAM, NVidia GeForce GT 620
1 GB RAM, OS Windows 8.1 and Google Chrome Browser ver. 43.0.2357.124m).
Since our framework uses a view dependent algorithm, for the sake of accuracy, it
must be said that all the test have been run at Full HD screen resolution (1920x1080
pixels, aspect ratio 16:9), however, when handling around 1M triangles per model
(as in the Happy Buddha case) our rendering system is indifferent to this parameter.

We compared the 3DHOP framework results against the Google
WebGL-loader [Goo11c], the X3DOM binary POP Buffer Geometry [LJBA13]
approach, the Sketchfab [Ske14] platform, and the Unity3D [Uni05] graphics
engine, in order to have a wide selection of competitors, ranging from complete
system solutions (X3DOM, Sketchfab and Unity3D) to stand-alone streaming
services (WebGL-loader), from progressive mesh techniques (POP Buffer
Geometry) to hybrid systems (WebGL-loader) and to more standard data
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Figure 3.3: Comparative representation illustrating the Web rendering of a 1M triangle
mesh on a 5 Mbit/s Internet access, using the 3DHOP [Vis14a] framework (first row),
WebGL-loader [Goo11c] (central row) and X3DOM [Fra09b] binary POP Buffer Geometry
(last row). All these test have been run on the same Web server to ensure equal conditions.
From the left screenshots are taken respectively at 500ms, 1s, 1.5s, 2s, 4s and 6s after
loading the webpage.

streaming procedures (Sketchfab and Unity3D), from completely free projects
(WebGL-loader and X3DOM) to mixed solutions (Sketchfab and Unity3D).

The results of this comparison can be easily understood by observing the
screenshots in Figure 3.3, representing the time-lapse visualization of the
aforementioned approaches, respectively caught after 500ms, 1s, 1,5s, 2s, 4s and 6s
from launching the loading of the Web pages. Under these conditions, with limited
bandwidth (5 Mbit/s, typical 3G+ connection speed) and meshes with millions of
triangles, it can be easily seen that 3DHOP (first row in Figure 3.3) is performing
better with respect to the WebGL-loader algorithm (central row in Figure 3.3) and
to the X3DOM POP Buffers system (last row in Figure 3.3). Readily after the
webpage loading (500 ms), a rough version of the geometry is already visible, and
can be used for user interaction.

It should be noted that the Sketchfab and Unity3D results do not appear in
Figure 3.3; this because both Sketchfab and Unity3D viewers do not use (or just
adopt simple) progressive loading schemes, and the model has to be nearly fully
downloaded before it is visible. In both cases, the Happy Buddha model loaded
after nearly 6 seconds from the Web page launch. It is clear that this gap with
respect to progressive multi-resolution approaches is emphasized when the mesh size
grows or the bandwidth decreases; on the other hand, it is also true that progressive
multi-resolution systems may continue updating and streaming data also after the
other systems will have transferred the whole model.

This eventuality can also be found by observing the data in Table 3.1. In this
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3DHOP WebGL-loader X3DOM

3,0 Mbit/s 0,3 / 9,5 2,0 / 19,4 0,6 / 44,5
5,0 Mbit/s 0,2 / 4,8 1,1 / 10,8 0,6 / 24,8
8,0 Mbit/s 0,2 / 3,9 0,7 / 6,8 0,6 / 15,2

20,0 Mbit/s 0,2 / 3,7 0,3 / 2,7 0,5 / 6,0
50,0 Mbit/s 0,2 / 3,6 0,2 / 1,1 0,5 / 2,4

Table 3.1: Web rendering statistics for the Happy Buddha mesh (1M triangles) at
different bandwidths (3, 5, 8, 20 and 50 Mbit/s), using 3DHOP [Vis14a] framework,
WebGL-loader [Goo11c] and X3DOM [Fra09b] binary POP Buffer Geometry. Each table
cell shows two average time (values in seconds): the first one concerning the start of the
rendering (time that the user will wait before seeing anything), the second one related to
the end of the rendering (whole 3D model drawn time). All these test have been run on the
same Web server to ensure equal conditions (bold values represent the best performance
in each individual case).

case the same Happy Buddha test previously presented, was performed at different
bandwidths (ranging from 3 to 50 Mbit/s), this time taking into account the latency
of the rendering (i.e. the time that the user will wait before seeing anything after
running the webpage) and the end of the data streaming process (i.e. the time
taken to render the higher resolution version of the model, given the starting point
of view). Under the aforementioned conditions the table clearly shows indeed that on
fast networks (20 or 50 Mbit/s) progressive multi-resolution approaches can employ
a small amount of extra time to load the entire 3D model compared to the other
approaches (an event that for our multi-resolution algorithm does not occur with
lower bandwidths, when 3DHOP performs better than any other). However it should
be stressed once again that our framework is able to provide to the final user a draft
(but illustrative and ready to use) version of the whole 3D model practically with no
waiting times (300ms in the worst case, with 3 Mbit/s Internet access), consistently
out-performing other competitors in any situation (regarding this feature).

It is worth remembering that, to ensure equal conditions, all the tests in this
section have been run on the same Web server, and, with respect to the data in
Table 3.1, they have been obtained by averaging five different measurements per
cell data. Finally, it is right to clarify that, in order to obtain results less dependent
on external network interferences, during these tests the server and client ran on the
same network infrastructure, but that the acquired results are comparable with those
obtained with the client and server placed on two different network subsystems.

Currently, no quantitative test has been performed on mobile devices (since the
mobile compatibility of 3DHOP is still not complete), but first results show that
the performance of our framework will be good also on these systems (although the
POP Buffer approach is extremely efficient on mobile devices due to the lack of
decompression times).
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A more detailed description and evaluation of the current version of the view-
dependent multi-resolution engine can be found in a dedicated paper [PD16].

3.3.2 Declarative-Like Scene Setup

3DHOP has been designed to work with a few high resolution geometries, and not
with really complex scenes made of hundreds of entities. However, it is still
necessary to define a scene to initialize the viewer. The definition of the scene has
been implemented in a declarative fashion. All the scene elements are declared as
JavaScript JSON structures, with properties and values, and assembled into a
comprehensive scene structure. This structure is then parsed by 3DHOP at
initialization time to create the scene. We chose to use JSON because it is fairly
easy to write and parse, it is human readable and easy to understand; XML would
have been a good choice too, possibly a bit more verbose. With respect to a
completely DOM-integrated approach, like XML3D, we are still somehow
disconnected; the declarative approach is used to define the scene, which is an
entity directly managed by the 3DHOP component, and all the interaction with
the DOM passes through the 3DHOP viewer object, following the idea to create a
self-contained component. We know this somehow offers a lower level of
integration and less freedom, but also ensures a more immediate approach (just
add the basic component to the webpage and it is ready-to-go) and a higher
reusability (thanks to being self-contained).

The 3DHOP scene is composed of different elements: the mesh and the instance
are the most basic. A mesh is simply a 3D model (single or multi-resolution).
An instance is an occurrence of the mesh in the scene. This separation seems an
unnecessary complication, given that the tool aims to be simple, but it is nevertheless
the simplest way pursuing an efficient geometry instancing, especially when multiple
objects share the same geometry.

Meshes and instances may have an attached transformation, that may be
specified in three different ways: setting the translation, rotation and scale
components (through 3-number vectors which determines the translation on the
axis, the Euler angles of rotation, or the scale factors along the three spatial
directions); as a roto-translation matrix (a 16-number vector); or by using the
predefined SpiderGL functions. The most obvious use is to exploit the mesh
transformation to bring the 3D model into a basic position/orientation (e.g. to put
a 3D model originally not perfectly aligned to its axis into a “straight” position)
and then to locate each instance, to set its specific position/orientation/scale.

An example of declaration of meshes and instances is the following:

meshes: {

"Laurana": {

url: "singleres/laurana.ply" },

"Gargoyle": {

url: "multires/gargo.nxs" },
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"Box": {

url: "singleres/cube.ply",

transform: {

matrix:

SglMat4.scaling ([13.0 , 0.5, 10.0])

}

}

},

modelInstances: {

"Lady": {

mesh: "Laurana",

transform: {

matrix: [1.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0,

0.0, 235.0, -50.0, 1.0]

}

},

"GargoRight": {

mesh: "Gargoyle",

transform: {

matrix:

SglMat4.mul(

SglMat4.translation(

[120.0 , 0.0, 150.0]) ,

SglMat4.rotationAngleAxis(

sglDegToRad ( -90.0),

[0.0, 1.0, 0.0]))

}

},

"GargoLeft": {

mesh: "Gargoyle",

transform: {

translation : [-120.0, 0.0, 120.0]

}

},

"Base": {

mesh: "Box",

transform: {

matrix:

SglMat4.translation(

[0.0, -12.5, 0.0])

}

}

},

In this example a few simple elements are instantiated and arrayed in space,
with the corresponding scene visible in Figure 3.4. A mesh element having the
shape of a cube is firstly scaled to become the base of the example 3D scene, and
then positioned at the instance level. The other models are arranged (translated or
rotated and translated) onto the base at instance level; the two gargoyles share the
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Figure 3.4: A simple scene in 3DHOP [Vis14a] created by instancing geometries and
applying transformations.

same mesh geometry.
A 3DHOP scene includes many other elements, which are presented in the

following: e.g. the trackball (used to drive the interaction) or the hot-spot elements
used for picking. General scene parameters (e.g. the field of view and the custom
scene centering) are also declared in the same way.

The declarative approach also has the advantage of more easily managing content
retrieved from a database. The scene description is a JavaScript structure which
can be easily filled with data retrieved by a query to a database; this would be less
straightforward using an imperative-like setup.

3.3.3 Interaction Components

A 3D viewer is not just a rendering engine, but also includes the components
required to implement the user interaction. 3DHOP mostly uses the World In
Hand metaphor (see §2.4.3), where the camera is fixed and the object is
manipulated by the user in front of it, generally using a trackball.

It is difficult, if not impossible, to create a single all-purpose trackball, able to
cope with the specific geometric characteristics of every possible object. For this
reason, we decided to implement a series of basic trackballs, letting the user to
choose the more appropriate one. At the moment, the 3DHOP distribution includes
four different trackballs (others could be added in the future):

• Full-Sphere: it is the trackball providing the more free interaction. It enables
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the user to rotate the object around all axes at the same time.

• TurnTable: this is the most accessible trackball, especially for final users not
used to interacting with 3D scene. It provides rotation around the vertical
axis and tilting around the horizontal axis. With this trackball it is possible to
reach almost all view positions around an object in a simple way, maintaining
its verticality (e.g. preventing to rotate a statue head-down, feet-up).

• TurnTable-Pan: this trackball is the most flexible one, and it is an extension
of the previous one. It add the feature that allow the user to pan across the
object, changing the center of rotation of the scene. It gives more freedom to
explore the objects, especially when zooming close to the surface.

• Pan-Tilt : this trackball is the more specialized one. It is tailored to present
bas-reliefs or objects whose detail is mostly located on a single plane.

Having a series of basic trackballs, implemented with simple, open and
documented code, will allow developers to add new interaction modes coping with
specific visualization needs. For this reason, each trackball in the distribution is a
separate file, making it easier to use them as a codebase.

Trackballs can be configured with limits on their axes, to restrict the position
reachable by the user. This is useful to avoid the user going, for example, below
ground level in buildings, or behind objects with only a frontal part (like bas-reliefs).
Trackballs can be also animated (we present an example in §3.3.4).

In each 3DHOP viewer/installation there is only one trackball selected
(TurnTable trackball is the default). To explicitly choose and configure a trackball,
the developer has to specify the trackball element of the scene:

trackball: {

type: TurnTableTrackball ,

trackOptions: {

startPhi : 0.0,

startTheta : 0.0,

startDistance : 2.5,

minMaxPhi : [-90, 120],

minMaxTheta : [-10.0, 75.0],

minMaxDist : [0.5, 3.0]

}

}

In the example above, the developer has chosen a TurnTable, starting exactly in
front of the object (phi is rotation around vertical axis, theta the elevation angle)
but a bit far from the object (distance 2.5 means that the camera distance is 2.5
times the size of the object bounding box). The trackball is limited both in the
horizontal rotation (a bit to left, more to the right) and in the vertical one (not
much below, a lot above); it is also impossible to go nearer than 0.5 and farther
than 3.0 units from the object (again, expressed in multiples of the object size).
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Like in all configurations of 3DHOP components, it is not needed to specify all the
parameters, since the unspecified ones will retain their default; it is sufficient to
specify only the ones that need to be changed.

This approach, based on the trackball metaphor, is perfect to manipulate
“objects”, but it makes it much more difficult to navigate other types of geometries
(such as buildings and terrains). “Ad-hoc” interaction components more suited for
exploring these complex scenes (such as maps-like approach for terrain models, or
waypoint-based path for the interior of a building) are currently in testing phase.

3.3.4 DOM Integration

As introduced before, we wanted to create a framework offering basic viewers (if no
other functions are configured), but also visualization components able to interact
with the rest of the webpage. To this aim, we added a series of exposed functions
and events, usable by a developer to allow 3DHOP components to interact with
the rest of the Web page logic. Our idea was to implement multiple, self-contained
functions, with no high-level semantics attached, in order to provide the developers
with a toolbox.

Trackball Automation

The most basic interaction between a Web page and the 3D visualization component
is the control of the trackball. 3DHOP trackballs are able to give feedback on their
current position: an exposed JavaScript function (getTrackballPosition) returns a
structure containing the current state of the trackball. Another provided JavaScript
function (setTrackballPosition) can be used to instantly move the trackball to a
specific position by feeding it with a new state description. Additionally, it is possible
to animate the trackballs to reach a certain position: instead of instantly changing its
state, the camera follows a smooth animation path linking the current position with
the specified one. These functions allow the content creator to build, for example,
a bookmarking mechanism for pre-selected views, a “share this view” button or a
guided animated tour around the object. An example is shown in the Helm viewer
(Figure 3.5), where the buttons on the right side of the window move the trackball
to the views visually represented by the small icons.

Visibility Control

Most visual presentation tools implement the control of the visibility of the different
models. Model instances in 3DHOP can be configured in order to be visible or
invisible at startup (visible is the default), and their visibility status can be changed
at runtime using specific JavaScript functions exposed by the tool. The visibility
feature can work both on a single instance (using the instance name as selection
ID), and on a group of these (using a tag-based system as selection ID).
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Figure 3.5: The Helm viewer: 3DHOP [Vis14a] allows to inspect an Etruscan helm
either in its current state (image on the left) or in its virtual restoration version
(image on the right). The user may switch between the two versions (using the
ViewRestored/ViewActualState button), explore the model (it adopts the TurnTable
trackball), and use the links on the right side of the window to go to interesting views of
the model (these buttons will animate the trackball to reach the selected view position).

The tag-based selection is an interesting trick that allows the visibility functions
to act on all instances that have a specific tag. Model instances have a tags property,
which is basically a series of strings. We can assign to each instance the tag of each
“group” it belongs to or, if necessary, a unique tag. Using this simple mechanism,
it is possible to address single entities as well as groups.

3DHOP exposes a function to set visibility and another one to toggle the visibility
of a set of instances. For example, the Luni Statues viewer (Figure 3.2) presents
four statues, each one composed of an original part and an integration; it is possible
to make visible/invisible each statue either as a whole, or all the original parts or
all the integrations of the entire set or, finally, the original/integration parts of a
specific statue. The original part of statue #1 has tags [“figure1”, “original”]; the
integration part of statue #1 has tags [“figure1”,“integration”], and so on for the
other figures. Therefore, starting from a 3D scene where all the models are visible,
in order to make visible only the whole statue #1, the developer will use these calls:

setInstanceVisibility(HOP_ALL , false , false);

setInstanceVisibility("figure1", true , true);

Conversely, to show only original parts for statue #1 and #3:

toggleInstanceVisibility("integration", false);

setInstanceVisibility("figure2", false , false);

setInstanceVisibility("figure4", false , true);

where HOP ALL is a constant used to select all of the instances; the second



74 3. 3DHOP: 3D Heritage Online Presenter

parameter of setInstanceVisibility is the new visibility state; and the last
parameter of both setInstanceVisibility and toggleInstanceVisibility functions is
used to force a redraw.

