
Tackling the Equivalent Mutant Problem in Real-Time Systems:
The 12 Commandments of Model-Based Mutation Testing

Davide Basile

ISTI–CNR, Pisa, Italy

davide.basile@isti.cnr.it

Maurice H. ter Beek

ISTI–CNR, Pisa, Italy

maurice.terbeek@isti.cnr.it

Maxime Cordy

SnT, University of Luxembourg

maxime.cordy@uni.lu

Axel Legay

UCLouvain, Belgium

axel.legay@uclouvain.be

ABSTRACT
Mutation testing can effectively drive test generation to reveal faults

in software systems. However, it faces a typical efficiency issue as

it can produce many mutants that are equivalent to the original

system, making it impossible to generate test cases from them.

We consider this problem when model-based mutation testing

is applied to real-time system product lines, represented as timed

automata. We define novel, time-specific mutation operators and

formulate the equivalent mutant problem in the frame of timed

refinement relations.

Further, we study in which cases a mutation yields an equivalent

mutant. Our theoretical results provide guidance to system engi-

neers, allowing them to eliminate mutations from which no test

case can be produced. Our evaluation, based on a proof-of-concept

tool and an industrial case from the automotive domain, confirms

the validity of our theory and demonstrates that our approach can

eliminate many of the equivalent mutants (88% in our case study).

CCS CONCEPTS
• Software and its engineering→ Software product lines; Soft-
ware testing and debugging; Real-time systems software.

KEYWORDS
Software product lines, mutation-based testing, real-time systems

ACM Reference Format:
Davide Basile, Maurice H. ter Beek, Maxime Cordy, and Axel Legay. 2020.

Tackling the Equivalent Mutant Problem in Real-Time Systems: The 12

Commandments of Model-Based Mutation Testing. In 24th ACM Interna-
tional Systems and Software Product Line Conference (SPLC ’20), October
19–23, 2020, MONTREAL, QC, Canada. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3382025.3414966

1 INTRODUCTION
Testing a real-time system against safety-critical requirements is

a hard problem due to the time-sensitiveness of its behaviour. To

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00

https://doi.org/10.1145/3382025.3414966

help in this task, model-based testing methods automate the gen-

eration of test cases by using a formal model of the system [25].

The model drives the generation of test cases according to different

criteria, such as state coverage. Testing a formal model rather than

source code allows detecting, among others, misinterpretations

of requirements or systemic issues arising from time-dependent

interactions of the system with its environment. Such detections

would be harder at source code level.

Mutation testing [1, 8] is a technique commonly used to evaluate

the thoroughness of test cases or to support their generation [4, 22].

It can be applied both to the implementation (source code) and to

the specification (model). A set of mutation operators, simulating

possible faults in the system, are applied to the model, obtaining

a so-called mutant. Thus, given a set of mutants, the effectiveness

of a set of test cases can be evaluated according to the number of

mutants it detects (i.e., mutants that produce different output than

the original system). Test cases generated from amutant are capable

to detect bugs mimicked by that mutation. It has been shown [4]

that mutation-based testing is more effective in finding real faults

than other techniques [2, 6, 22].

Scalability of this approach is of paramount importance, because

a large number of mutations is required in order to build effective

test cases. The problem of equivalent mutants hinders this technique,
as a mutation is keen to generate a mutant whose behaviour is

equivalent to (or a subset of) the original system model [21]. In this

case, no test case can be generated to differentiate the mutant from

the original system. One viable method is to organise the mutants

as a product line of mutations, in the featured mutant model [16].
Such a product line enables the effective generation and validation

of mutants against given test cases. However, an efficient featured

mutant model should be built upon a set of effective mutations

(i.e., those producing non-equivalent mutants), rather than from

random mutations. This constitutes an important contribution to

avoiding the equivalent mutant problem.

In this paper, we tackle the problem of testing real-time systems

effectively and efficiently. We adopt the model-based mutation test-

ing approach for real-time systems presented in [19]. We augment

the set of existing mutations with new mutation operators that

affect the timing of the system behaviour (e.g., one of our opera-

tors delays the execution of some action by the system). Then, we

address the equivalent mutant problem [21]: we formally prove the

conditions under which some mutations inherently produce equiv-

alent mutants. We achieve this on the basis of refinement relations,
which can be used to show that a model (the system) subsumes

https://doi.org/10.1145/3382025.3414966
https://doi.org/10.1145/3382025.3414966

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Basile, et al.

another (the mutant). Our endeavour yields clear guidelines for real-

time system engineers, which they can follow in order to reduce

their testing effort by ignoring equivalent mutants.

To summarize, our contributions are as follows.

(1) We propose novel time-specific mutation operators for real-

time models.

(2) We study and formally prove under which conditions mu-

tation operators (“old” and “new”) yield equivalent (or sub-

sumed) mutants, from which no test case can be generated.

(3) We implement our approach in a proof-of-concept tool and

validate it based on an industrial system from the automotive

domain.

(4) We generalise our theoretical results to the case where muta-

tion testing is applied to a product line of systems, instead of

a single system. In such a case, we use the featured mutant

model to capture both the variability of the system and the

different mutations that can be applied. This requires the

definition of a feature-aware extension of timed graphs (the

mathematical structure used to check refinement relation), in

a similar way that single-system formalisms were extended

with variability [10, 11, 13, 24].