Of course, the tag selection system does not prevent using instances name IDs
to drive the visibility status of a single 3D object. Also in this case 3DHOP exposes
a function to set and another one to toggle the visibility of the instances (these
methods work in the same way of the tag-based ones, with the only difference to
accept as input the instance name string instead of the tag string). “By name”
visibility controls are used in the Helm viewer (Figure 3.5) to switch between the
helm before and after restoration: in this example there are two instances of different
meshes in the same positions, and to switch between the two, one is hidden while
the other is shown.

Hot-spots and Picking

Another widely available feature in webpages is the presence of clickable hot-spots.
This feature is often connected to something happening in the 3D visualization or
elsewhere in the webpage. Depending on the visualization scheme, it may be
interesting to have a picking component able to detect a pick on a hot-spot, but
also to detect a pick on an instance of a 3D model. 3DHOP does support both
levels of interaction. In order to use this feature, the developer shall use two
JavaScript functions to handle the picking (of hot-spots and instances) and register
these two functions to the handles exposed by 3DHOP. The first function (hooked
to onPickedInstance) is invoked every time a model instance has been clicked, and
returns the name of the picked instance. The second one (hooked to onPickedSpot)
is invoked every time a hot-spot is clicked, again returning its name. A third
function, which returns the exact XYZ coordinate of the clicked point has been
also developed, and it is currently available in all the latest 3DHOP releases.

In order to be more flexible, instead of just a single point, a hot-spot may have
an arbitrary shape and geometry. This is obtained by associating a mesh to the
hot-spot, similarly to the way a 3D model is specified when declaring an instance (a
geometry is declared as a mesh, and then used in the declaration of the hot-spot).
In the simpler cases, a hot-spot can be defined using a sphere or a cube model,
moved to the correct position and appropriately scaled. In more complex situations,
the user can provide a specific geometry, for example created using a 3D modeling
tool. Picking is implemented using a basic CG method: when picking, the scene is
rendered in an off-screen buffer, with each pickable object rendered as a solid unique
color, which encodes its ID, while non-pickable objects are rendered solid black. The
picked pixel is retrieved from this buffer: if black, nothing has been picked; if non-
black, the color is transformed back into the ID of the picked object. This method
does not require too many resources, and works pretty well also on complex scenes.
The picking mechanism also works in real time when the user moves the mouse,
thus obtaining an “onOver” hook, and enables the hot-spot geometry to light up.
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This feature may be deactivated when the scene is too complex, to speed up the
rendering.

Hot-spots may be made active or inactive using a tag-based mechanism similar to
the one used in the visibility control, making it possible to define “hot-spot groups”
which can be independently activated/deactivated (e.g. to show different layers of
information or linking). Each hot-spot may have a specific color and an associated
cursor.

An example of this kind of interaction is provided in the Capsella Samagher
viewer (Figure 3.6): in this example, when a hot-spot is picked some related
information (an image and a descriptive text) is shown in the left-most portion of
the Web page, and the view over the 3D model is moved to better frame the detail
(using the trackball animation feature).

Figure 3.6: The Capsella Samagher viewer: in this 3DHOP [Vis14a] example, the antique
reliquary and its lid are presented with hot-spots (light-blue regions). The hot-spots, when
picked, centers the view over the hot-spot area and show the corresponding descriptive
content (images and text) in the left-most part of the webpage.

3.3.5 Publishing with 3DHOP

The trade-off between ease of use and flexibility is a major issue when creating a tool
for non-expert developers. If the features are too simple or restricted, users with
particular needs may not find proper support; on the other hand, an increase in
flexibility could reduce simplicity of use. For this reason, the 3DHOP tool has been
designed with different levels of access, to be as straightforward as possible for the
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more simple cases but, at the same time, able to provide enough configurable features
to support the huge variability of Cultural Heritage artworks and applications. Users
with knowledge of JavaScript programming and Web design will have no problem
in using the framework, since its basic paradigm mimics the one normally employed
in standard Web development.

3DHOP for Unskilled Content Creators

Developers with limited programming skills may still use the framework using one
of the following strategies:

• Zero configuration: since all the components have a set of safe defaults, it
is possible to create a visualization page without configuring anything. This
“minimal” visualization page is contained in a folder of the distribution, and
can be readily used by the most inexperienced of users, since it is only necessary
to change the 3D model file.

• How-To: in addition to plain documentation, we opted to present the
different features in a specific How-To section that provides descriptions of
the visualization component detailing the parameter-based configuration.
These pages contain reusable examples that can be modified following the
content of the how-to.

• Templates: in the Gallery page of the 3DHOP website, it is possible to
find various examples (with different levels of complexity) which cover typical
cases of usage in the CH field. The idea is to provide the developers with non-
trivial usable templates, which can be used or customized with just minimal
changes. After changing just the 3D model file (and the graphic elements, if
needed), a completely unskilled developer may create their own visualization
page without even modifying the HTML code. We are currently working on
better documentation for the templates, and on cleaning-up their HTML code
for simpler use.

3DHOP as a Codebase

Though the 3DHOP tool is able to provide even unskilled content creators with a
basic and universal high resolution Web3D viewer, there are many projects where
more specific solutions are needed to fully exploit the data and to reach the
communication goals. In these cases, 3DHOP may also be seen as a codebase for
the creations of more skilled users.

In fact, the modular structure of the tool facilitates the implementation of new,
specialized components, or the tuning of existing ones, giving to CG programmers
and/or Web developers the chance to heavily modify 3DHOP to cope with the
particular needs of a project. The modules constituting 3DHOP have been thought
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to be organized in layers, which starting from the HTML high level definition of
the viewer (top layer), trough several steps arrive until the lower level JavaScript
libraries (innermost layer) responsible for the viewer basic behaviors.

More in detail, 3DHOP relies on two main modules (that can be imagined just
underneath the HTML layer): the first one is related to the 3D component of the
viewer (scene setup, rendering, streaming, etc.), and the latter responsible for the its
interface. These two modules (called “presenter” and “init”, and corresponding to
two specific JavaScript files in the 3DHOP distribution), represent the firsts elements
to edit for a skilled creator looking for a deep 3DHOP customization.

The “init” interface module is essentially an independent element (3DHOP could
work properly even without any interface), and represent just one of the infinite
possibilities for building an interface on the top of 3DHOP. Strongly related to
the CSS definition of the viewer, and with the skin elements in its distribution, it
mostly depends on the jQuery library [Res06] (lower layer of the viewer structure)
for activate all the appearance effects characterizing the 3DHOP interface.

Conversely the “presenter” module represents a core element of the viewer,
mandatory in any kind of visualization. Indeed, it contains the parser for the 3D
scene setup, as well as the definition of the shaders responsible for the 3D scene
appearance. It uses the SpiderGL library [Vis10] (lower layer of the viewer
structure) for accessing the WebGL API [Khr09], and is linked to a number of
3DHOP sub-modules devoted to drive specific viewer peculiarities.

Figure 3.7: The Pompeii explorer: in this experiment 3DHOP [Vis14a] allows to explore
the entire Insula V 1 of Pompeii. Navigation is controlled by mouse inputs (using a
custom terrain-enabled trackball) or by clicking on the 2D MiniMap (see on the right of
the window). The viewer keeps track of the current location of the user, showing the name
of the room and of the house (text fields circled in red in the image).

An example of sub-modules are the interaction elements. Defined in 3DHOP
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as trackballs (see §3.3.3), these modules specify different interactions with the 3D
scene. At each trackball corresponds a single JavaScript file, to make easier for the
content creator to add, remove, or modify each of them. Another example of sub-
modules are the model importers. 3DHOP provides two modules aimed at handling
the supported formats: PLY for single-resolution models and Nexus for the multi-
resolution ones (see §3.3.1). Also in this case the two modules are specified in two
different JavaScript files to make easier modify or expand the original format loaders
configuration.

Modifying the modules composing the layered structure of 3DHOP, starting from
top and eventually going down, is the best way in using 3DHOP as a codebase. An
example of this modification strategy is the application designed for the Web-based
exploration of an entire insula (an area surrounded by four major streets) of the
Pompeii archaeological site. In this case the basic version of 3DHOP was used as
a starting point to create a customized viewer for the Pompeii model, presented in
Figure 3.7.

The added value of this specific modification is the work done to extend the
basic trackball to an interaction interface suited to the exploration of
terrain-with-structures models. This system offers a double interaction method: a
bird-view navigation and a first-person-view navigation. Both navigation methods
are able to follow the height of the ground level, and collision detection with walls
is available in first-person navigation. This new 3DHOP incarnation features also a
new component: the interactive MiniMap (an HTML5 canvas entity, already
introduced in 2.4.3) placed on the right-most portion of Figure 3.7. In each instant
of the navigation, the current position of the viewer is shown on the map; clicking
on any location in the MiniMap, the viewer is virtually moved to the desired
location. Moreover, the system keeps track of the position of the viewer, not just
showing the user location on the MiniMap, but also showing the name of the
specific building/room the user is currently visiting (see the two textual fields on
top-right, circled in red in Figure 3.7), retrieved from an existing Web repository.

3.4 Results

3DHOP is a solution that aims at providing an easy way to create advanced 3D
Web publications, offering accessibility at different utilization levels. Its structure
has been designed for being at the same time a perfect enabling solution (for the
Web3D community) to fill the 3D Web publishing gaps outlined at the beginning
of this Chapter, as well a helpful tool (for the CH community) to create and share
advanced content on the Web, usable not only for dissemination purposes, but even
in experts and practitioners work-flows.

3DHOP is an ongoing project: it has significantly grown since the first release,
and still is going to grow. Since it is a modular framework, there are many new
components (or variations of the existing ones) that can be added to support the
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Figure 3.8: Four examples of independent projects developed by the community using
3DHOP (in clockwise order starting from the upper left): the MorphoMuseum [LO14,
LO16] platform: publishing and sharing online 3D models of vertebrates (the panel on the
right contains specimen infos and links to the related article); the Cabinet De Curiosites
3D [Mus15] repository: presenting a virtual exhibition of 3D models, each one paired
with several informative media (text, images, etc.); the Megafauna 3D [Uni16] experience:
discovering the 3D fossils of the animals that lived in South America 10.000 years ago
(the interactive platform is mostly aimed at educational purposes); the Zamani [Uni14]
project: providing metrically accurate digital representations of African historical sites on
the Web (this example seeks to provide data for research and education, for restoration
and conservation, increasing awareness of tangible Cultural Heritage).

creation of more flexible and effective interactive visualizations.

Some of the 3DHOP future enhancements and extensions could refer to these
features:

• Novel navigation and visualization components : new trackball types and new
scene manipulation functions are on the development list. Examples are the
trackball used in the Pompeii explorer (Figure 3.7), supporting fly-over and
walk-on-the-ground modes, that will be documented and added soon to the
Gallery and the 3DHOP official distribution. Moreover, all geometries are
currently rendered using a few basic shaders. Our goal in the near future is to
provide different, configurable shaders, which should be selectively attached
to each instance.

• Dynamic definition of scenes : at the moment, the scene definition is static.
Once declared in the initialization, there is no direct way to modify the
parameters of the different entities (even if, the modular framework
structure, actually allow to indirectly act some dynamic changes). Our
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development road-map aims at reaching this functionality in a progressive
way, starting from being able to modify the associated transformations, then
to move to the other properties, and ending with the ability to dynamically
add/remove entities.

• Additional types of datasets : in the context of Web visualization, other types of
datasets could be effectively integrated into 3DHOP. An example is represented
by the handling of terrains as Digital Elevation Models (DEM). DEM are
defined in a 2D 1/2 space and can be managed more effectively than a 3D
model using specialized strategies. Exploring the possibility to handle a Web-
streamable multi-resolution representation (based on quad-trees) of a terrain
geometry could be very interesting for 3DHOP. Indeed, adding a DEM to a 3D
scene may be useful to better cope with applications that involve landscapes
of archaeological interest.

• New specialized analysis tools : currently 3DHOP provides several analytical
components specifically designed for the CH domain: directional light
control, measurement tools, planes sectioning, etc. In the future could be
valuable to integrate in 3DHOP other similar tools enabling more specialized
and complex analysis. A representative example of that may be represented
by a comparison tool, able to simultaneously and synchronously visualize two
different 3D models (superimposed or side to side), possibly also providing
visual effects for highlighting the differences between them, so enhancing the
possibilities to visually compare similar instances of the same object.

We conceived 3DHOP as an open source tool (the source code is available online
at [Vis14a]), so the extension and modification of the framework has been highly
encouraged since from the firsts implementations. Indeed, we believe that 3DHOP
has the potential to sprout an independent community of users, that could share
examples, exchange experiences, and create connections.

Following the first release we have been contacted by several users willing to
test and evaluate the framework, thus we are gathering suggestions and feedback.
Some of the most relevant third parties implementations of 3DHOP are reported in
Figure 3.8.

These external exploitations, together with some independent certificate of
merit (3DHOP got the honorable mention in the category “Best DH Tool or Suite
of Tools” of the Digital Humanities Awards 2015 ), seems to suggest a positive
appreciation of the 3DHOP design choices.

The results of this experience of design, development and testing, has been
published here:

• 3DHOP: 3D Heritage Online Presenter, Potenziani M., Callieri M., Dellepiane
M., Corsini M., Ponchio F. and Scopigno R., International Journal Computers
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& Graphics, Elsevier, ISSN: 0097-8493, Volume 52, page 129-141, November
2015; 1

The 3DHOP sources, a demonstrative gallery of examples, a complete set of
how-tos descriptions, the API docs, and additional contents, can be accessed at the
project official website 2.

1 c© 2018 Elsevier. Text and figures reproduced by kind permission of Elsevier.
2 http://3dhop.net

http://3dhop.net


82 3. 3DHOP: 3D Heritage Online Presenter



Chapter 4

Evaluating 3DHOP as a
Specialized, Direct Publishing
Tool

We have designed the 3D Heritage Online Presenter as a tool able to extend the
possibilities of efficiently creating specialized 3D content on the Web; and a core
point in this design was to make it a flexible tool, able to cope with simple publishing
tasks as well as complex, customizable solutions.

As we have already seen in Chapter 3, despite being a fairly new tool, various
examples of visualization pages built using 3DHOP can be already found online.
The fact that the majority of this pages have been developed by independent users
and content creators (i.e. without our help or support), can already be seen as
supporting our design choices, in terms of accessibility and ease of use. However,
most of these publishing efforts are limited to the creation of basic applications, in
which the viewer is used just a “dumb” container for the 3D content, with a limited
customization and poorly specialized on the presentation aims.

Since our aim was to design a tool that could be flexible enough to be heavily
customized for more specialized interactive presentation experiences, we think
that, to prove this point and the actual consistency of the design choices taken
when building our framework, a more comprehensive and thorough evaluation of
the 3DHOP capabilities is needed. For this reason, we have contributed to the
implementation of several publishing experiences aimed to test the real
effectiveness of the 3DHOP features previously introduced. Among those projects,
we present here two relevant testbeds, each focused to address different
communication needs.

Both the proposed case-studies explore the possibilities of a specialized Web3D
content creation, but while the first one propose an example of publishing aimed at
supporting a museum exhibition (dissemination to the public), the second one has
been developed for supporting scientific analysis (we are still limiting our test to the
direct publishing, i.e. the act of creating a visualization for a specific dataset, while
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we will explore the concepts of assisted, service-based and bulk publishing in the
next Chapter).

More specifically, the first contribute we present retraces the steps of a
publishing campaign that, starting from a very peculiar artifact (a modern-art
painting), 3D digitized for conservative and diagnostic purposes, will lead to the
design of a Web3D application to use in a virtual exhibition, as well as museum
kiosk in a real exhibition. In this case study, the 3DHOP code has been quite
customized, obtaining a framework tailored on the most interesting aspects of the
analyzed artwork. The resulting application tries to exploit the expressive power of
the 3D geometry presenting these information from an unusual point of view, with
the final goal to improve the visitors understanding and awareness about the
painting and the process of its creation.