Outline. In Section 2, we discuss related work, followed by back-

ground material on (featured) timed games in Section 3. Our con-

tribution starts in Section 4, where we introduce novel mutation

operators and the updated featured mutant model. Our main con-

tributions are presented in Section 5, where we classify mutation

operators and present guidelines for selecting effective mutations,

followed by Section 6, where we report the results of an evaluation

of our approach. In Section 7, finally, we conclude the paper and

provide some ideas for future work.

2 RELATEDWORK
This papermainly builds upon two recent results onmutation-based

testing [16, 19]. Featured mutant models were introduced in [16] for

efficiently validating test cases against different possible mutations.

Indeed, a single execution on the generated featured transition

system [10] suffices to check all mutants at once. However, there

are no guidelines on how to select the mutations to generate the

featured mutant model, that is, the mutations are selected randomly.

While [16] studies the problem of checking given test cases, [19]

considers the problem of generating valid test cases for real-time

system models. Basically, a test case generated through mutation-

based testing is guaranteed by construction to distinguish certain

mutants from the system model. Real-time systems are modelled as

timed I/O automata, in which input actions are defined controllable

and output actions are defined uncontrollable. The main idea is to

perform a refinement check between the mutant and the system

model, using Ecdar [15]. Ecdar is a tool built on top of Uppaal
TIGA [7] that implements the timed interface theory from [14].

Compared to [16], in [19] the mutants are not organised as a

product line and thus have to be checked one by one to generate the

test cases. Moreover, both approaches generate random mutations

that may result ineffective for generating/validating the test cases.

Earlier, in [2], mutation-based testing for timed automata was in-

troduced, extending standard mutation operators presented in [17]

with new mutations tailored for timed automata. We use some of

those mutations but also introduce new ones. Compared to [19],

a 𝑘-bounded language inclusion test between the mutant and the

system model is used rather than refinement checking with Ecdar.

In [2], a Car Alarm System (CAS) model of Ford is used as case

study for experiments and evaluation; here we use the same case

study. Similar to [19], the approach in [2] comes without a proce-

dure or guidelines for selecting effective mutations, and no product

line is used either. In particular, 471 out of a total of 1099 generated

mutants are tested and subsequently discarded, because they can-

not be used for generating test cases. We present a technique for

avoiding the generation of ineffective mutants.

Mutation-based test-case generation is also discussed in [1], for

the case of UML state machine diagrams. The technique for compar-

ing the mutant with the system model is similar to the one in [2],

and the CAS case study is used for experiments. Mutations are

applied randomly and ineffective mutants (i.e., mutants equivalent

to the system model) are discarded subsequent to their generation.

Finally, the survey in [18] points out that “one barrier to wider

application of mutation testing centers on the problems associated

with equivalent mutants”. Our paper is an effort in the direction of

reducing the generation of ineffective mutants, within the frame-

work proposed by [19] and adopting the featured mutant model

construction of [16].

3 BACKGROUND
In this section, we provide some background needed for the sequel.

3.1 Timed Games
Timed games (TG) are transition systems which can remain in a

certain state or location only a specific amount of time, can execute

a transition only within a certain time interval, and distinguish

between controllable and uncontrollable actions. TG are based on

timed (game) automata [3, 5] and form the underlying behavioral

structure of featured timed game (automata) [12, 13].

In reactive systems, one usually distinguishes between uncon-

trollable and controllable actions, that are assigned to inputs and

outputs, respectively, if the environment is uncontrollable and vice

versa otherwise. Time is represented by clocks whose values evolve

continuously. Clocks can be regarded as chronometers: their value

can be inspected and reset, but not modified arbitrarily. Conditions

over clock values are called clock constraints.

Definition 3.1 (Clock constraints). A clock constraint over a set𝐶

of clocks is formed according to the grammar 𝑔 ::= ⊤ | 𝑛 ∼ 𝑐 | 𝑔∧𝑔,
with 𝑛 ∈ N, 𝑐 ∈ 𝐶 , and ∼ ∈ {<, ≤, ≥, >}.

We denote by CC(𝐶) the set of clock constraints over 𝐶 . In TG,

a clock constraint can label a state or a transition. In the first case,

the constraint is a location invariant, which defines the interval of

time in which the system can be in the state. In the second case, it

is a transition guard specifying the interval of time during which

the system can execute the transition. Note that the domain of

the numeric constants in clock constraints is limited to natural

numbers. Without loss of generality, we could use real numbers.

However, natural numbers facilitate the implementation of clock

constraint by allowing efficient data structures.

Tackling the Equivalent Mutant Problem in Real-Time Systems SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Definition 3.2 (Timed games). A timed game (TG) is an octuple

(Loc,Act,𝐶, Trans, ℓ0, Inv,AP, 𝐿) where
• Loc is a finite set of locations;
• Act is a finite set of actions, partitioned into controllable

actions Act𝑐 and uncontrollable actions Act𝑢 ;
• 𝐶 is a finite set of clocks;

• Trans ⊆ Loc×CC(𝐶) ×Act× 2
𝐶 ×Loc is a transition relation.