In the second contribute, instead, we present a publishing experience aimed to
a more technical data presentation. In this case the main goal was to build a tool
supporting experts in their work of study and documentation of an archaeological
find. Starting from the availability of the digitized 3D geometry of the artifact,
together with a wide and heterogeneous set of analytical examinations on it, we
designed, through a substantial customization of the 3DHOP user interface, a
specialized Web3D application able to effectively present all these information. In
the resulting Web viewer the 3D models is used as main channel to manage and
display all the achieved scientific analysis and historical information about the
artifacts, integrated in a single reference system.

The introduced publishing actions, even thought aimed to cover different needs,
are characterized by a common “fil rouge”. These case studies have both been built
around the (high-resolution) 3D models, paying a particular attention (as we will see
in the following) to all the process leading to the generation of the 3D geometries.
This data-centric design has allowed us to exploits and evaluate the modularity and
the flexibility of the 3DHOP solution, cutting, pasting, and modifying the framework
features to fit the specific aims of the two experiences.

The positive assessment, in real-world applicative environments, of the outcomes
of this design approach, seems to validate the effectiveness of the choice endorsed
developing the proposed solution.

4.1 Alchemy in 3D: A Digitization for a

Web-based Journey

The primary purpose of a specialized Web3D publication very often is related to
dissemination. Thus, in this particular case study [Vis15c, CPP+15], we will propose
a real publishing action that, by exploiting the digitized 3D geometry of an important
modern-art painting (Alchemy, by Jackson Pollock), will present to the museum
public, with an engaging and immersive point of view, all the hidden aspects of this
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painting.
This journey starts with the accurate digitization and the careful processing,

aimed to generate a very precise high-resolution 3D model that proved to be useful
in different stages of the diagnostic and conservation campaign (the 3D model was
integrated in the conservation process, along with the other diagnostic
investigations), but not only in this step. Indeed, the most interesting use of the
3D model (at least for the purposes of this discussion) was in disseminating the
conservation and the diagnostic campaign to the museum visitors. This was done
following the idea of going beyond photo-realism and the use of the
scanner-measured geometry to try to interpret and understand the traces and signs
on the surface of the painting, in relation with the gestures and techniques used by
Pollock while painting this masterpiece. Combining the knowledge of the curators
and the metric data gathered in the digitization, we were able to discover and
validate several interesting aspects of the painting, in the direction of trying to
better understand (and present) the painting process which was, in the idea of the
artist, an essential part of the artwork.

3DHOP was selected to correctly convey this vision. It was used to create an
interactive kiosk and a Web application, to have the visitors navigate the 3D model
and interact with the artwork accessing the information related to the most relevant
geometrical details.

4.1.1 Overview

3D digitization technologies have found a fertile ground in the Cultural Heritage
field, and have proved to be useful for technical applications in the study,
conservation and restoration of artifacts. 3D digital models are also used a lot in
the presentation of artworks, especially when targeting a wide audience.

In the former case, for the technical use, 3D is regarded mostly as a source
of “pure data”, in terms of measurements, technical data and metric geometrical
information. In the latter, the visualization and presentation exploits the “visual”
side of 3D models, aiming at reaching the highest possible level of realism, in order
to give the user the impression of looking at the original object. The important fact
(which makes 3D so interesting) is that if the 3D data is captured properly, the very
same information may be exploited in these two ways.

Sometimes, these two opposite facets of the 3D data can be exploited together
leading to interesting results. In this specific project, for example, we tried to use
the visual geometrical facet of the 3D digital model to better understand and present
the painting Alchemy by Jackson Pollock (Figure 4.1).

Our idea was that, by isolating the geometrical component of the painting, and
looking at it with the trained eye of the 3D expert and of the curator, it would be
easier to read and interpret the signs and traces of the painting process, fulfilling the
idea of the artist, that the painting process is itself part of the artwork. Once done
that, we used those informations to design and build a 3D presentation (on-site and
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Web) tailored on the painting geometry, so as to explain to final user the gestures,
actions and techniques belonging to Jackson Pollock at work.

Alchemy Under Scrutiny

Alchemy by Jackson Pollock (Peggy Guggenheim Collection), is one of his most
famous works, and a major contribution to twentieth century art. Dating back to
1947, it was one of its first experiment of what will be later called “action painting”
and “dripping technique”. For the first time, Pollock placed the canvas on the
ground, fixed on a wooden frame, and proceeded in pouring/dripping/squeezing
paint on its surface.

Alchemy, being one of its earliest experiments, presents a noteworthy variety of
painting materials (metallic paint, industrial enamel, acrylics), of non-paint media
integrated in the structure of the painting (sand, pebbles, fibers, wooden sticks);
all these elements were laid out using a plethora of different application methods
(spatula, brushes, squeezed from the tube, dripped, splashed out of a syringe).

The traditional procedures of painting were revolutionized in the sense that the
action of laying out the paint became itself an artwork, while the final appearance
of the painting was not related to the notion of “descriptive shape” anymore, but
was basically a record of the act of painting. Similarly to a musical record, the
traces of colors, paints and materials on the surface should somehow play back the
gestures and movements of the artist at work. For this reason, looking at Alchemy
just as a “flat painted image” cannot fulfill the artistic aim of the painting, making
impossible for the visitors to get in touch with the vision of the artist.

Figure 4.1: Alchemy, by Jackson Pollock.

Our work took place in the framework of a larger project of conservation and
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diagnostic investigations. While being a relatively recent work of art, Alchemy was
in need of an accurate monitoring and conservation. The exposition of the painting
without protection in the gallery had caused an accumulation of dust and an opaque
patina was coating the paint, requiring a deep cleaning. The painting has a huge
amount of paint on the canvas, more than 3kg, that exerts on the canvas and on the
wooden frame a much stronger pulling force than a “standard” painting; the canvas
and the wooden frame had to be checked for signs of stress. Finally, Pollock has
used for this painting unconventional paints, made for the automotive industry, or
for indoor use and decoration, and certainly not formulated to be mixed together.
Their duration in time and their chemical interaction is unclear, and their state of
conservation had to be checked.

These reasons made the conservator of the Guggenheim collection decide to
carry out a conservation and diagnostic campaign, with the goal of better
understanding the artwork, while at the same time cleaning it. One of the
diagnostic investigations carried out in the campaign was the 3D digitization of the
painting. The high resolution 3D model that was created was used in different
moments of the conservation campaign, and it played a main role in the final
exhibition that was prepared to present the results to the public.

4.1.2 3D Data Acquisition and Processing

While the digitization and 3D model is not the primary focus of this experience,
it is anyway necessary to spend a few words on the acquisition and processing to
better understand the extent of the employed 3D model. To fulfill the designed
roles of scientific/geometric data to be interpreted by experts, and of visually rich
representation to be exposed to the visitors, it was imperative to have a high-quality
data.

Alchemy exhibits a surprisingly detailed geometry, and the presence of paints
with a quite diverse optical behavior (metallic, shiny, translucent) posed severe
difficulties for the digitization. Considering our target resolution, the size of the
painting was also non-trivial (221x114 cm). The acquisition took place before the
cleaning. This timing proved to be an advantage: the presence of dust and of
the opaque patina, while not changing the underlying geometry, helped a lot in
overcoming the problems of specular reflections and of metallic paint scattering.

We chose to use a structured light scanner, this technology could give us the
required level of detail (0.1 - 0.2 mm) and is a bit more resilient to specular reflections
with respect to other acquisition techniques. We used a GOM Atos scanner (see
Figure 4.2). Each single shot covers an area of around 60x40 cm at a resolution of
0.2 mm (25 points per mm2). In order to cover the whole surface of the painting,
including its sides, with enough overlap to ensure rigidity during alignment and data
redundancy to reduce sampling noise, we took 72 scans, for a total of nearly 120
millions of points. Two areas were acquired at an even higher resolution (100 points
per mm2).
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Figure 4.2: The 3D scanning of the painting.

The raw 3D data was processed with the MeshLab [Vis05] software, used for data
cleaning, alignment of range maps, creation of the triangle mesh and color mapping.
The result of the processing is a 3D model composed by 80 millions of triangles
covering the whole painting, plus two models at higher resolution for the areas of
detail, of around 100 millions of triangles each. On top of the obtained geometry, we
mapped a high resolution image (50 MPixels) obtained with a multi-spectral scanner
provided by the Istituto Nazionale di Ottica (INO-CNR), thus encoding in the digital
model both high resolution geometric and color information (see Figure 4.3).

4.1.3 Which Use of the 3D Model?

As said before, the main and general uses of 3D models are related to its technical
and scientific data, and to its ability to create photorealistic visualization. In this
sense, this project was not different.

The obtained 3D model was part of the diagnostic data gathered during the
campaign. It has been used, during the cleaning and the other analysis to help
guiding the cleaning process, to validate hypotheses and to map the local information
acquired with other devices. The 3D model of an object has a strong potential as a
“reference system”, as it is possible to map other types of information (for example,
the local analysis of the materials) onto the surface. As usual in these cases, the
3D data produced (raw scans and 3D models) will also be stored in the museum
archives, to be used as a technical documentation for any following conservation and
restoration actions, as it represents a precise, scientific snapshot of the state of the
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Figure 4.3: A rendering of the final 3D model with a shifting material, showing (from
left to right) both pure geometry and color.

artwork.

At the same time, the 3D model has also been used to create realistic visual
representation of the artwork. This included high-resolution images and photo-
realistic video sequences, to be used as a dissemination material for the museum
audience. These visual presentation techniques were used in the creation of the
video used in the exhibition and in the dissemination website (see §4.1.4).

These uses were indeed valuable for the campaign and the dissemination, but
are pretty standard in modern digitization projects; thus, due to the peculiar
nature of the artwork, we decided to use the same data also for a different kind of
“understanding” of the painting.

Understanding the Painting Through the 3D

A visual inspection of the geometry of 3D digitized models is quite common, but
is generally focused towards more “metric” considerations. In this case, we argue
that the close inspection of the naked geometry of Alchemy is the best way to study
and understand the painting. Although looking at the naked geometry of a painting
to understand it may seem against reason, it has to be considered that, while the
color was chosen and used by Pollock for specific reasons, it is also true that only
the shape of the paint on the canvas is able to effectively describe the gesture and
the act of painting, so important for this artwork.

Indeed, considering this painting as a flat image is misleading, as the final
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colored appearance does not convey the full story. Conversely, looking at the
naked geometry, brings out much more clearly the underlying structure of the
traces of paint. For this reason we also employed a lot the non-photorealistic
rendering techniques to make the geometry even more readable, taking further
distance from the photo-realism paradigm.

The 3D models (the whole artwork at 0.2 mm and the detail areas at 0.1 mm)
had more than enough detail to isolate the traces of paints and their superimposition
order, so helping to understand the motions and the actions of Jackson Pollock, as
visible in Figure 4.4.

Figure 4.4: A close-up of a 7x15 cm area of the painting. Even this small sample contains
examples of paint squeezed out directly from the tube, oozed from a syringe, dripped from
a brush or stick, and the presence of small pebbles.

During the cleaning and the design of the exhibition (§4.1.4), we spent a lot
of time with the restorers and conservators just browsing through the geometry,
observing the color traces and markings on the painting surface, interpreting the
different shapes and details. As we will see, these observations have also been
used for dissemination when creating the interactive kiosk (§4.1.4), using the same
geometries to explain to visitors the different techniques used by Pollock during his
work.

This operation is done mostly by observation, as the shapes must be
interpreted by experts: the ideal situation was having curators and restorers (for
their knowledge of the artwork and of the painting technique) and an expert of 3D
(to help manipulate the 3D data, control rendering and taking measurements)
working together. Looking at the geometry with the conservators, even in a small
area like the one shown in Figure 4.4 (7x15 cm), it was easy to identify the
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different traces left by the various techniques used by Jackson Pollock at work, and
accurately perceive how these traces are superimposed, going over and under,
creating a landscape-like impression. In this small area, it is possible to observe
traces of paint squeezed out directly form the color tube (the wide flat trace with
raised borders on the right), oozed out of a syringe (the smooth tear-shaped trace
with the long tail), dripped from a brush or stick (the thin almost-vertical line one
third on the left side), as well as the effects that Pollock used to build-up the
texture and grain of the surface, like the inclusion of pebbles (the small lump near
the bottom-right angle) and the corrugation of the paint due to the uneven
layering (all over the image).

Figure 4.5: Fragments of the lead white base layer detached and re-adhered to the
artwork surface during the painting process.

In some cases, the metric nature of the geometry does help in confirming the
interpretation. For example, in the top-left area of the painting it is possible to
see the canvas in many locations. In these small areas (few mm2 in size), the base
layer of lead white paint is detached, showing the underlying canvas. However, at a
close inspection, the shape of two of the missing areas perfectly matches fragments
of paint nearby. This is because the fragment detached and re-adhered nearby.
Looking at the geometry, it is easy to see this strange occurrence (Figure 4.5).
The interesting part is that this happened during the painting process, as on the
re-adhered fragments it is possible to see new traces of paint.



92 4. Evaluating 3DHOP as a Specialized, Direct Publishing Tool

One of these areas (the larger one) was well known by the conservators, but we
found a new one, thanks to the increased clarity of the geometrical model. The
metric nature of the model made possible an exact check, by cutting the re-attached
parts of the 3D model and placing them back in their original position.

4.1.4 Publishing Action Deployment

In order to show to the public the result of the analysis in 4.1.3, we decided, together
with the curators of the Peggy Guggenheim museum, to put into effect an interactive
publishing action centered on the high-resolution 3D model.

This action was included in the wider framework of a temporary exhibition staged
to present to the visitors of the museum the result of the cleaning and diagnostic
campaign. The exhibition “ALCHEMY BY JACKSON POLLOCK. Discovering
the Artist at Work” was inaugurated in the Peggy Guggenheim Collection in Venice
on February the 14th 2015, and lasted until September.

To create our installation we decided to exploits the capabilities of the 3DHOP
framework. Being designed expressly to handle geometries with high level of
complexity, and providing a large set of customizable features to effectively map
the informative layer on the 3D model and to efficiently design a user interface
tailored on it, 3DHOP resulted the perfect solution for our purpose.

Moreover, since 3DHOP is a client-side system, using it we had the possibility
to develop at the same time a solution that could be accessed both on-site at the
museum (as a museum kiosk running on a local Web server) and on the Web (as a
classic Web3D application running on a remote Web server).

Designing and Developing the Interactive 3D Viewer

The idea was to design an interactive 3D application for giving to the visitors the
opportunity to freely explore the geometry as we did with the conservators and
restorers.

As said before, thanks to 3DHOP the developed viewer can be experienced,
through a minimal and easy to use interface, both online, acting as classic Web
application, and locally, on a large touch-screen (50 inches) acting as museum kiosk
(Figure 4.6). With minimal changes the 3D viewer source code was adapted to both
the cases. To work on local kiosk, we used a local Web server, with the Web browser
in full-screen and the OS working in kiosk mode. Minimal tweaking was made to
the parameters controlling the data streaming and memory occupancy, as well as
the model management:

• on the kiosk, as this is the only application running, and we know exactly
how much memory we have, the cache limits were raised for a higher quality
rendering;
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• on the Web version, the streaming speed was tuned to avoid choking the users
connection;

• the model was compressed in the Web version, to ensure faster data transfer,
and left uncompressed in the kiosk, as the disk-to-memory throughput is much
higher than network streaming capabilities.

Beside these changes, the two system are identical.

Figure 4.6: The interactive 3D viewer created for the the exhibition, running (from top
to bottom) as Web3D app [Vis15c] on the Web and as museum kiosk on large-format
touch-screens.

The high-resolution 3D model of the whole painting (80 million triangles) was
managed using the 3DHOP multi-resolution rendering engine, to ensure interactivity
and high-quality rendering in both the configurations.



94 4. Evaluating 3DHOP as a Specialized, Direct Publishing Tool

The final 3D application was tailored on the needs of the specific project
exploiting the 3DHOP modular structure and the JavaScript flexibility. In some
case the basic features provided by 3DHOP were heavily customized. The main
intervention areas were four: navigation, user interface, rendering appearance and
media integration.