• ℓ0 ∈ Loc is the initial location;
• Inv : Loc → CC(𝐶) is a total function associating locations

with invariants;

• AP is a set of atomic propositions; and

• 𝐿 : Loc → 2
AP

is a total function associating locations with

atomic propositions satisfied in those locations.

For a transition 𝑡 = (ℓ, 𝑔, 𝛼, 𝑅, ℓ ′), ℓ is the starting location, 𝑔 is

the transition guard, 𝛼 is the action triggering the transition, 𝑅 is

the subset of clocks to reset, and ℓ ′ is the target location. We may

also write 𝑡 as ℓ
𝑔,𝛼,𝑅
−−−−→ ℓ ′ and omit 𝑔 and/or 𝑅 when immaterial,

and instead of {𝑥} for a reset of clock 𝑥 , we may also write 𝑥 := 0.

Example 3.3. In Fig. 1(bottom-right), a TG model of a soda vend-

ing machine is depicted. From its initial state 𝑠0, the insertion of a

euro coin (D) results in the clock being (re)set to zero and a move

to state 𝑠1. This input action is modeled as a controllable transition

(drawn as a solid arc). The vending machine can remain in this state

for at most 5 time units but only within 2 time units it can deliver

a soda bottle (), returning to its initial state. The latter action is

modeled as an uncontrollable transition (drawn as dotted arc). Note

that we may speak of (un)controllable transitions when their action

labels are (un)controllable. A TG model of a tea vending machine

is depicted in Fig. 1(top-right).

The semantics of a TG is commonly defined as an infinite transi-

tion system (TS) whose states consist of a location and a valuation

of the clocks. The transitions can be categorized into two types.

Delay transitions do not change the location of the system, but only

represent the passing of time. They may occur only if the invariant

of the current location is still satisfied after the delay modelled by

the transition. Discrete transitions instead occur when the system

moves from one location to another. They may occur only if the

current clock values satisfy both the guard of the executed transi-

tion and the invariant of the target location. After the execution of

such transitions, clock values can be reset.

Definition 3.4 (TG semantics). We define the semantics of a TG

tg = (Loc,Act,𝐶, Trans, ℓ0, Inv,AP, 𝐿) as the semantics of the TS

(Loc × Val(𝐶),Act∪R≥0, Trans′, (ℓ0, 𝜂0),AP ∪ CC(𝐶), 𝐿′), denoted
by [[𝑡𝑔]]TG, and such that Val(𝐶) is the set of clock evaluations, i.e.,

the set of total functions 𝜂 : 𝐶 → R+ that assign a non-negative

real value to every clock; 𝜂0 = { 𝜂0 (𝑐) = 0 | 𝑐 ∈ 𝐶 }; 𝐿′(ℓ, 𝜂) =

𝐿(ℓ) ∪ { 𝑐𝑐 ∈ CC(𝐶) | 𝜂 |= 𝑐𝑐 }; and

[[𝑡𝑔]]TG = { 𝐿(ℓ0), 𝐿(ℓ1), . . . ∈ (2AP∪CC(𝐶)) |

∀𝑖 ∈ N • ∃𝛼𝑖 ∈ Act ∪ R≥0 • ((ℓ𝑖 , 𝜂)
𝛼𝑖−−→ (ℓ𝑖+1, 𝜂 ′)) }

We may also write (ℓ𝑖 , 𝜂)
𝛼𝑖−−→ instead of (ℓ𝑖 , 𝜂)

𝛼𝑖−−→ (ℓ𝑖+1, 𝜂 ′) when
(ℓ𝑖+1, 𝜂 ′) is immaterial.

3.2 Featured Timed Games
Featured timed games (FTG) extend TG with variability in the same

way that featured transition systems (FTS) [10] extend (labelled)

transition systems (LTS). FTS concisely model the behaviour of all

products of a product line in a single superimposed LTS through the

annotation of transitions with feature expressions, i.e., conditions

expressing their existence in products, based on a feature model.

We assume products to be represented by sets of Boolean features

and a feature model to be defined as a pair (𝐹, 𝑃 ⊆ 2
𝐹), where 𝐹 is a

set of features and 𝑃 is the set of valid products. The semantics of a

feature model 𝜑 , denoted by [[𝜑]]FM, is then its set of valid products.

It can be represented by either a propositional formula or by the

usual feature diagram. Let B = {⊤,⊥} denote the Boolean con-

stants true (⊤) and false (⊥), and let B(𝐹) denote the set of Boolean
expressions over 𝐹 (i.e., using features as propositional variables).

The elements of B(𝐹) are also called feature expressions. Formally,

a feature expression 𝜒 is a total function {⊤,⊥} |𝐹 | → {⊤,⊥} that
associates every combination of features with a truth value. A fea-

ture expression can be interpreted as a set of products [[𝜒]] ⊆ 2
𝐹

defined as all products 𝑝 for which the induced truth assignment

(⊤ for 𝑓 ∈ 𝑝 , ⊥ for 𝑓 ∉ 𝑝 , for features 𝑓 ∈ 𝐹) validates 𝜒 . Feature

expressions and clock constraints allow modelling the behaviour

of real-time variable-intensive systems.

Definition 3.5 (Featured timed games). A featured timed game

(FTG) is a decuple (Loc,Act,𝐶, Trans, Loc0, Inv,AP, 𝐿, 𝜑,𝛾) where

(Loc,Act,𝐶, Trans, Loc0, Inv,AP, 𝐿) is a TG and

• 𝜑 is a feature model over a finite set 𝐹 of features; and

• 𝛾 : (Trans ∪ (Loc → CC(𝐶))) → B(𝐹) is a total function

associating feature expressions to transitions and invariants.

As for FTS, the function 𝛾 associates a feature expression 𝜒 to

some transition 𝑡 = (ℓ, 𝑔, 𝛼, 𝑅, ℓ ′) such that 𝛾 (𝑡) = 𝜒 encodes the set

of products able to execute 𝑡 . We may also write 𝑡 as ℓ
[𝜒]𝑔,𝛼,𝑅
−−−−−−−→ ℓ ′

and omit 𝑔 and/or 𝑅 when immaterial. The function 𝛾 moreover

associates a feature expression 𝜒 to a location invariant Inv(ℓ) = 𝑔,

for some ℓ ∈ Loc, such that 𝛾 (𝑔) = 𝜒 , which we may also write as

[𝜒]𝑔, encodes the set of products with the invariant 𝑔 in location ℓ .

Note that [⊤] stands for a feature expression that is always satisfied
(by any product).

Example 3.6. In Fig. 1(left), an FTG ftg of a product line of vend-
ing machines is depicted. The feature model is 𝑠 ∨ 𝑡 , with features 𝑠

for soda and 𝑡 for tea. From the initial state 𝑠0, the insertion of a

euro coin (D), which is always possible (the feature expression is

always true) and which results in the clock being (re)set to zero,

leads to state 𝑠1. This is a controllable (input) action. A vending

machine can remain in this state for at most 5 time units. Vending

machines with feature 𝑠 can deliver a soda bottle () before 2 time

units have passed. Vending machines with feature 𝑡 can deliver a

cup of tea () after at least 2 time units have passed (producing tea

takes more time). Note that in the presence of both features, after

precisely 2 time units have passed, a choice occurs. Both (output)

actions are uncontrollable.

FTGmodel real-time behaviour of a product line. Moreover, from

an FTG we can derive TG modelling behaviour of specific products.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Basile, et al.

𝑠0 𝑠1 [⊤]𝑥 ≤ 5

[⊤]D,
𝑥 := 0

[𝑠]𝑥 ≤ 2,

[𝑡]𝑥 ≥ 2,
𝑠0 𝑠1 𝑥 ≤ 5

D,

𝑥 := 0

𝑥 ≥ 2,

𝑠0 𝑠1 𝑥 ≤ 5

D,

𝑥 := 0

𝑥 ≤ 2,

Figure 1: FTGvendingmachine (left) andTGproducts (right)

This is achieved by projection of an FTG onto a product 𝑝 obtained

in much the same way that an LTS is obtained from an FTS: all

transitions and invariants unavailable in product 𝑝 are removed.

Definition 3.7 (FTG projections). The projection of an FTG ftg =

(Loc,Act,𝐶, Trans, Loc0, Inv,AP, 𝐿, 𝜑,𝛾) onto a valid product 𝑝 ∈
[[𝜑]]FM is the TG ftg |𝑝 = (Loc,Act,𝐶, Trans′, Loc0, Inv′,AP, 𝐿)where

Trans′ = { 𝑡 = (ℓ, 𝑔, 𝛼, 𝑅, ℓ ′) | 𝑡 ∈ Trans ∧ 𝑝 |= 𝛾 (𝑡) }; and
Inv′(ℓ) = Inv(ℓ) |𝑝 , ∀ℓ ∈ Loc and the projection of an invariant

𝑔 onto a product 𝑝 is recursively defined as

𝑔 |𝑝 =

(𝑔1) |𝑝 ∧ (𝑔2) |𝑝 𝑔 = 𝑔1 ∧ 𝑔2

𝑔′ (𝑔 = [𝜒]𝑔′) ∧ 𝑝 ∈ [[𝜒]]
⊤ (𝑔 = [𝜒]𝑔′) ∧ 𝑝 ∉ [[𝜒]]

We assume w.l.o.g. that all unreachable states and their outgoing

transitions are removed from a TG resulting from projection.

Example 3.8. In Fig. 1(right), products ftg | {𝑠 } and ftg | {𝑡 } of the
FTG ftg are depicted. The TG ftg | {𝑠 } in Fig. 1(bottom-right) is a

model of the vending machine that can only deliver soda bottles,

whereas the TG ftg | {𝑡 } in Fig. 1(top-right) is a model of the vending

machine that can only deliver tea. Product ftg | {𝑠,𝑡 } is not shown.

The semantics of an FTG model of a product line is defined as a

function that associates every valid product with the semantics of

its projection.