To improve the 3D scene navigation possibilities takes a relevant part of our
work. Because of the kiosk installation requirements, we explored a lot the touch-
based possibilities. The touch-screen gives the possibility to navigate the model
using the interaction paradigms used for tablets and smartphones. This ensures
the visitors will have a very fast learning curve. Using different modalities of touch
and pinch, the user can rotate, zoom, and pan, so that every possible view position
can be reached. All the touch interactions were properly mapped on correspondent
mouse events, so as to obtain the same behaviors also in the Web application. The
original trackball was modifies to allow the final user to “fly” over the surface of
the painting, while other basic interactions were customized to better fit with the
handled 3D model (the pan movement, for instance, was modified to try to keep
the view orthogonal to the painting). The navigation, constrained to the volume of
the painting, was enriched with an overview-plus-detail component (see 2.4.3): a 2D
MiniMap on the upper right corner of the viewer gives reference about the camera
position, and can be used as well to helps the user in controlling the navigation
without getting lost.

More in general, the whole user interface of our application was modified with
the aim to make the installation accessible to a wider number of visitors. Designed
to be minimal just for this reason, it is composed only by four main buttons
(placed at the corners of the 3D viewer window), each one connected to a
retractable 2D element. The illumination tool is one of these four components. It
is connected to a simple on-screen control (a 2D sphere on the bottom left corner),
appearing and disappearing depending on the interactions with a light bulb icon.
Through this element is possible to change the 3D scene illumination by
manipulating the light direction: while very simple, this feature is able to bring
out even more detail from the geometry. The interaction of the moving light with
the geometry radically changes the perception of the surface, making it look more
“alive” and three-dimensional.

The scene appearance was another element we particularly paid attention to,
modifying the existent and adding ad-hoc new shader programs. The 3D viewer
starts by showing the naked geometry of the painting, to mimic the same
rendering we used with conservators, employing a non-realistic shader that
enhance the perception of the geometric detail. As said, we firmly believe this
visualization helps a lot in presenting and reading the painting traces, also for
non-experts. Using the basic color tool provided by 3DHOP is nevertheless
possible to turn on the color information (the related button is included in the
home menu in the upper left corner of the viewer). However, also this feature was
customized, associating to the color switch an ad-hoc shader able to bring back
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photo-realism in this rendering mode.
Finally, the last area on which we focused designing and developing the viewer,

was related to the integration of the informative layers. We decided to connect the
most interesting information with the zones of interest using the 3DHOP geometric
hot-spots (see 3.3.4). The final users can view and select hot-spots placed where
the details of the captured geometry gives insights on the painting process and on
the gesture of the artist. These areas, some already presented in §4.1.3, have been
selected to show to the visitors some of the different techniques used by Pollock,
again exploiting the clarity of the 3D digitized geometry. The hot-spots are displayed
on-screen with transparent blue areas (Figure 4.7). Interacting with them the user
can obtain the additional information (text and images) on the box in the lower left
corner of the screen. Also in this case the default 3DHOP mechanisms were modified
to get more tailored features. Indeed, to each hot-spot interaction was associated
a camera animation to zoom on the selected area, and also an additional feature
able to automatically hidden the hot-spot blue geometry once reached the close-in
position (so allowing to the final user to appreciate the painting geometry without
distracting elements).

Figure 4.7: The hot-spots in the 3D viewer, each one showing relevant geometric features
linked to information about a specific painting technique used by Pollock. From left
to right, overview and detail (with the hot-spot geometry automatically hidden) in the
Web3D app [Vis15c].

4.1.5 Results

The use of a high quality triangulation 3D scanner and a careful processing resulted
in a high-resolution 3D model, integrated in the conservation process, together with
a number of other diagnostic investigations.

The most interesting use of the 3D models, however, has been the work carried
out in conjunction with the conservators, where the naked geometry of the artwork
has been used to investigate the relationship between the shape of the painting and
the gestures, actions and techniques of painting; and then to convey the resulting
connections to a museum audience.
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The nature of the painting and the high-resolution model made possible the
discovery and the validation of several interesting aspects of the painting, in the
direction of trying to reach a better understanding of the painting process which
was, in the idea of the artist, an essential part of the artwork. The possibility
to interactively play with the color-stripped version of the painting lets the user
understand in a new way the complexity of the artwork, somehow providing an
unconventional experience.

The 3DHOP framework played a central role in the disseminating these
knowledges, to design and develop the publishing action. Thanks to its modular,
configurable and extensible nature, it was possible to modify various aspects of the
viewer to obtain a custom-tailored presentation scheme. Moreover, thanks to the
multi-resolution engine, handling an extremely high resolution dataset was not an
issue, and we could show to the users an astonishing level of detail.

The resulting 3D application was part of the temporary exhibition
“ALCHEMY BY JACKSON POLLOCK. Discovering the Artist at Work”,
inaugurated in the Peggy Guggenheim Collection in Venice in 2015 and lasted
eight months, totaling more than 180.000 visitors, and has also been also in a
similar initiative hosted by the Guggenheim Collection Museum in New York. The
Web version of the kiosk was put online at the beginning of the exhibition and it is
still accessible today [Vis15c].

The results of this experience has been presented (winning the Best Paper Award)
at the “IEEE Digital Heritage 2015 International Conference” and published here:

• Alchemy in 3D - A Digitization for a Journey Through Matter, Callieri M.,
Pingi P., Potenziani M., Dellepiane M., Pavoni G., Lureau A. and Scopigno
R., International Conference IEEE Digital Heritage 2015 (DH 2015), Volume
1, page 223-231, October 2015; 1

This publishing action also won the first prize in the category “Best Use of DH
For Public Engagement” at the Digital Humanities Awards 2015.

The final Web3D application, a dissemination technical video, images of the
work, and of the obtained 3D model, can be accessed at the project webpage 2.

4.2 Color and Gilding on Ancient Marbles: a

Web3D Study

Publishing 3D content on the Web can also be addressed to more specialized aims,
such as, for instance, analytic studies or documentation purposes. Following this

1 c© 2018 IEEE. Text and figures reproduced by kind permission of IEEE.
2 http://vcg.isti.cnr.it/alchemy

http://vcg.isti.cnr.it/alchemy
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premise, this case study [Vis15d, SPPS15] introduces a publishing action aimed to
present the result of a systematic methodological process defined to detect,
document, and visualize, the original color and gilding on a Roman marble
sarcophagi (the Annona Sarcophagus, II-IV century AD).

The process defines a working pipeline that, starting from the selection of the
artifact to study, proposes a set of investigation steps to improve our knowledge of
its original painting. These steps include the direct virtual inspection, the
archaeological and historical research, the on-site scientific investigation by
multispectral imaging, spectroscopic and elemental analysis (eventually supported
by micro-invasive techniques performed in laboratory), and the accurate
polychrome surface acquisition by color calibrated 2D images.

Using 3DHOP all the data produced have been integrated with a high-resolution
3D model, to support enhanced analysis and comparisons, and even to promote a
digital 3D polychrome reconstruction by virtual painting. Thus, all those data have
been made accessible on the Web, using our framework to design and develop a
visual media platform able to provide domain’s practitioners with a new interactive
3D assessment tool.

4.2.1 Overview

Greek and Roman marble artworks have been deeply studied from a typological
and stylistic point of view, while there is still a limited knowledge on the pigments,
dyes, binders and technical expedients used by Roman artists. In a renewed
scientific interest towards the ancient polychromy (color and gilding), a digital
methodological and multidisciplinary approach can provide valuable information to
better investigate and understand this fundamental aspect and to get a complete
sense on Greek and Roman marble artworks.

For this reason, we present a multidisciplinary approach to identify, document
and visualize the ancient polychromy on marble artifacts, starting from the analytic
study of a well-defined archaeological class of artifacts with known historical period
and production place: the Roman marble sarcophagi made in Rome from the first
half of the 2nd century to the end of the 4th century AD.

A fundamental aspect of the proposed method is the new and innovative role of
2D and 3D digitization technologies: the production of virtual reconstructions acting
as a link between the archaeological information and the scientific analyses, results
to provide a better-integrated documentation (and interpretation) of the acquired
data and to improve the knowledge of the original polychromy. The main idea is
to integrate the computer-based technologies with consolidated scientific analyses,
primarily to define a common Web3D platform to use both for a better insight of
ancient color and gilding, and secondly for the dissemination of the results.

The main contributions of this 3D Web platform are:

• to propose a multidisciplinary carrier to study the marble polychrome artworks
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by integration of digital technologies, scientific analysis and archaeological
data;

• to promote an interactive visualization and navigation of all the acquired
(and processed) data to improve their interpretation and to allow an easy
and effective dissemination of the obtained results.

The Multidisciplinary Approach

In this kind of projects the publishing action is just the last step of a longest working
pipeline. Usually, this final stage strongly depends by the previous steps (since the
data to handle simply derive from them).

In this case study the pipeline we followed for defining the working space and
selecting the dataset to gather, is based on an improved version of the
multidisciplinary approach already presented in [SDC+15] and tested on the Ulpia
Domnina Sarcophagus exposed in the Michelangelo’s cloister of the Museo
Nazionale Romano Terme di Diocleziano in Rome.

Figure 4.8: The so-called Annona Sarcophagus, Museo Nazionale Romano Palazzo
Massimo.

The working pipeline starts from the selection of the artifact to study: in our case
the so-called Annona Sarcophagus (Figure 4.8) in Museo Nazionale Romano Palazzo
Massimo (inv. no. 40799), dated at the last third of 3rd century (270-280 AD).
This rectangular sarcophagus without lid is decorated only in the frontal part with
allegorical characters: Portus, Annona, Concordia (behind a married couple making
a dextrarum iunctio), Genius Senati, Abundantia, and Africa (from the right to the
left of the sarcophagus). It was selected because presents several visible color and
gilding traces and poses interesting open problems on their application techniques.
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Moreover, the academic literature reported that the sarcophagus showed a great
amount of red and gilding.

After a mandatory preliminary stage in which the selected subject is thoroughly
studied (via an archaeological and historical research and a direct visual inspection),
the pipeline contemplates the effective data acquisition. This step includes the
identification of the areas where to perform non-invasive analysis (like multispectral
imaging, spectroscopic and elemental techniques), and also where micro-samples can
be eventually taken to do more accurate laboratory analyses.

The acquisition stage is completed by an accurate polychrome surface mapping
through color-calibrated 2D images. High-resolution and calibrated images of the
sarcophagus were acquired using a Nikon DSLR camera and a color calibration chart
(a Macbeth X-Rite ColorChecker Passport), taking more attention in the captures
of the representative polychrome and golden areas.

Finally, the full analytical dataset (Fourier-Transform InfraRed
spectroscopy-FTIR, X-Ray Fluorescence-XRF, etc.) is processed. This includes
the examination of the eventual micro-samples by Optical Petrographic
Microscopy (OPM) and Raman spectroscopy, in order to extract further
information. Where the situation is more complicate, can be also performed an
additional analysis with Scanning Electron Microscope and Energy Dispersive
X-Ray Spectrometer (SEM-EDS).

4.2.2 3D Data Acquisition and Processing

The 3D model of the studied sarcophagus plays a central role in this case study,
since it represent the carrier on which to map the gathered data (in addition to
being the main pillar of the Web publication).

For the 3D digitization of the artifact, we decided to test and use the multiview-
stereo 3D reconstruction approach. For this reason, we captured a specified set of
images that guarantee an optimal sampling of the surface from different point of
views.

3D Processing

For the 3D digitization of the sarcophagus we employed a multi-view stereo
approach using a set of 165 photos. The images were processed using Agisoft
PhotoScan [Agi10] to compute the camera parameters and a dense point cloud.

Since the processing of the whole set of images produced an incomplete point
cloud, we split the images in several set corresponding to the main parts of the
sarcophagus (the front, the interior and the sides). For each set we perform a
separate processing, producing different point clouds.

Each clouds was triangulated using the Screened Poisson Surface Reconstruction
algorithm [KH13] in order to make easier the alignment of the different parts inside
MeshLab [Vis05]. The aligned triangular meshes have been merged together with the
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standard volumetric algorithm based on the Marching Cube available in MeshLab,
producing a final high-resolution model of 72 million triangles.

Finally, the color images have been projected and integrated on the
high-resolution model to document the current state of the color and gilding using
the algorithm in [CCCS08] and available in MeshLab.

Even though the 3D model presents some imperfections in the area where it was
difficult to obtain an optimal multi-view acquisition (i.e. that regions hidden by
high-relief part), the final model shows how the image-based 3D reconstruction can
be a good and cost-effective alternative to active 3D scanning techniques.

Digital Polychrome Reconstruction

An interesting contribution of this case study (also central element in the Web
publication) is represented by an attempt of digital polychrome reconstruction.

For the selected sarcophagus we propose a preliminary virtual polychrome version
of the Africa personification (Figure 4.9) with the purpose to show the distribution
and overlapping of the colors on the sarcophagus surface, without any simulation
of the light interaction with the painting that requires more complex reflectance
functions (BRDF, SVBRDF, BSSRDF) and rendering systems [DC08]. It is partially
reliable due to the lack of clear clues on the original color of some elements that
need additional scientific and archaeological investigation.

Figure 4.9: Hypothesis of 3D polychrome reconstruction in the Annona Sarcophagus,
visualized through the developed Annona Web3D application [Vis15d].

The polychrome reconstruction has been made using the painting tool of
MeshLab, exploiting the RGB coordinates identified in the most representative
color traces in the set of calibrated images acquired in the previous step. In the
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identification process of the RGB coordinates of each color, we took multiple
samples in different measurements points and we noted very similar RGB
coordinates across the multiple samples of the same color.

A fundamental step for the polychrome reconstruction is the integration of the
data acquired and computed in the previous stages (see §4.2.1). In the specific, the
Visible-induced IR Luminescence (VIL) and UltraViolet-induced (visible)
Luminescence imaging (UVL) analysis (multispectral imaging techniques based on
photo-induced fluorescence) are useful in the characterization of the spatial
distribution of Egyptian blue pigment and organic dyes, such as the rose madder
lake. The OPM and Raman spectroscopy identify the inorganic pigments and the
organic dyes. They are also useful to determine if a color is made of a single
pigment (with binder) or a mixture of more pigments and dyes. Therefore, the
OPM can reveal a possible stratigraphic sequence and if the color is applied
directly on the marble surfaces or over a fine ground layer.

Finally, the scientific results, connected with the direct visual inspection and
archaeological data, are very useful to reproduce a proper shading of single or
overlapping colors and to propose a painting style as similar as possible to the
original.

4.2.3 Publishing Action Deployment

Having the possibility to combine different diagnostics modalities with archaeological
data is very interesting for the specialists of polychromy. However, usually the
integrated comparison of scientific and archaeological data is one of the most complex
process done by the researchers (or conservators) while studying an archaeological
artifacts. A qualitative integration of multidisciplinary data is often an issue, as
well are accessibility and visibility related to the outcomes. The publishing action,
final stage of the methodological approach followed in this applicative experience,
just aims to solve these issues.

Designing and Developing the Interactive 3D Viewer

Our idea was to design a 3D Web platform centered on the generated
high-resolution 3D model, which would let us to exploit the digitized artifact as
main informative channel for the mapping of the gathered analytical data and of
the digital 3D polychrome reconstruction hypothesis.

The main goal of this Web3D platform would be to give to a specialized
audience the opportunity to freely interact with the artifact geometry, studying
and interpreting the multidisciplinary information proposed, without preventing to
less skilled users to improve their knowledge on pigments and dyes used by Roman
artists, or even on the pictorial styles and techniques used to apply both color and
gilding.
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Figure 4.10: The Annona Web3D viewer [Vis15d] interface with the rendering of the 3D
multi-resolution model of the Annona Sarcophagus.

We used the 3DHOP framework for designing and developing this application
(Figure 4.10). As usual, the advantages for using the 3DHOP framework in this
kind of applications are several: starting from the support to the efficient
visualization of very large 3D models also on commodity computers and standard
internet connections, through the easy integration of all the types of data gathered
in the 3D scene, up to the user friendly interactive exploration of the 3D scene.

Differently from the example in 4.1, in this case study we didn’t develop any
ad-hoc component for 3DHOP; conversely, to build the aimed platform we mostly
experienced the default elements provided by the base framework. We mainly
focused on the effective integration of the wide scientific analytical dataset, at the
end customizing just the 3D viewer user interface: a relevant component in making
the heterogeneous set of informative layers easily accessible to the biggest number
of final users.

The 3DHOP features of the final documentation system includes basic
framework’s elements, exploited for implementing the interactive navigation of the
3D multi-resolution model (with the possibility to freely examine any details of the
artifact using the zoom and pan commands), or for enabling the possibility to
interact with a directional light (that can help to highlight some details of the
relief otherwise not discernible, like for example small inscriptions).

At the same time, three more elaborate elements were added to the viewer
interface for better integrating the multidisciplinary informations. Each one of
these components, useful both for the analytical process and the dissemination,has
been designed with a functional interface composed by a button plus a customized
drop-down menu.
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The selector for the interactive visualization of the scientific polychrome
reconstruction hypothesis is one of those. More specifically, by clicking on the
palette colors icon (Figure 4.9) the user can switch from the current color to the
original virtual color proposal (or more presumed reconstructions). This element
exploits the instance visibility control provided by 3DHOP (see §3.3.4) to manage
the scene composition switching between two different geometries (one for the
current 3D model and one for the reconstructed version).

The second additional component concerns the management of the multiple
levels of information. A set of geometric hot-spots (§3.3.4) are exploited to link the
different analytical data to the 3D model. The hot-spots are subdivided in
different groups that can be visually identified by using different colors. Each
group correspond to a different acquired data (e.g. VIL and UVL imaging, OPM,
Raman spectroscopy, etc.). The full list of the scientific analysis is visualized in a
dedicated drop-down menu that allows the user to choose among them
(Figure 4.11). To each hot-spot there is the possibility to associate a pop-up
window that allows the user to consult the hot-spot data content.

Figure 4.11: Annona Web3D viewer [Vis15d] showing the Annona Sarcophagus areas
where the VIL analysis were performed.

Finally, exploiting the 3DHOP trackball automation features (again introduced
in §3.3.4), a “storytelling” component was also added to the presentation. It allows
a guided navigation using a predefined set of views related to most interesting
details (more preserved color area, polychrome details useful for the virtual
reconstruction, elements that attested particular events like an ancient or modern
re-painting/restoration). Also in this case the final user can access to the list of the
bookmarked views through a dedicated drop-down menu (Figure 4.12).
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Figure 4.12: The Annona Web3D viewer [Vis15d] enables the definition and visualization
of a predefined set of views, selected to show the most representative polychrome areas on
the Annona Sarcophagus.

4.2.4 Results

The integration (and visualization) of the archaeological data and the scientific
analyses results over a high-resolution 3D model represents a novelty in the study
of the ancient polychromy and allows significant improvement for the
dissemination of the knowledge gathered. Indeed, new results and better
understandings of Roman sarcophagi are (and can be) obtained by linking
together, and comparing, digital datasets gathered with several techniques.

In the presented case study, the digital 3D model of the Annona Sarcophagus
(MNR-PM, inv. no. 40799) was used as main carrier where to map the scientific
examination done and the novel elements/techniques detected. We have showed
how the 3DHOP framework could be effectively used (exploiting default features
or modifying the existing components) to enable a technical presentation, able to
support the visualization and the dissemination of all the collected (raw and
processed) datasets on the Web, once those data are mapped on a high-resolution
3D model.

At the end of this analytical and multidisciplinary process, the published 3D
geometry has also used to propose a preliminary hypothesis of a scientific polychrome
reconstruction. This virtual reconstruction shows the distribution on the surface
of the main identified colors, highlighting the potentiality of the proposed digital
system and multidisciplinary approach.

Our aim was to exploit 3DHOP to propose a novel tool allowing domain
specialists to give visibility and ubiquitous access to these information, helping
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them in publishing their work. From this point of view, the final solution [Vis15d]
seems to have reached the goal. 3DHOP was able to manage the high-resolution
data of the project, allowing the user to access the maximum possible detail. At
the same time, it was possible to configure the user interface to integrate, in a
structured way, all the diagnostic and scientific highlights, to build what is,
essentially, an interactive version of a scientific report.

The results of this experience has been presented at the “IEEE Digital Heritage
2015 International Conference” and published here:

• Digital Study and Web-based Documentation of the Colour and Gilding on
Ancient Marble Artworks, Siotto E., Palma G., Potenziani M. and Scopigno
R., International Conference IEEE Digital Heritage 2015 (DH 2015), Volume
1, page 239-246, October 2015; 3

The final Web3D application, a demonstration video, and additional images of
the work, can be accessed at the project webpage 4.

3 c© 2018 IEEE. Text and figures reproduced by kind permission of IEEE.
4 http://vcg.isti.cnr.it//roman-sarcophagi/annona-sarcophagus

http://vcg.isti.cnr.it//roman-sarcophagi/annona-sarcophagus


106 4. Evaluating 3DHOP as a Specialized, Direct Publishing Tool



Chapter 5

Evaluating 3DHOP in Developing
Web3D Publishing Services

In Chapter 4 we have discussed two publishing examples, based on real
experiences, aimed at validating, in a comprehensive and accurate way, the design
choices taken during the deployment of 3DHOP. However, those case-studies,
despite aiming towards different communication needs (public dissemination and
support to scientific analysis), were both focused on the direct publishing of single,
specific datasets. Conversely, in this Chapter, we would like to prove the
effectiveness and flexibility of 3DHOP when working in the contexts of assisted,
automated, and bulk publishing.

For this reason, we will describe two others relevant testbeds that, again,
differing in their nature, are still both characterized by the basic idea of non-direct
publishing: providing a service for the easy publication of complex multimedia
assets, and proposing a pipeline useful to rationalize and speed-up the publication
of heterogeneous 3D dataset on a Digital Library (DL).

More specifically, the first contribute can be contextualized in the ecosystem
of the assisted publishing services, and describes the steps we did in designing and
developing a platform that would make extremely simple to publish and share online
complex data (3D content and other specialized data). The target audience is, again
the Cultural Heritage community. In this case-study, the core of 3DHOP has been
used as code base for supporting the server based visualization structures, but also
as template for designing the components aimed at handling other two visual media:
2D Hi-Res Images and RTIs. The resulting platform (called ARIADNE Visual Media
Service) is an automatic service able to transform the uploading of these media file
into an efficient remote visualization on the Web.

The second contribution, instead, examines the strategy developed for
publishing online an extensive and heterogeneous set of 3D digitalizations, with
the final goal to build an enriched multimedia Web repository. In this example
3DHOP has been used as pivot for the design of a complete pipeline, playing a key
role both in the development of the data pre-processing stage, and in the building
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of the final Web3D viewer. This experience resulted in a real DL (the Edition
Topoi Collection) enclosing thousand of 3D models, freely accessible in an
interactive way and effectively integrated with other media informations.

Both the presented experiences, ranging from assisted to automatized
publications, have been characterized by a common approach focused on the
service-based and data-oriented path of the publishing actions. In these two cases,
the developed solutions have exploited the “innermost layers” of 3DHOP (page
creation, data structures, scene creation and management), more than its interface
and interaction capabilities, making it possible to explore and validate the
flexibility and the adaptability of these parts of our tool.

Once again, the outcome provided by these two real-world experiences seems to
confirm the design choices detailed in 3.

5.1 ARIADNE Service: Easy Web Publishing of

Advanced Media

The possibilities to manage on the Web some kind of very specialized media assets
are very limited. The intrinsic complexity of these contents, paired with the lack
of technical, but still accessible, publishing solutions, makes their presence on the
Web quite rare. In several scientific domains, where nowadays it is mandatory using
together several of those technical datasets, and the vast majority of practitioners is
not trained and not used to handling complex web-publishing tools, this issue seems
to be more critical.

In this specific project [Vis15b, PPD+15], we tried to develop a platform aimed
at facilitating the building of Web presentations, specialized on a CH oriented
selection of these specialized media. Our idea was to design an approach able to
transform, through few and simple steps, an uploaded media file in a remote
interactive visualization on the Web.

The ARIADNE Visual Media Service (Figure 5.1) is the tangible result of this
idea. It is a service-oriented platform, based on a simple Web interface, addressed
to assist the deployment of specialized Web presentation of three different visual
media. For the development of this platform we used the 3DHOP framework has
a code base, increasing its degree of specialization in efficiently handling specific
data assets, but, at the same time, simplifying the publishing paradigm to make it
accessible to a wider range of content creators.

This activity has been designed as part of the European Project project
ARIADNE [Vis15b], a network project focused at bringing together and
integrating existing archaeological research data infrastructures. In this
framework, the Visual Media Service can be seen as one of the various
interconnected services provided by the project to the archaeological community.
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Figure 5.1: The ARIADNE Visual Media Service [Vis15b] homepage.

5.1.1 Overview

In the CH community, with the term visual media we encompass any data that
could help to better represent, document, and communicate, an artworks under
investigation or study. Visual media are not new instruments of work in CH, since
drawings and images have been used for centuries, and they are part of the common
working practice. The new issue, for domains like CH, is how to make a proficient use
of those media, especially now that different digital incarnations are made available
by the progress of the technology [SD13].

Web publishing could be a sensible answer, but for this field publishing visual
media online is not always that easy. Practitioners usually not able to use
complex/specialized tools, and poor availability of solutions aimed to unskilled
content creators, often are main issues. An additional critical aspect is connected
to the same visual media to handle, generally constituting a very heterogeneous set
(ranging, for instance, from 2D HDR images to high-resolution 3D model) of richly
annotated (through barely standardized methods) data intrinsically complex (that
often not allows quality degradation, because of peculiar domain needs).

As we have seen in Chapter 2 for the 3D case, nowadays a lot of Web publishing
systems are available. However, most of these solutions are addressed to mainstream
media publishing, and are unable to handle specialized technical dataset. In the
best case, the few specialized solutions reasonably accessible are focused just to a
single media, so requiring to multiply the learning curve for each one of the aimed
publications, and offer uneven access to multiple media types.

Conversely, our approach has been to design a service that allows untrained users
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to upload multiple types of visual media file and, after some remote processing, to
simply receive the URL where the specific data has been stored and could be accessed
for the interactive visualization. Moreover, the system also offer the possibility to
download the processed data and interactive webpage, making it possible for the
user to integrate the visualization page inside its own website, avoiding to rely on
external repositories.

The system has been designed to be lightweight and simple to use: we decided
a minimal set of metadata useful to characterize the final webpage; we developed
a basic Web interface aimed at assisting the publishing process; and we strove to
provide a uniform browsing experience for the various media types.

5.1.2 Which Type of Visual Media?

The concept of visual media can be referred to all those assets characterized by a
visual representation. Referring to the professional CH world, in this group we
may find: 2D “basic” images (standard photos, very-high-resolution images,
photomosaics, orthophotos, geo-referenced images, and so on), 2D+ “specialistic”
images (high dynamic range, panoramic, multispectral, re-lightable images, and so
on), 3D content, and videos (again, multiple kinds: panoramic, HDR).

Nowadays, a number of new, low-cost, and commodity opportunities for the
easy acquisition/generation of these visual supports are available and largely used
on the field. Current sampling technologies allow the production of very complex
and high-resolution representations (up to Giga-pixels or Giga-vertices).

Applied to the specific CH domain, those digital models are exploited to cover a
very wide scale extent, going from representations of small findings (few centimeters)
up to representations of an entire archaeological site (hundreds of meters). These
supports allow representing faithfully even small regions or subtle details of the
object of interest; therefore, the massive use of sub-sampling and compression (in
the case of images), or geometry simplification (in the case of 3D models), is usually
not proper (especially for CH applications).

As we said before, how to open those specialized data to the external world
(considering both experts and common people), and how to publish them in an
easy and efficient manner, is still a critical issue. The bigger problem is related the
lack of tools and experiences for sharing and publishing on the Web those visual
media, either as independent resources or as part of structured archives. A very
successful Web approach has been the one endorsed by YouTube, providing a simple
interface for video data upload, and masking to the user all the processing needed to
convert and post those data on the Web. Sketchfab [Ske14] has endorsed a similar
approach, but just for 3D models and mostly focusing on the low-resolution end of
the spectrum.

The goal of this experience was to provide an online publishing service focused
on a selection of those media, that could provide an accessible service for CH
professionals and their hi-resolution data. We chose to manage three different
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media types in our server: high-resolution 2D images, RTIs (Reflection
Transformation Images, i.e. dynamically re-lightable images), and high-resolution
3D models. Choosing contents mostly characterized by a strong accent on the
high-resolution feature, our idea was to cover a “market share” that was not
addressed by other services and tools.

Figure 5.2: A visualization webpage automatically generated by the Visual Media
Service [Vis15b] for browsing a high-resolution 2D image.

High-Resolution Images

Images are the more common visual media, and they have been part of CH datasets
right from the very beginning, originally by means of the analogical, printed version
and more recently by means of digital supports (either digitally native images or
scanned from old prints/slides). Those data are part of most digital archives and
collections.

While images are a medium that is fully integrated with the Web and HTML
since its birth, there are a few aspects that lack of a standard solution for archival
and visualization purposes. Most of the images produced nowadays are very
high-resolution. High-resolution images are now a commodity resource, with the
impressive evolution of digital photography (just to mention a single example, a
recent off-the-shelf smart-phone provides a 41 MPix camera) and the wide
availability of tools that allows aligning and stitching image patchworks, allowing
users to reach huge image resolutions.
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When high- or huge- resolution images are available, the visualization on the Web
can be difficult, due to the amount of data that have to be transmitted before the
Web browser would be able to present visually something. This is because standard
Web browsers have to receive the entire file before visualizing it.

A possible solution to avoid the problem of waiting the entire image transmission
before being able to provide a visual feedback is the approach adopted by maps
viewer. For example, Google Maps [Goo11b] handles its huge maps by encoding
them in a sequence of decreasing resolutions. Each image of this sequence is split
up in square tiles of fixed size (usually 256 pixels per side) to allow for the data
management at high granularity. The client in the browser “composes” on the fly
the portion of the image selected by the user using the tiles more suitable, according
to the size of the portion under view. This approach is based on a simple multi-
resolution encoding that has been demonstrated to be very efficient to visualize
this type of data. A similar approach can be employed to visualize high-resolution
images, based on tiling and hierarchical representation schemes.

Figure 5.3: The visualization webpage automatically generated by the Visual Media
Service [Vis15b] for browsing an RTI.

Reflection Transformation Images (RTI)

Re-lightable images (more technically called Reflection Transformation Images,
shortened as RTIs) are becoming an increasingly used technology to acquire a
detailed and interactive documentation on quasi-planar objects
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([MGW01, PCC+10]). This is particularly useful especially for objects
characterized by a complex light reflection attributes. The advantage of this
representation is the possibility to change the light direction over the images in
real time (i.e. at visualization time), and the availability of using enhanced
visualization modes to better inspect fine details of the objects surface.

RTIs have been successfully applied in a number of applications, such as
collections of coins, cuneiform tablets, inscriptions, carvings, bas-reliefs, paintings
and jewelery. Moreover, RTIs enable the digital representation of artworks made of
materials that cannot be easily acquired by usual 3D scanning technologies (highly
reflective materials, semi-transparent object, etc.).

Typically, this type of images is generated starting from a set of photographs
acquired with a fixed camera (positioned on a tripod or an acquisition gantry) under
varying lighting conditions. RTI encodes the acquired data in a compact way, using
view-dependent per-pixel reflectance functions, which allows the generation of a
relighted image using any light direction in the upper hemisphere around the object
location. This per-pixel reflectance functions vary between different RTI types.
For PTM (Polynomial Texture Maps) the function is a bi-quadratic polynomial (6
coefficients are required to define it). For more advanced RTIs, Hemi-Spherical
Harmonics (HSH) are usually employed (9 coefficients are used in this case). In this
last type of RTI, the image is subdivided in nine layers, one layer for each HSH
coefficient, where the i-th layer contains the i-th coefficient of the three RGB color
channels. Then for each layer a multi-resolution quad-tree is created and a tile for
each node of the tree is saved in JPG format. To visualize a specific pixel, we need
to load the nine JPG images that contain its HSH coefficients.

The interactive visualization of RTIs can be supported locally, using freely
available tools. On the Web, it is possible to use WebGL to manage the rendering
of the RTI in realtime with a shader. However, as just stated for high-resolution
images, since usually RTIs may be at large resolution, also this visualization
component should adopt a similar tile-based hierarchical approach.