Definition 3.9 (FTG semantics). The semantics of an FTG ftg =

(Loc,Act,𝐶, Trans, Loc0, Inv,AP, 𝐿, 𝜑,𝛾) is defined as the function

[[ftg]]FTG such that

∀𝑝 ∈ [[𝜑]]FM • [[ftg]]FTG (𝑝) = [[ftg |𝑝]]TG

4 FEATURED MUTANTS MODEL
The idea underlying mutation-based testing is to guide test-case

generation by mutants, which are typically obtained through ran-

dom mutations of the original model. Organizing the mutants as

a product line of mutations, a family of variations of the System

Under Test (SUT), coined the Featured Mutant Model (FMM) in [16],

enables the efficient generation, configuration, and execution of mu-

tants. Each feature in the FMM corresponds to a single application

of one mutant operator on the original model.

4.1 Building Featured Mutants Models
Like [16], we use a selection of the operators proposed by Fab-

bri et al. [17], based on [9, 26], to generate mutants from a TS:

TMI Transition MIssing operator removes a transition;

TAD Transition ADd operator adds a transition between two

states;

SMI State MIssing operator removes a state (other than the initial

state) and all its incoming/outgoing transitions.

Additionally, we introduce the following operators specific to timed

models, which change the constant in clock constraints, which we

recall to be either a transition guard or location invariant:

CXL Constant eXchange L operator increases the constant of a

clock constraint;

CXS Constant eXchange S operator decreases the constant of a

clock constraint.

CCN Clock Constraint Negation operator negates a clock con-

straint.

The CCN operator is inspired by the 𝜇ng operator from [2], where

only clock constraints appearing as transition guards are negated.

Each operator can be used to generate mutants using either the

enumerative approach or the FMM approach. In the enumerative

approach, each mutation transforms an FTGmodel ftg, representing
the SUT behavior, into a mutant ftg𝑚 .

Example 4.1. The FTG in Fig. 2(left) has been obtained from the

FTG in Fig. 1(left) by applying the mutation operators TMI, CXL,
and CXS. The transition labelled with a soda bottle was removed.

Moreover, constant 2 in the clock constraint that acts as transition

guard was increased to 4 to model that producing a tea takes more

time. Instead, constant 5 in the clock constraint that acts as location

invariant was decreased to 4 to model that the vending machine

takes less time to produce a drink. Thus, the transition from 𝑠1 to 𝑠0
that models the delivery of a cup of tea now occurs (instantaneously)

precisely when 𝑥 = 4. The feature model is not changed.

In the FMM approach, each mutation operator is added as a

feature to the existing feature model. When considering first-order

mutation (only one mutation can be applied to the original system),

the features/mutations are mutually exclusive. For higher order of

mutations, disjunction is used instead.

Example 4.2. Adding the TMI, CXL, and CXS operators to the FTG
from Fig. 1(left), results in the FTG ftgfmm depicted in Fig. 2(right)

with feature model 𝜑fmm depicted in Fig. 3. We now explain this.

To begin with, the TMI operator removes the transition 𝑡1 =

𝑠1
[𝑠]𝑥≤2,
−−−−−−−→ 𝑠0 of the base model in the following way:

(1) the feature expression¬tmi is added to the feature expression

of 𝑡1, resulting in transition 𝑠1
[𝑠∧¬tmi]𝑥≤2,
−−−−−−−−−−−−−→ 𝑠0, meaning

that this transition may be fired only if the tmi mutation is

deactivated (and if 𝑠 is true);

(2) the feature tmi is added to the feature model 𝜑fmm represent-

ing the application of the mutation operator (cf. Fig. 3).

Moreover, the CXL operator increases the constant 2 to 4 in the clock

constraint that acts as guard on the transition t2 = 𝑠1
[𝑡]𝑥≥2,
−−−−−−−−→ 𝑠0

of the base model, in the following way:

Tackling the Equivalent Mutant Problem in Real-Time Systems SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

𝑠0 𝑠1 [⊤]𝑥 ≤ 4
[⊤]D,
𝑥 := 0

[𝑡]𝑥 ≥ 4,

𝑠0 𝑠1
[¬cxs]𝑥 ≤ 5

[cxs]𝑥 ≤ 4
[⊤]D,
𝑥 := 0

[𝑠 ∧ ¬tmi]𝑥 ≤ 2,

[𝑡 ∧ cxl]𝑥 ≥ 4,

[𝑡 ∧ ¬cxl]𝑥 ≥ 2,

Figure 2: Application ofmutation operators TMI, CXL, and CXS

vending

machine

beverage mutation

soda(s) tea (t) tmi𝑡
1

cxl𝑡
2

cxs𝑠
1

Legend

and

or

xor

Figure 3: Featuremodel𝜑fmm offtgfmm drawn in Fig. 2(right)

(1) the feature expression ¬cxl is added to the feature expression

of t2, resulting in transition 𝑠1
[𝑡∧¬cxl]𝑥≥2,
−−−−−−−−−−−−−→ 𝑠0, meaning

that this transition may be fired only if the cxl mutation is

deactivated (and if 𝑡 is true);

(2) the transition 𝑠1
[𝑡∧cxl]𝑥≥4,
−−−−−−−−−−−−→ 𝑠0 is added, meaning that this

transition with feature expression 𝑡∧cxl and clock constraint
𝑥 ≥ 4 may be fired only if the cxl mutation is activated (and

if 𝑡 is true);

(3) the feature cxl is added to the feature model 𝜑fmm represent-

ing the application of the mutation operator (cf. Fig. 3).