3D Models

As we said before 3D representations have become quite common in CH. In
particular, sampled models produced with active 3D scanning (laser-based systems
or systems using structured light) or adopting the recent photogrammetry
approaches (production of 3D models from set of 2D images), are more and more
gaining momentum in this context, since those models are a scientific and detailed
representation of a real CH artefact.

Nowadays, there is a pressing need for platforms supporting easy publication
of these models on the Web, mostly aimed at these sampled/digitized 3D models.
These complex data structures, generally rich of informative content, cannot be
confined to the single local archive, but should be shared with the community, to
increase knowledge and stimulate further study.
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Figure 5.4: The visualization webpage automatically generated by the Visual Media
Service [Vis15b] for browsing a high-resolution 3D model

As we have seen in Chapter 2 and 3, presentation on the Web of sampled 3D
models is still a difficult task to achieve, and, despite the Web3D panorama is plenty
of smart solutions, currently only few of them are implemented as publishing services
for this kind of data.

5.1.3 Publishing Service Deployment

In order to ease the online publishing of the assets just introduced in 5.1.2, we wanted
to provide a service where the content creator does not need any knowledge of the
issues related to visual media publication on the Web (handling of the different file
types, compression/multi-resolution streaming and rendering, etc.).

Some of the specifications of the systems, in terms of functionalities and access,
come from the European Project project ARIADNE [Vis15b]. In the framework of
this project, the Visual Media Service was just one of the services of an integrated
network of supporting tools for collections of data and metadata. This is the reason
why, in our service, are not enforced strong concepts for “users”, “galleries” and
“collections”: the idea was that the project superstructure would be used to interface
with the underlying services, filling these roles. The same goes for the management of
the metadata associated to the uploaded media: indeed, to provide a more structured
access to the service data it is delegated by the project superstructure. However,
for testing purposes, and since we believe that the system could be helpful for the
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community, we have decided to open up the service to all users, even if not coming
through the ARIADNE project infrastructure.

Designing and Developing the Web Service

The uploading front-end of the service is based on a simple form (Figure 5.5), where
the user upload its own data (3D models, hi-resolution images or RTIs) and to
provide some basic information about the file and the represented artwork.

As a first step, the service processes the input data in an automatic way, so as to
transform them in a Web-friendly multi-resolution format, that will grant easy and
efficient access and remote visualization on the Web. Then, the system will generate
a webpage containing an interactive viewer properly built around the specific media
type and content.

At the end of the pre-processing and format conversion stage (that is
asynchronous, as its extent, depends on the complexity of the uploaded data), the
user receives an email containing a link to the visualization page (hosted on the
Ariadne Web-service and open to any external user) and to an “admin” page,
where the user can modify the associated metadata, or even delete the data and its
viewer. From this page, It is also possible to download the created page (HTML
code + processed 3D model or 2D image) in order to store and integrate the
content on a users local server or archive. The user (at uploading time or from the
admin page) may also decide to keep its data private: in this case, the viewer will
not be listed in the “browse” section of the site, and it will be accessible only if the
user provides the direct link.

These choices also aim at providing multi-level access to the system. The most
basic of user will just upload a media file and leave the visualization page on the
Web service server, to share it with colleagues or link it from its own pages. A more
advanced user may download the viewer and integrate it inside its own webpage. A
user with programming skill may decide to use the created webpage as a starting
point for the development of more complex applications (taking advantage of the
advanced features provided by 3DHOP).

The core of the 3DHOP framework has been exploited in the development of
the platform back-end. Its basic structures, already able to efficiently handle high-
resolution 3D models, has been extended to manage also high-resolution 2D images
and RTIs. The philosophy followed in the addition of these new assets has been to
mimic as much as possible the basic interaction implemented for the manipulation
of 3D geometries, so as to have structural coherence and consistency.

High resolution images are transformed into a multi-resolution format,
supporting progressive streaming: the high-resolution image is regularly divided in
tiles and a hierarchy of images at different resolutions is produced from these tiles
(the process is similar to the approach adopted in Web maps applications). In the
visualization page, a WebGL-based rendering component will fetch the appropriate
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Figure 5.5: The ARIADNE Visual Media Service [Vis15b] upload page.

chunks of images from the server, and use them as textures, providing a smooth
pan-zoom navigation (see an example of the image browser in Figure 5.2).

RTIs are managed similarly to hi-resolution images, even if the encoding for the
Web streaming is a bit more complex (due to the multiple coefficients needed to
represent the behavior of each pixel). The WebGL rendering also takes care of the
user input and calculation of the variable-lighting (see an example of the RTIs
viewer in Figure 5.3). The way we process and encode RTIs to provide Web-based
visualization is described in details in [PSP+12].

In the case of 3D models, the geometry is pre-processed automatically
converting the 3D model into the multi-resolution format Nexus and then
compressing it (detail on ther multi-resolution engine has been already introduced
in §3.3.1). The visualization webpage built using 3DHOP, an example of the
browsing page for 3D models is presented in Figure 5.4.

As said, all three media heavily exploit the concept of multi-resolution. This
idea, for Web-based access of high-resolution data is ideal for a number of reasons:

• minimize the CPU usage, as the assembling algorithm is quite simple. This is
especially important since the client side is developed in JavaScript;

• using a collection of fragments naturally supports an out-of-core approach,
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which allows us to start rendering as soon as some data is incoming, and let
tile-based data processing to minimize the effects of the network latency;

• it is possible to optimize the rendering quality for a given bandwidth value;

• automatic pre-fetching is implemented to hide latency as much as possible;

• there is no need for special server support: data transmission just requires the
basic HTTP protocol (in other words the browser itself handles both the data
streaming and rendering tasks).

The last point is particularly important. Indeed, not requiring a specialized
server infrastructure, the deployment of this online viewer became much more
approachable by inexperienced users.

Finally, the data structures for remote visualization (multi-resolution for 3D
models, image pyramids for images and RTIs Web encoding) also provide, as we
already said, a very basic protection for the original data, since the direct download
of the multimedia encoding in a single, plain file is not possible. As the data is
streamed and accessible, it is always possible, with some effort, to access the whole
dataset, but require skills beyond the basic.

Figure 5.6: The ARIADNE Visual Media Service [Vis15b] browsing page, that provides
access and searching over the uploaded visual media data.
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5.1.4 Results

The ARIADNE Visual Media Service represents an answer to the need of using and
sharing online complex and technical media types in the context of Cultural Heritage.
Thanks to this platform, inexperienced users can easily upload different visual media
files getting back a ready-made interactive Web visualization of them. Differently
from the existing solutions, the system developed in this case-study implements an
assisted publishing paradigm addressed to specialized set of content composed by
several media assets.

This experience explores the 3DHOP possibilities as a code base for developing a
service-oriented application. Integrating 3DHOP in this project was very simple. As
all the creation of the scene and the configuration of the interaction and behavior is
done using a declarative approach, it is easy to create a 3DHOP viewer from a script,
populating the fields and parameters using data stored in the server. As 3DHOP
can be configured in order to use different manipulation tools (trackball) and the
different tools are modular, it was also possible to add a degree of customization to
the viewer page, to cope with the specific needs of the dataset. The other viewer
components have been somehow uniformed to the 3DHOP behavior and interface,
in order to provide a seamless experience to the user. Introducing a better degree
of customization also for high-resolution images and RTIs would result in a more
tailored experience for the user, and it is certainly on the roadmap.

Thanks to 3DHOP flexibility the ARIADNE service results to be accessible at
multiple levels, since it allows to more skilled users to exploit the resulting viewer for
different uses, for instance using it for embedding media content in external webpage
or as a base for creating more structured presentations. Concerning this last point,
if we limit the discussion just to 3D datasets, the ARIADNE service can be also seen
as an entry system for approaching the 3DHOP use (since content creators could
get a basic 3DHOP viewer using the ARIADNE platform, and then start to modify
it adding on top of it advanced 3DHOP features).

Initial testing of the platform, started on selected datasets provided by
ADS [Uni96] and Discovery Programme [Her91], led to a positive user evaluation.
However, since the ARIADNE Visual Media Service is linked to different Europen
Community projects (the project ARIADNE [Vis15b] before, and the project
PARTHENOS and DARIAH now), with a good number of users daily uploading
their dataset and populating our server (in Figure 5.6 a sample of public media
currently uploaded in the ARIADNE media server), the validation of the platform
is still an ongoing process that continues day by day.

The number of project in which the platform is involved, paired with the good
results achieved to date, are gradually moving this initiative to a more general
purpose use, disconnected by the aims of the original ARIADNE project. The
platform (for this reason recently renamed just to “Visual Media Service”), is also
going towards a transformation process, consisting in enhancing the service
possibilities and in extending it to other media types, following the same approach.
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The results of this experience has been presented at the “CAA 2015 Conference
on Computer Applications and Quantitative Methods in Archaeology” and published
here:

• ARIADNE Visual Media Service: Easy Web Publishing of Advanced Visual
Media, Ponchio F., Potenziani M., Dellepiane M., Callieri M. and Scopigno
R., International Conference on Computer Applications and Quantitative
Methods in Archaeology (CAA 2015), Volume 1, Chapter 6, page 433-442,
March 2016; 1

The current version of the Visual Media Service service can be accessed at the
project webpage 2.

5.2 Edition Topoi Repository: Automating Web-

Based 3D Publishing

The integration on the webpage of a single 3D model, or of a predefined restricted set
of models, raises different issues compared to an effective integration of thousands
of them in an online repository.

In the latter case, it becomes mandatory to have an automatized (or
semi-automatized), pipeline aimed at homogenizing the dataset and driving the
composition of the final Web presentation. This pipeline should be able to
automatically manage and digest 3D data in all conditions, and display every
single model with the best scene setup without any (or with a minimal) interaction
by external actors.

Starting from these premises, in this section we will retrace the steps of a real
application case-study [Edi16, PFDS16] aimed at publishing a large and
heterogeneous three-dimensional dataset in a specialized Web repository.

In this experience, our goal was to introduce a viable and reusable strategy that,
starting from the description of all the steps needed for properly pre-processing the
data, would lead up to the implementation of the Web-based 3D viewer valid for all
of them.

The resulting service-oriented publishing action exploited 3DHOP as core
component of the pipeline, once again demonstrating its flexibility. This time our
framework has been customized to adapt it to the several possibilities proposed by
an heterogeneous and automatized scenario.

1 c© 2018 CAA. Text and figures reproduced by kind permission of CAA.
2 http://visual.ariadne-infrastructure.eu

http://visual.ariadne-infrastructure.eu
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5.2.1 Overview

In the last decade there has been a proliferation of every type of online portal,
platform, database and repository. The proposed solutions are very heterogeneous,
addressed to different expertises (from humanities to science), developed following
opposite philosophies (from restricted to Open Access), and with heterogeneous
contents (from text to videos).

All these differences heavily affect the design choices to build the informative
structure containing the published data, so as to make them accessible with the
best user experience. From this specific point of view, the type of information
people want to share plays a fundamental role, because of the inherently different
nature of the various media (text, images, audio, and video) and also because of the
different tools available to handle them (especially in a particular environment such
as the Web).

Among the protagonists of this renewed publishing trend, 3D data deserve a
special mention. Despite the necessity and utility of sharing 3D data online being
clear, as we have already seen in Chapter 2 the wide number of available Web3D
solutions seems to not be able to cover all the publishing needs. For instance, so
far, nearly no effort has been aimed at facing the issues arising when the number
of models and the level of automation required by the publishing process increase.
Following these considerations, we decided to experiment with the idea of a service-
oriented and semi-automatized publishing action, addressed to the Web integration
of a large dataset of heterogeneous 3D models.

Exploring the specific context of the Open Access archaeological multimedia
database (in the following presented), we will introduce a two step pipeline that,
firstly defining a rough 3D data pre-processing, and then developing a “general
purpose” Web viewer (i.e. able to visualize and analyze a large range of 3D model
characterized by different basic technical features), will finally lead to obtain the
specialized Web3D interactive visualization.

The Repository

The Edition Topoi [Edi16] is an innovative digital publication platform which
holds, besides books and articles, a number of digital repositories for research data.
Launched in April 2016, it is part of the interdisciplinary research project
promoted by theTopoi Excellence Cluster [Top05] in Berlin, which combines
different kinds of studies about ancient cultures. The publishing platform is
strictly Open Access and the digital collections (see Figure 5.7) aim to be a
long-term archive for the research on ancient cultures. All digital resources are
considered as independent publications (called “citables”), thus can be cited in
scientific publications and are statically reachable through the use of DOIs.

At the date of its release, the Edition Topoi Digital Library could count on eight
repositories containing 3D data.
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Figure 5.7: The picture shows the landing webpage of the Edition Topoi
repository [Edi16], with all the various items composing the online database ordered in
the established reference categories.

Acquired adopting different techniques, like Laser scanning, Structure-Light
scanning or Structure-from-Motion (SfM), they result in 3D models of different
size and types (point clouds or meshes, with or without colors, normal vectors, or
other attributes, etc.). Moreover, since the Topoi association covers quite a
number of different subjects (like Philosophy, Epigraphy, Archaeology or History of
Science), and the data have been acquired in different projects over a longer period
and in many different places (all over Middle Europe, the Mediterranean Sea and
the Near East), the final dataset result to be very heterogeneous.

A short description of just some of the collections involved may clarify the need
for a robust and reliable publication strategy:

• the Digital Pantheon Project, which is the only complete laser scan model of
the Pantheon in Rome. The model was split into over 200 separated point
clouds. They help in handling different research questions, like for example
that one concerning the shape of the columns of the portico[GB11] (for that
reason the visualization has to pay attention to the correct display of the
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points);

• a collection of cylinder seals of the Vorderasiatisches Museum - Staatliche
Museen zu Berlin. The over 1.200 objects of an average size from 2-3 cm
resulted in point clouds about 200.000 and 900.000 vertices. The scans were
used to create digital impressions of the seals where now different figures can
be carved out. The technique of the fabrication of the seals can be analyzed
as well;

• a collection of ancient sundials, which covers a wider range of 3D models.
About 60 percent of the approximately 230 3D models were acquired with
a Structure-Light scanner, the other 40 percent were obtained through the
method of Structure-from-Motion. Both techniques provide meshes; the SfM
models do additionally have color information. Since the objects are partly
fragmented and partly quite large, the number of vertices and faces exhibits a
lot of differences;

• a large number of architectural fragments of Magnesia on the Meander which
are hold by the Antikensammlung - Staatliche Museen zu Berlin. The outcome
of the project available in the repository include models of two different scanner
techniques (Structure-Light and SfM).

All in all, the Edition Topoi Collections cover a broad spectrum and a large
number (over 2.000) of 3D models based on the different subjects that have different
research questions to digital data and the different methods that were used over the
last ten years to create the models.

5.2.2 Publishing Service Deployment

The publishing of a full dataset of objects in a repository requires an elevated level
of automation. It’s clear that when the number of elements reaches the order of
magnitude described in §5.2.1, a routine which contemplates to work with the single
object is unfeasible, so what is really needed is a strategy that attacks the problem
in its generality.

When the data to treat are three-dimensional (possibly big complexity, huge
disk space usage, poor standardization and elevated intrinsic heterogeneity) and
the database to implement is a Web-based database (limited computing resources,
unknown available bandwidth, expensive server disk space), the issues increase
significantly.

3D data indeed, frequently need to be processed to be prepared for a ready-to-
use visualization, and these modifications generally require onerous computational
actions, that can’t be delegated to the network infrastructure, especially whereas
they should be multiplied by the thousand instances of the repository objects.
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Hence, it’s mandatory to employ a working strategy able to move all the complex
calculus on the dataset in a pre-processing stage (as automated as possible, given
the amount of data involved) to execute locally. Only after this step, aimed to
smooth the coarse differences between the input data, it will be possible to feed the
database with the new output data, still considerably heterogeneous between them,
but ready to be visualized in a viewer able to adapt itself to these differences.

So, in the following we present a pipeline (Figure 5.8) composed by two distinct
working stages: the first one deputed to dataset pre-processing and the second one
addressed to the Web viewer implementation.

The complete pipeline is strongly based on the 3DHOP framework, starting from
the choice of the data format to exploit, up to the design of the final Web viewer.

Figure 5.8: The schematic flowchart of the adopted pipeline, basically composed by two
blocks: a first one deputed to 3D dataset pre-processing and the latter to the Web viewer
configuration.
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Dataset Pre-Processing

Several considerations have to be taken into account dealing with 3D models. Among
them, data format and navigation are critical.

Concerning the first point, a big issue is related to the large number of formats
available. Indeed, despite some attempts to define a common 3D format, a myriad
of alternatives (PLY, STL, OBJ, OFF, PTX, VMI, DAE, PTS, XYZ, GTS, PDB,
TRI, ASC, X3D, and WRL, just to name a few) is still around, and people
working on 3D data are often forced to conversions among them. For instance,
working with 3D dataset online is nearly mandatory to use multi-resolution data
structures (to provide a seamless navigation in a short time), so data owners are
usually obliged to move away from the classic single resolution 3D formats (widely
used offline, but useful on the Web only when a limited amount of data has to be
visualized). Even though nowadays several conversion tools are available, it is
necessary to use them carefully, trying to preserve the attributes of 3D elements,
since sometimes the limited standardization of the formats can lead to errors and
loss of data. Also the definition of the interaction paradigm associated to a 3D
model can be a big issue, especially in handling large and heterogeneous dataset,
since the solutions adopted for instance to visit from inside a building
reconstruction are almost certainly inappropriate to appreciate a digitization of a
piece of ancient pottery, and viceversa.

These premises suggest that a pre-processing step may be needed to “prepare”
the 3D models, and that this step could need some validation. Hence, an analysis
of the input 3D data may help in creating the pre-processing stage.

The repository chosen for this test case can help to reduce the working area.
First of all, all the models were associated to a similar origin (CH related) and to
a similar intended use (scientific study or preservation). These simple constraints
are fundamentals, because they cut off all the huge world of the modeled 3D data,
where data format and topology could devise for different solutions in the processing
stage.

Additionally, another important assumption concerns the navigation paradigm
of the 3D scene: since the great majority of the models are archaeological findings
digitized as single separated objects, all them well suite to a “turntable trackball”
paradigm, where the object is treated as it is on the hand of the user, who is able
to rotate the view around the object, and zoom in and out. The trackball paradigm
can be defined using a few parameters that can be easily pre-calculated by analyzing
the bounding box of the object. Other more accurate [Mal13] or ad-hoc [CDS15]
approaches may be hard to extend to more complex surfaces.

For the trackball paradigm, the only important factor is that the model must
be “aligned” to the axes of the reference system, otherwise the navigation is not
realistic.

In order to take into account the needs and assumptions regarding the collections,
we designed a smart batch pre-processing stage able to work on all the original data,
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implemented as semi-assisted routine, able to provide a graphical feedback to the
database developer and also to be programmable depending on the dataset needs.

This procedure (Figure 5.8, top), applying mathematical transformation on the
entire 3D dataset, could easily need a lot of computational resource, so it needs to
run locally, preferably on the same machine where the data are hosted.

The batch procedure is expected to:

• Fix some basic issues related to the models acquisition/generation (to do this
we used the MeshLabServer service, a powerful highly programmable scripting
tool provided by MeshLab [Vis05]);

• “Prepare” the models for the online environment, converting them from the
original data format to the Web performing format handled by 3DHOP (to do
this we exploit the Nexus package);

• (Optional) extract from the models some useful information to link in the
database enriching the informative content of the related webpage (this can
be obtained with several software/tools, depending on which information is
needed).

More in detail, what we have done with the specific 3D data in our repository has
been: the correction of the objects spatial positioning (since their alignment with
the reference system was different w.r.t. the one used by the adopted Web viewer),
the re-calculation of the normal vectors orientation, and the export in a 3D format
(PLY) suitable to be used as input for the subsequent conversion.

Subsequently, the PLY files were converted in a the Nexus multiresolution
compressed format. Then, a rendering of the 3D model from the initial point of
view (given a basic turntable trackball paradigm) is generated. The image is
intended to be used as a thumbnail, and as an output for user validation (see
later).

These actions have been implemented in a script file, called “build”. In detail,
running the “build” batch procedure the system:

1. enters in the dataset location and visits all the directories and the
sub-directories looking for the input model files;

2. for each 3D model found: it applies the MeshLabServer scripts with two
selected filter (rotation and normal vectors calculation), saving the obtained
fixed model in PLY format;

3. it feeds the Nexus converter with the obtained PLY files, getting as output
the corresponding multi-resolution compressed Nexus model files;

4. for each final Nexus files: it opens it locally and take a screen-shot of the model
saving a copy of it in an dedicated folder (called “build”) unique for the entire
database.
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At the end of the first phase, in addition to the original model, and the generated
PLY and Nexus models, there will be a “build” folder containing the thumbnails of
every single object of the dataset.

The thumbnails are used by those who operate on data to understand which
models need to be further processed (Figure 5.9).

Figure 5.9: A figure showing a sample “build” folder with the thumbnails of 3D models
after the first stage of the pre-processing pipeline. Examining the pictures of the models
(almost all cylinder seals, in this case) it’s easy to see which of them after the first rotation
are still in an wrong initial position (thumbnails circled in red).

The second stage of the pre-processing is again implemented as a script. If the
data operator finds a model that needs repairing (i.e. a further alignment in the
reference space is needed), he moves the associated thumbnail from the “build” to
another dedicated folder (called “repair”), then he selects the right MeshLabServer
filter to apply (i.e. “rotation”), and finally he runs the “repair” batch script.

In the case of the collections taken into account, the MeshLabServer filters that
could be applied were dedicated to two possible actions: rotation, and normal
estimation. These operations could be needed to fix the right initial position of the
model or have better estimated normals. The “repair” script, acting only on the
repository models with the same name of the the thumbnails placed in the
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homonyms folder, follows the same steps as the “build” one, finally updating with
the new thumbnails the “build” folder where the user can check and validate the
results again.

This pipeline structure, composed by sequential blocks, is highly configurable.
The only mandatory constrains indeed are the kind of output format from the
MeshLabServer stage (i.e. PLY) and the final 3D model file format (i.e. Nexus)
which are fundamental for operating in an efficient way in the 3DHOP viewer.

All the other actions on the data can be decided by the data operator depending
on the 3D dataset, just changing the associated pipeline block.

Designing and Developing the Web Viewer

The pre-processing pipeline aforementioned is fundamental to smooth the principal
rough differences in the original dataset. However the previous step, while preserving
the basic and fine features of the data (geometric structure, color information, etc),
still preserves their differences and peculiarities.

Hence, it is important to choose an appropriate Web viewer, which should be
able to:

• guarantee a solid and fast data streaming in “all terrains” conditions,
supporting large amount of 3D data;

• automatically get (for every single model) the best scene setup, minimizing
the intervention by the platform developer;

• support quite wide range of data setup possibilities (point clouds and meshes,
textured model, with per vertex color or without any color, etc);

• allow customization according to the needs of the developer (so as to use it,
for instance, in an automatized pipeline where the HTML element containing
the 3D scene have to be generated with an unsupervised routine).

The 3DHOP framework satisfies all these requirements, virtually supporting all
the data configurations of the repository dataset, and natively providing a set of
tools addressed to the CH field. We just modified the basic implementation of the
viewer in a couple of features, adding more flexibility and adaptability as required
by a project like this, where the creation of the webpage cannot be supervised step
by step.

The key point of this implementation (Figure 5.8, bottom) has been to act on
the default settings of the scene, moving them from an hard coded choice to an
exposed and programmable feature, giving more decision-making power both to the
repository developer (who can set his preferred default values in the viewer template
passed to the webpage) and to the final user (who can change the default setup
interacting with the dedicated control panel shown in Figure 5.10 bottom left).
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The source code of the viewer was edited, both at Shaders and JavaScript level,
adding portions of code able to switch between different rendering modes and
modifying the preexisting data structures. Appropriate informative flags, added to
the JavaScript objects related to each model, have been used to describe the
different structural characteristics of the 3D instances. The introduction of these
flags gives the possibility to manage a couple of characteristics which are closely
related with the virtual scene basic appearance: the geometric and the color
representation of the 3D models. This basically allowed us to overcome the need to
set the best scene configuration model by model.

The setup panel addressed to drive the rendering features (virtually supporting
all the data configuration of the repository dataset) at the end has been integrate
to the set of tools addressed to the CH field natively provided by 3DHOP. The final
interface of the resulting Web3D viewer, aside from the basic navigation buttons
(home and zoom controls), is so composed by a set of 4 different tool, in the following
shortly described.

Figure 5.10: Four examples of tools implemented in the Edition Topoi [Edi16] viewer
(in clockwise order starting from the upper left): light tool, measurement tool, sections
tool, and setup tool.
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The lighting control tool enables the control of the light source on the virtual
scene: through a dedicated panel the user can interact with an intuitive HTML
canvas (Figure 5.10 top left), moving and positioning the light source everywhere
around the 3D scene. In the CH domain, directional light is a powerful mean to
visualize fine geometric details.

The measurement button gives access to several tools (Figure 5.10 top right).
By clicking on the measurement panel icons the repository user can select different
interactive measurement possibilities, like for instance the point picker (for the
retrieval of the 3D scene space coordinates of a point on the virtual scene), or the
distance tool (for the calculation of the linear distance between two points), or
again the angle tool (for the measurement of the plain angle between two lines).

Using the sectioning tool is possible to get planar sections of the model on the
scene (Figure 5.10 bottom right). Three orthogonal sectioning planes are provided,
the proper use of them not only give accurate references points (for measurement
or other needs, for instance), but also allows to visualize the internal parts of the
3D objects. Interacting with the sliders in the section tool panel the final user can
independently move each orthogonal section around the virtual scene; in addiction
is possible also to control the section edges and planes visibility.

Finally, the already mentioned setup tool allows the user to modify in real time
the scene rendering parameters. It gives to the final user the possibility to change
the displayed primitives (switching between triangles and points), or to move from
a textured to a color per vertex 3D model representation. It also allows to modify
the size of the points in a point cloud rendering and, at last, to select a desired solid
color for visualization (Figure 5.10 bottom left).

Of course, this implementation of the 3D Web viewer interface is just one among
all the possibilities. The tools to add or to remove can be easily chosen by the
database developer, who can freely select, for instance, to delete the sectioning tool,
to separate the color setup panel from the rendering primitive setup panel, or even
to integrate some hot-spot features to link external information directly inside the
virtual scene.

5.2.3 Results

The strategy discussed in this case-study aims to drive, automate, and speed up, the
publishing of a large set of 3D data in a web repository. In order to achieve these
goals we proposed a two stage work flow, where a first (supervised) pre-processing
of the entire raw dataset is performed, and then an online virtual scene setup is
automatically generated.

The sheer size of the repository and its heterogeneous content have required a
careful setup of an automated back-end, able to support the different pre-existing
situations, and possibly to allow for a simpler management of future additions.
All the work done in this part has been strictly connected with the idea of Web
presentation, as it served also to define exactly what can be presented to the public,
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Figure 5.11: An example of webpage referring an object currently integrated in the
Edition Topoi repository [Edi16].

and define a uniform, coherent access to the repository. We have seem that defining a
specialized viewer for each one of the entities is impractical (if not time-impossible),
but it is viable to start with a uniform solution for all the data, and then think,
maybe on a “class” basis, to specialize the viewer to better work with that specific
class of data. Completely custom viewers may then be created for one-of-a-kind
objects and masterpieces. Thus, we have outlined a working scheme that rely on
a first pre-processing phase (described in detail here) and then uses three levels of
publications:

• a basic generic viewer available for all the entities in the repository, to
provide easy access and preview, uniform and coherent browsing experience.
This is the first step, done once to provide access to all the entities in the
repository. It require a careful design of the basic “universal” viewer, as
explained in the previous section, but it is still viable (“one viewer fits all”),
and grants the most immediate and wide result.

• a class-specific viewer to exploit individual specificity of a class of entities
(e.g. for all the sundial, add a “show time” visualization, where it is possible



Edition Topoi Repository: Automating Web-Based 3D Publishing 131

to change the time of the day and see the shadow of the gnomon). This is the
second step, and may be seen as an incremental result, as we are specializing
the existing viewer, thus only requiring a moderate, focused effort.

• a fully custom viewer for few, selected objects, to be used as showcase of
masterpieces and peculiar object. This is the final step, and can be done when
resources are available, or on a per-needed base, again, optimizing the design
and development effort.

It is our belief that this working strategy is efficient and sustainable, as it optimize
the effort for developing and deploy the repository, and fits perfectly the 3DHOP
workflow, as the incremental specialization of the viewer is possible due to the
modularity of our system, and does not require a complete rewrite of the viewer code,
still preserving a strong uniformity in terms of interaction and rendering. Future
addition to the repository will follow the same workflow: after the preprocessing
step they will be homogenized to the rest of the repository, and will receive the
generic viewer (or the generic class viewer, if available), resulting in an immediate
availability.

The pre-processing of the full 3D dataset, carried up on a common machine
with a few batch procedures, has allowed to prepare the data to be efficiently
handled online. Using the output of this first working stage, the second stage of
the proposed work flow has been performed without complications, exploiting the
3DHOP capabilities and possibilities. The generation of the webpages related to
each single object has been obtained with standard Web routines used in the
development of similar online structure (i.e. using templates) with the only
addition of the design pattern able to produce the 3D viewer implementation.

Thanks to this pipeline, the entire Web repository has been populated in a short
time with the 3D models introduced in 5.2.1. The resulting Edition Topoi digital
library has been released in April 2016, and it is currently accessible online [Edi16].

In the current implementation, the Web repository allows the access to 18
different classes of items, composed by a mixed set of data: images, reports, RTIs,
computations and also 3D models (present in 12 of the mentioned classes).

For each class, the user gets information about the selected subset objects.
Subsequently he can refine the search until landing on the page of a single object.
Here all the informative multimedia layers (text, pictures, 3D, RTIs, etc) are
shown, organized in a rational and sensible way (Figure 5.11).

The thumbnail of the 3D object (coming from the pre-processing stage) gives
access to the Web viewer page, where besides to other textual information related
to the model, there is the pre-defined virtual scene deployed with 3DHOP.

3DHOP played a central role in this experience, influencing both the pipeline
stages. This case-study resulted very important in the 3DHOP validation, proving
once more the versatility and the strengths of our framework, also when adapted
to application context slightly different from a common publishing action.
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The results of this experience has been presented at the “STAG 2016 Conference
on Smart Tools and Apps for Graphics” and published here:

• Automating Large 3D Dataset Publication in a Web-Based Multimedia
Repository, Potenziani M., Fritsch B., Dellepiane M. and Scopigno R.,
Eurographics Conference on Smart Tools and Apps for Graphics (STAG
2016), page 99-107, October 2016; 3

The final Web3D repository of the Topoi Excellence Cluster can be accessed at
the project webpage 4.

3 c© 2018 The Eurographics Association. Text and figures reproduced by kind permission of
the Eurographics Association.

4 http://repository.edition-topoi.org

http://repository.edition-topoi.org
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Conclusions

With this thesis, we aimed at exploring the Web3D environment, trying to provide
a sensible answer to the need for effective approaches to 3D Web publishing.
Nowadays, the Web integration of 3D content is a very dynamic and
rapidly-evolving world, populated by a myriad of different technical solutions.
Despite the great variety of possibilities, at a closer analysis the resulting scenario
is characterized by unsolved issues, uncovered users, and neglected fields. The
presence of these “missing links” has been the main motivation of this work.
Starting from these premises, we decided to investigate the Web3D landscape,
studying its evolution and identifying current trends, with the aim to define the
shortcomings and deficiencies of current approaches/technologies, and to clearly
identify open challenges. To conduct this state-of-the-art and characterization
review we considered both academic literature (selecting about a hundred
remarkable works) and software systems (again, selecting about a hundred of
significant cases). The panorama resulting from this study is definitely
heterogeneous and complex. To produce a more synthetic view we decided to
organize our work primarily analyzing in detail the possibilities provided by the
major current approaches, secondly isolating some of the prominent and recurring
features and capabilities offered by these systems, then grouping them by their
scope and functionality, and finally cross-mapping those characteristics with the
requirements of different application domains.
This work, reported in detail in Chapter 2, has been submitted recently as a
monograph to the journal “Foundations and Trends in Computer Graphics and
Vision” and is currently under review.