Finally, the CXS operator decreases the constant 5 to 4 in the featured
clock constraint [⊤]𝑥 ≤ 5, which acts as invariant of the state 𝑠1 of

the base model, in the following way:

(1) the feature expression ¬cxs is added to the featured clock

constraint of state 𝑠1, meaning that the updated featured

clock constraint [¬cxs]𝑥 ≤ 5 acts as invariant 𝑥 ≤ 5 of 𝑠1
only if the cxs mutation is deactivated;

(2) the feature expression cxs is added to the featured clock

constraint of state 𝑠1, meaning that the updated featured

clock constraint [cxs]𝑥 ≤ 4 acts as invariant 𝑥 ≤ 4 of 𝑠1 only

if the cxs mutation is activated;

(3) the feature cxs is added to the feature model 𝜑fmm represent-

ing the application of the mutation operator (cf. Fig. 3).

Hence, mutation operators are added to the FMM under construc-

tion. Since we choose to only add mutation operators to the original

FTG, this prohibits applying mutations to mutants (i.e., products of

the FTG). In other words, for a given transition or state, the feature

expression (𝛾) cannot contain more than one activatable feature

of a mutation operator (e.g., cxl ∧ ¬cxs ∧ ¬ . . . is allowed, whereas

cxl ∧ cxs ∧ . . . is not).

5 CLASSIFYING MUTATIONS
Our main contribution is a classification of mutations to identify

those that are effective (can be used to generate test cases). Our key

idea is that, by construction, some mutations produce mutants that

have the same (or a subset of the) behaviour of the SUT. Discarding

them will speed-up the mutation testing process, as we would

avoid fruitless attempts to generate test cases. Thus, we aim to

characterize these mutations by formally proving under which

conditions (i.e., mutation operator and the elements of the model

to which it is applied) the produced mutant is equivalent to (or

subsumed by) the SUT.

Recall that a test case generated from a mutant provides a se-

quence of inputs that makes the mutant behave differently than the

SUT (in terms of accepted inputs, produced outputs, or execution

time). Thus, the goal of the test case is to distinguish whether the

system on which it is executed is the original one or the mutant.

For a mutant to remain “live” (as named in the jargon), there must

be no test case that can distinguish it from the SUT. This is equiv-

alent to proving that the mutant is a refinement of the SUT [19].

Refinement checking is solved as a two-player timed game, where

one player (playing the “whenever” transitions of the forthcoming

Definition 5.1) wins if the mutant is not a refinement of the sys-

tem (the mutant is killed) and the other player (playing the “then”

transitions of Definition 5.1) wins if the mutant is a refinement (the

mutant is alive). If the mutant is not a refinement, then the coun-

terexample represents the test case that distinguishes the mutant

from the SUT.

In what follows, we consider the mutation operators mentioned

in Section 4 and prove under which conditions their application

results in a refinement of the original model. While our endeavour

primarily concerns first-order mutation, which was shown to offer

a higher fault-revealing ability [23], our theoretical results hold for

higher-order mutation as well. As such, when proving refinement

relations, we consider the general case where mutations are applied

to mutants of the SUT (either equivalent or not). Similarly, our

work generalizes to the case where the original model represents

the behaviour of not only one system, but of a whole product line of

systems. Thus, our theoretical developments are defined over FTG

rather than single TG. To summarize, all results described hereafter

apply to (1) any-order mutations and (2) families of systems.
To begin with, we formalize the notion of refinement between

TG, adapted from [14, 19]. Basically, a refinement model (i.e., a live

mutant) must be able to mimic all controllable transitions of the

original system model, while the original model must be able to

mimic all uncontrollable transitions of the refinement. In our case,

controllable transitions correspond to inputs (since a live mutant

must accept all inputs that the original system accepts), whereas

uncontrollable transitions correspond to outputs and delays (since

a live mutant should not exhibit any behaviour that does not be-

long to the system). Note that this is the opposite of the standard

notion of modal refinement, where the inputs are seen as sent by an

uncontrolled environment [20]. In other words, here the viewpoint

is switched to the environment [14, 19].

Definition 5.1 (Refinement). A TG tg
1
= (Loc1,Act1,𝐶1, Trans1,

𝑙01, Inv1,AP1, 𝐿1) is a refinement of a TG tg
2

= (Loc2,Act2,𝐶2,

Trans2, 𝑙02, Inv2,AP2, 𝐿2), denoted as tg
1
⪯ tg

2
, if there exists a

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Basile, et al.

binary relation 𝑅 ⊆ (Loc1,Val(𝐶1)) × (Loc2,Val(𝐶2)) that contains
𝑠 = ((𝑙01, 𝜂01), (𝑙02, 𝜂02)) and is such that for each pair of locations

((𝑙1, 𝜂1), (𝑙2, 𝜂2)) ∈ 𝑅, it holds:

• whenever (𝑙2, 𝜂2) 𝛼−→(𝑙 ′
2
, 𝜂2) for some 𝑙 ′

2
and 𝛼 ∈ Act𝑐

2
, then

(𝑙1, 𝜂1) 𝛼−→(𝑙 ′
1
, 𝜂1) for some 𝑙 ′

1
and ((𝑙 ′

1
, 𝜂1), (𝑙 ′

2
, 𝜂2)) ∈ 𝑅

• whenever (𝑙1, 𝜂1) 𝛼−→(𝑙 ′
1
, 𝜂1) for some 𝑙 ′

1
and 𝛼 ∈ Act𝑢

1
, then

(𝑙2, 𝜂2) 𝛼−→(𝑙 ′
2
, 𝜂2) for some 𝑙 ′

2
and ((𝑙 ′

1
, 𝜂1), (𝑙 ′

2
, 𝜂2)) ∈ 𝑅

• whenever (𝑙1, 𝜂1) 𝛿−→(𝑙1, 𝜂 ′
1
) for some 𝜂 ′

1
and 𝛿 ∈ R≥0, then

(𝑙2, 𝜂2) 𝛿−→(𝑙2, 𝜂 ′
2
) for some 𝜂 ′

2
and ((𝑙1, 𝜂 ′

1
), (𝑙2, 𝜂 ′

2
)) ∈ 𝑅

We now provide a definition of subsumed mutant, where Opfmm
is the set of mutations. Basically, after applying an additional mu-

tation the resulting mutant is a refinement of the former one on

which the additional mutation was not applied.

Definition 5.2 (Subsumed mutant). Let ftg be an FTG and let [[𝜑]]
be the set of mutants with 𝑚,𝑚′ ∈ [[𝜑]]. We say that 𝑚 is an

increment of 𝑚′
iff 𝑚 = 𝑚′ ∪ op for some op ∈ Opfmm (called

the increment). Moreover, we say that 𝑚 is subsumed by 𝑚′
iff

ftg |𝑚 ⪯ ftg |𝑚′ , and we say that it is non-subsumed otherwise.

A TG is said to be non-redundant if every location 𝑙 is reachable

in at least one trace, it is not time-locked (i.e., delay is possible),

and every transition is executable in at least one trace. We will

only consider non-redundant TG, both for the specification and

for the generated mutants (for the non-subsumed lemmata). Note

that to transform a redundant TG into a non-redundant one, it

suffices to remove such redundant locations or transitions, and

time-locked or redundant specifications are ill-defined and should

be amended anyway. Moreover, we consider only deterministic TG,

as usual [1, 2, 19].

Proposition 5.3 (Subsumed mutant). Let ftg be an FTG, let [[𝜑]]
be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]], and let𝑚 be an increment of
𝑚′ with increment op. Then𝑚 is a subsumed mutant of𝑚′ iff op has
introduced either less uncontrollable or more controllable behaviour.

Proof. By Definitions 5.1 and 5.2, where delays are uncontrol-

lable, and the assumption that ftg |𝑚′ is non-redundant. □

In the remainder of this section, we present several results for

identifying mutations that generate (non-)subsumed mutants by

construction. We start with the operations that were proposed by

Fabbri et al. [17], followed by novel ones introduced in this paper.

5.1 TMI mutation
The TMI mutation is used to remove a transition from the system.

The following lemma shows that the application of a mutation

TMI on a transition 𝑡 (𝑡𝑚𝑖𝑡 in the following) of a mutant 𝑚′
, i.e.,

removing such a transition from𝑚′
, produces by construction a

mutant𝑚 that is non-subsumed by𝑚′
, in case 𝑡 is controllable.

Lemma 5.4 (TMI Non-subsumed). Let ftg be an FTG and let [[𝜑]]
be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {tmi𝑡 } ∪𝑚′ for
some 𝑡 ∈ Transftg |𝑚′ with action in Act𝑐 . Then ftg |𝑚 is non-subsumed
by ftg |𝑚′ .

Proof. By Proposition 5.3 and the fact that tmi has removed

controllable behaviour, and the assumption that the mutant𝑚′
is

non-redundant. □

𝑠0 𝑠1

𝑥 ≤ 5

D,

𝑥 := 0

𝑠0 𝑠1 [𝑠∨𝑡]𝑥 ≤ 5

[¬tmi]D,
𝑥 := 0

[𝑠]𝑥 ≤ 2,

[𝑡]𝑥 ≥ 2,

𝑠0

Figure 4: FTG ftg′fmm (middle) and its mutants ftg′fmm |𝑚′
2

=

ftg |𝑚1
(left) and ftg′fmm |𝑚2

(right)

The next lemma shows that removing an uncontrollable tran-

sition from a mutant, by construction the resulting mutant is sub-

sumed by the original one.

Lemma 5.5 (TMI Subsumed). Let ftg be an FTG and let [[𝜑]] be
the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {tmi𝑡 } ∪𝑚′ for some
𝑡 ∈ Transftg |𝑚′ with action in Act𝑢 . Then ftg |𝑚 is subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3, and the fact that tmi𝑡 has introduced
less uncontrollable behaviour. □

Example 5.6. Let us illustrate the usefulness of these results by
means of an example. Recall that test-case generation is more effec-

tive if the number of subsumed mutants is minimised. First consider

the FTG ftgfmm from Example 4.2, depicted in Fig. 2(right), and its

mutants𝑚1 = {𝑠, tmi𝑡1 } and𝑚′
1
= {𝑠}, depicted in Fig. 4(left) and

Fig. 1(bottom-right), respectively, i.e., with 𝑡1 = 𝑠1
𝑥≤2,−−−−−→ 𝑠0. Since

𝑡1 is an uncontrollable transition, Lemma 5.5 implies that ftgfmm |𝑚1

is subsumed by ftgfmm |𝑚′
1

, i.e., this is not a good candidate mutation

for the configuration𝑚′
1
.