The main results of this thesis is the design of a new platform for the
production of interactive Web3D content, called 3D Heritage Online Presenter
(3DHOP) [PCD+15a]. This platform derives from the characterization presented
in Chapter 2 and is aimed at solving the open issues individuated in that review
work. The goal here was to contribute to the requirements and open issues of a
specific application domain, Cultural Heritage, even though the resulting platform
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is not strictly limited to that domain. 3DHOP has been designed to enable the
fast and easy publication of 3D models online, supporting users both with the
required technology and with the didactic resources to train and introduce them
using it. Other key objectives in the design have been to provide a flexible,
modular and performing platform, fully integrated in the Web ecosystem.
The 3DHOP solution is a Web-based framework aimed at the interactive
visualization of complex 3D dataset (Chapter 3). Its final implementation has
given a strong emphasis on some key aspects, e.g. efficient formats/approaches for
3D data transmission/rendering, intuitive interaction/manipulation paradigms,
and features enabling the connection of trans-media elements, globally aiming at
simplifying the creation of Web pages able to interactively display high-resolution
3D models.
Initially conceived as a demonstrator, and then evolved in a real system, now
3DHOP can be considered a fully qualified solution with a consolidated community
of users. It is distributed as an open source tool (which includes also user guide
resources, explaining step by step how to use and configure the different layouts
and components provided). To date the 3DHOP package counts around 80
downloads per month, while the 3DHOP official website [Vis14a] is visited around
800 times per month. 3DHOP is currently used by tens of different academic,
educational and commercial entities, which have developed their own visualization
webpages (in most cases without our support or help).
The value of the 3DHOP platform was recognized by the DH community, since it
got the honorable mention (second place) in the category “Best DH Tool or Suite
of Tools” of the Digital Humanities Awards 2015 1.

Over the time we had highly encouraged the extension and modification of our
framework, gathering suggestions and feedback from the users. These third parties
utilizations and extensions of 3DHOP (some representative examples are presented
in Figure 3.8) have been useful also to operate a preliminary validation on our
platform. Indeed, despite in most cases those external users exploited just the
basic layout/configuration or only proposed some basic customizations, these
independent testbeds can be already seen as a sufficient demonstration of the
3DHOP usability/adaptability in different application scenarios, and consequently,
as a validation of our design choices.
However, to have a better understanding on the real effectiveness of our solution
we have also contributed to the implementation of more comprehensive testbeds.
In particular, we presented in the thesis two couples of real application examples
addressing different needs: the first two test cases providing examples of 3DHOP
used as specialized content creation tool, and the second two providing examples of
3DHOP used as a basic resource for the implementation service-oriented
applications.

1 http://dhawards.org/dhawards2015/results

http://dhawards.org/dhawards2015/results
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Concerning the specialized Web3D content creation (Chapter 4), we first
presented a publishing experience specialized to supporting a content
dissemination action (the Pollock case), and then a second one developed for
supporting scientific analysis (the study of the polycromy over a Roman
sarcophagus). These publishing actions, even if aimed to cover different needs, are
both characterized by a data-centric design, that has required to strongly adapt
the 3DHOP features to the specific aims of the two experiences, in this way
allowing us to better validate the modularity and the flexibility of our framework.

More specifically, in the first contribution we presented a publishing experience
that, starting from a 3D digitization campaign of painting by Pollock required to
support conservative and diagnostic purposes, has finally led to the design of a
Web3D application to be used both in a virtual exhibition (as a Web application)
and in a real exhibition (as a museum kiosk).
In this case, through an important customization of 3DHOP, we developed a
presentation tailored on the 3D geometry of the analyzed artwork, that gave to the
visitors the possibility to interactively understand the most interesting aspects and
the complexity of the artwork, somehow providing an unconventional experience.
The resulting 3D application was part of the temporary exhibition “ALCHEMY
BY JACKSON POLLOCK. Discovering the Artist at Work”, inaugurated in the
Peggy Guggenheim Collection in Venice in 2015 and lasted eight months, totaling
more than 180.000 visitors. The same kiosk was also on exposition in a similar
initiative hosted by the Guggenheim Collection Museum in New York in
2016-2017. The Web version of the kiosk it is accessible online at [Vis15c].
The results of this experience, presented at the “IEEE Digital Heritage 2015
International Conference” [CPP+15], won the conference Best Paper Award. This
project also won the first prize in the category “Best Use of DH For Public
Engagement” at the Digital Humanities Awards 2015 2.

In the second contribution we presented a publishing action aimed at building
a technical tool for supporting the study and the documentation of an
archaeological artifact. In this case-study, focusing on a proper interface design, we
built a specialized Web3D application able to effectively present the heterogeneous
set of analytical examinations performed on an Roman painted sarcophagus. The
resulting Web documentation exploits the digitized 3D geometry of the artifact as
the main channel to manage and display, integrated in a single reference system,
all the scientific analysis and historical information collected. Also in this case, the
final result (accessible online at [Vis15d]), was tested in a real applicative context,
and contributed to the validation of the effectiveness of the proposed solution.
The results of this experience was presented at the “IEEE Digital Heritage 2015

2 http://dhawards.org/dhawards2015/results

http://dhawards.org/dhawards2015/results
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International Conference” [SPPS15].

Concerning the application examples addressing the service-oriented 3D
publishing (Chapter 5), we presented firstly an experience aimed at developing a
media publishing service platform, and then a contribution aimed at supporting an
automatized publishing pipeline for a Digital Library.
Indeed, both these case studies have been designed to exploit 3DHOP as low-level
code base for providing higher-level solutions. This approach, requiring
customizations that touch innermost layers of our framework, has allowed us to
evaluate the 3DHOP adaptability from a more technical perspective.

The first contribution describes the steps needed in design and the develop of
an online service aimed at the assisted publishing of complex data (3D content, 2D
Hi-Res Image, and RTI). In this testbed 3DHOP has been used as code base for
implementing a server based visualization platform, as well as pattern design for
the structures addressed at managing the two not 3D visual media not natively
handled by 3DHOP. This experience resulted in the ARIADNE Visual Media
Service [Vis15b], a one-click service able to simply convert the media file uploaded
into a performing Web visualization.
The results of this experience was presented at the “CAA 2015 Conference on
Computer Applications and Quantitative Methods in Archaeology” [PPD+15].

The second testbed was aimed at supporting the semi-automatic processing
and publishing of an extensive and heterogeneous set of 3D digitalizations, with
the final goal to build an enriched multimedia Web repository (set up by the Topoi
Excellence Cluster). In this case-study 3DHOP has been exploited for designing a
pipeline (composed by a pre-processing plus a visualization stage) useful to
rationalize and speedup the deployment of the specialized Web3D repository. The
developed Web Digital Library (the Edition Topoi Collection [Edi16]) provides free
access to thousand of 3D models effectively integrated with other media
informations, endorsing their interactive analysis through the different tools
composing the user interface.
The results of this experience was presented at the “EG STAG 2016 Conference on
Smart Tools and Apps for Graphics” [PFDS16].

6.1 Future Works

3DHOP is a living platform, it has already reached a quite mature status (the
current version released on the Web is already v.4.1) and reached very good figures
for both external users, downloads and accesses to the webpage. We have
extensively used the 3DHOP platform in a number of projects concerning CH
(many more than the four examples presented in the thesis). Those application
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cases allowed us to further assess its flexibility and extendibility.

Designing, developing, and testing a framework for 3D Web publishing has
given us the chance to carefully study any single facet of Web3D. The knowledge
acquired closely analyzing this world has returned us a clear picture of past and
present Web3D, but has also provided us with a perspective about its future, still
characterized by a rapidly evolving nature, open issues, and possibilities to
explore. With these premises it is clear that the searching for effective approaches
to 3D Web publishing cannot be considered a terminated subject.

A brief list of ideas and suggestions easily to become research themes for future
works on Web3D may include studies on:

• Innovative interaction paradigms, exploring the specialized features that
are required for enlarging the toolset of supported devices and for improving
the Web3D application accessibility. Nowadays, the research spaces in this
direction are mostly driven by the widespread diffusion of new AR/VR
technologies and I/O devices, that are opening the door to new navigation
possibilities still to explore in Web applications. But for Web3D applications
novel devices also mean mobile devices, which actually opened to the wide
and stable support of WebGL only recently. Unfortunately, beside an
heterogeneous approach in enabling the Web 3D API features, mobile devices
also show considerable differences in many other central components, like for
instance the handling the Web touch events, or also the management of the
CANVAS images drawing in the context of high pixel densities (DPI)
displays. All that, together with the lack of pattern design universally
recognized, makes particularly challenging to develop Web3D solutions for
these devices. So, it easy to foresee that the accessibility of Web3D
applications on mobile or innovative platforms will be a breeding research
ground in the near future, and, for this reason, it certainly will steer our
plans for further works on 3D Web publishing.

• Improved features for scene creation, investigating novel and more
flexible modalities for defining a 3D scene. This development area concerns
the investigation of additional initialization features/schemes, but also the
searching for easier definition paradigms. We know that, in order to be fully
compliant with the Web environment, Web3D solutions will have to improve
this area, maybe borrowing or hybridizing features from Web-based
platform/services. Currently, authoring helpers and wizard tools seem to be
the only way to solve this outstanding issue. But at the moment few
solutions adopt an effective visual editor able to provide, at the same time,
simplicity of use and a fully set up the visualization scheme. Conversely, the
ideal Web3D authoring tool (beside to accept the upload of 3D models and
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their metadata), should provide sensible defaults for the scene setup, without
preventing the content creator to easily customize any 3D scene features just
using simple Web forms/interfaces. Since the scene creation dichotomy
represents a severe hurdle in approaching Web3D, we think that in our
future works on 3D Web publishing may be valuable to investigate
server-based guided tools specifically developed for 3D, and, most
importantly, to propose similar solutions also for client-based platforms.

• Specialized trans-media mapping, concerning more sophisticated features
for integrating different (peculiar) data types on the Web. A practical example
could be the case where we have several images conveying different information
that have to be mapped on a 3D object. Web3D solutions already enable
textured models, but for specific applications would be valuable supporting
the switching of multiple textures active on the same mesh (e.g. RGB data,
UV images, multi-spectral textures, or any image-based scientific investigation
produced on the same surface), eventually handling distortion issues coming
from the use of different specialized acquisition devices. But, at the same
time, trans-media mapping can be seen from the opposite point of view, i.e.
such as the chance to map 3D on other media. A practical example of that
could be the integration of 3D models into panoramic images, to enable an
enriched visualization of these 360◦ environments. This addition could provide
a more natural way of interfacing with the spatial features, enabling users to
identify, query or analyze the 3D information integrated in the panoramic
images environment. In the light of this it easy to imagine that sophisticated
trans-media mapping will be a central feature to explore in our next studies
on Web3D publishing.

• Advanced management of the information, moving towards shared
documentation platforms, and studying new modalities to attach or link
informative layers to the 3D model. Current solutions include the annotation
and hot spot concepts, which are a first attempt to link any Web-enabled
data (an image, some text, etc.) to a geometric location in the 3D scene.
Nevertheless, there are several applications requiring more sophisticated
approaches, where is needed a flexible support for the effective definition of
regions (which could be points, polylines, or polygonal regions) where to
attach additional data. Moreover, could be also useful to enable final users to
contribute to these additional information, through a review/editing
interface requiring (complex) real-time routines. In all those cases, future
approaches will have to provide data organization and archival features,
rather than simply visualization. Therefore, it is likely to think that our
future works on Web3D will be aimed at effectively integrating data
creation/ingestion to the underlying database, to store in a structured way
all the handled information.
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6.2 Thesis Achievements

Papers published (in chronological order):

• Alchemy in 3D - A Digitization for a Journey Through Matter, Callieri M.,
Pingi P., Potenziani M., Dellepiane M., Pavoni G., Lureau A. and Scopigno
R., IEEE Digital Heritage 2015 (DH 2015) International Conference, Volume
1, page 223-231, October 2015; [CPP+15]

• Digital Study and Web-based Documentation of the Colour and Gilding on
Ancient Marble Artworks, Siotto E., Palma G., Potenziani M. and Scopigno
R., IEEE Digital Heritage 2015 (DH 2015) International Conference, Volume
1, page 239-246, October 2015; [SPPS15]

• 3DHOP: 3D Heritage Online Presenter, Potenziani M., Callieri M., Dellepiane
M., Corsini M., Ponchio F. and Scopigno R., Computers & Graphics (C&G)
International Journal, Elsevier, ISSN: 0097-8493, Volume 52, page 129-141,
November 2015; [PCD+15a]

• 3DHOP: una piattaforma flessibile per la pubblicazione e visualizzazione su
Web dei risultati di digitalizzazioni 3D, Potenziani M., Callieri M., Dellepiane
M., Corsini M., Ponchio F. and Scopigno R., Archeomatica, ISSN: 2037-2485,
Volume 6 (4), page 6-11, December 2015; [PCD+15b]

• ARIADNE Visual Media Service: Easy Web Publishing of Advanced Visual
Media, Ponchio F., Potenziani M., Dellepiane M., Callieri M. and Scopigno
R., Computer Applications and Quantitative Methods in Archaeology (CAA
2015) International Conference, Volume 1, Chapter 6, page 433-442, March
2016; [PPD+15]

• Automating Large 3D Dataset Publication in a Web-Based Multimedia
Repository, Potenziani M., Fritsch B., Dellepiane M. and Scopigno R., Smart
Tools and Apps for Graphics (STAG 2016) Eurographics Conference, page
99-107, October 2016; [PFDS16]

• Delivering and using 3D models on the web: are we ready?, Scopigno R.,
Callieri M., Dellepiane M., Ponchio F. and Potenziani M., Virtual Archaeology
Review (VAR) International Journal, ISSN: 1989-9947, Volume 8 (17), page
1-9, July 2017; [SCD+17]

• A Web-based system for data integration and visualization of the ancient
colour, Siotto E., Palma G., Potenziani M. and Scopigno R., 7th Round
Table on Polychromy in Ancient Sculpture and Architecture (Florence 2015)
International Conference, ed. P. Liverani, page 183-188, 2018 (in
press); [SPPS18]



140 6. Conclusions

Submitted papers:

• Publishing and Consuming 3D Content on the Web, a Survey, Potenziani M.,
Callieri M., Dellepiane M. and Scopigno R., Foundations and Trends (in
Computer Graphics and Vision) International Journal, pages 89, 2018
(submitted, under review); [PCDS18]

Awards achieved by results produced in this Ph.D.:

• The tool 3DHOP [Vis14a] was 1st runner up in the category “Best DH Tool
or Suite of Tools” at the Digital Humanities Awards 2015.

• The project Alchemy in 3D [Vis15c] won the first prize in the category “Best
Use of DH For Public Engagement” at the Digital Humanities Awards
2015.

• The paper Alchemy in 3D - A Digitization for a Journey Through
Matter [CPP+15] won the Best Paper Award at the “IEEE Digital
Heritage 2015 International Conference”.

6.3 Acknowledgments

This thesis has been the final outcome of a group effort, mostly resulting from
the strong collaboration with the Visual Computing Lab3. The achievement of the
goals presented in this work would not have been possible without the fundamental
contribution of the people listed in the following:

• Chapter 3 – Federico Ponchio 3, in the development of the Nexus engine multi-
resolution core;

• Chapter 4 (§4.1) – Paolo Pingi 3, in the “Alchemy in 3D” project management
and in the data acquisition;

• Chapter 4 (§4.2) – Federico Ponchio 3, in the “Visual Media Service” project
management and in the database deployment;

• Chapter 5 (§5.1) – Eliana Siotto 3, in the “Color and Gilding on Ancient
Marbles” project management and in the data acquisition;

• Chapter 5 (§5.2) – Bernhard Fritsch 4, in the “Edition Topoi” project
management and in the data gathering.

3Visual Computing Lab, ISTI CNR, Pisa, Italy
4Excellence Cluster Topoi, HU, Berlin, Germany
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