Next consider the FTG ftg′fmm, depicted in Fig. 4(middle), and

its mutants 𝑚2 = {tmi𝑡2 } and 𝑚′
2
= ∅, depicted in Fig. 4(right)

and Fig. 4(left), respectively, i.e., 𝑡2 = 𝑠0
D,𝑥 :=0−−−−−→ 𝑠1. Since 𝑡2 is a

controllable transition, Lemma 5.4 implies that ftg′fmm |𝑚2
is non-

subsumed by ftg′fmm |𝑚′
2

, i.e., this is a good candidate mutation for

the configuration𝑚′
2
.

5.2 TADmutation
The TAD mutation is used to add a transition to the system. Under

the (assumed) hypothesis that the added transition is executable

in at least one trace, such a mutation produces a non-subsumed

mutant if an uncontrollable transition is added and a subsumed

mutant if a controllable transition is added.

The next lemma shows that the application of a mutation TAD
on a transition 𝑡 (tad𝑡 in the following) of a mutant𝑚′

, i.e., adding

such a transition to𝑚′
, produces by construction a mutant𝑚 that

is non-subsumed by𝑚′
, in case 𝑡 is uncontrollable. Note that the

added transition is non-redundant in the mutant.

Lemma 5.7 (TADNon-subsumed). Let ftg be an FTG and let [[𝜑]] be
the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚= {tad𝑡 }∪𝑚′ for some 𝑡 ∈
Transftg |𝑚′with action in Act𝑢. Then ftg |𝑚 is non-subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3, the fact that tad has added uncon-

trollable behaviour, and the assumption that the mutant𝑚′
is non-

redundant. □

Tackling the Equivalent Mutant Problem in Real-Time Systems SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

The next lemma shows that by adding a controllable transition

to a mutant, the obtained mutant is subsumed by the original one.

Lemma 5.8 (TAD Subsumed). Let ftg be an FTG and [[𝜑]] be the
set of mutants with 𝑚,𝑚′ ∈ [[𝜑]] and 𝑚 = {tad𝑡 } ∪𝑚′ for some
𝑡 ∈ Transftg |𝑚′ with action in Act𝑐 . Then ftg |𝑚 is subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3, the fact that tad𝑡 has introduced

more controllable behaviour, and the assumption that the mutant

𝑚′
is non-redundant. □

5.3 SMI mutation
The state missing SMImutation removes a location from the system

(not the initial location however). This is equivalent to making the

location unreachable, i.e., removing all its incoming transitions.

Hence, the results on TMI can be applied.

Lemma 5.9 (SMI Subsumed). Let ftg be an FTG and let [[𝜑]] be
the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {smi𝑙 } ∪𝑚′ for some
𝑙 ∈ Locftg |𝑚′ . Then ftg |𝑚 is subsumed by ftg |𝑚′ if there exists no
transition 𝑡 with target location 𝑙 and action 𝛼 ∈ Act𝑐 .

Proof. By contradiction, assume w.l.o.g. that 𝑙 has one incoming

transition 𝑡 , action 𝛼 ∈ Act𝑐 , and that ftg |𝑚 is subsumed by ftg |𝑚′

(since we are only removing transitions this case can be extended

to many incoming transitions). Hence, the mutant𝑚 = {smi𝑙 } ∪𝑚′

is equivalent to the mutant 𝑚 = {tmi𝑡 } ∪ 𝑚′
, and by applying

Lemma 5.4, ftg |𝑚 is non-subsumed by ftg |𝑚′ , a contradiction. □

In the next two sections, we continue with the newly introduced

mutation operators.

5.4 CXL mutation
We first turn our attention to the mutation CXL, that increases the
constant of a clock constraint. Let 𝑐 be a clock and let 𝑘 be some

constant. Then such a mutation does not generate a subsumed

mutant when applied to a guard of the form 𝑥 ≤ 𝑘 of an uncontrol-

lable transition or to a guard of the form 𝑥 ≥ 𝑘 of a controllable

transition, under conditions discussed in the next lemma.

Lemma 5.10 (CXL Non-subsumed Transitions). Let ftg be an
FTG and let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 =

{cxl𝑡 }∪𝑚′ for some 𝑡 ∈ Transftg |𝑚′ with source 𝑙 and either (i) action
𝛼 ∈ Act𝑢 , guard 𝑔 = 𝑥 ≤ 𝑘 and there exists a valuation of clock
𝑘 < 𝑣 ≤ 𝑘 ′ for 𝑘 ′ mutation such that (𝑙, 𝑣) 𝛼−→ftg |𝑚 or (ii) action
𝛼 ∈ Act𝑐 , guard 𝑔 = 𝑥 ≥ 𝑘 and there exists a valuation of clock
𝑘 ≤ 𝑣 < 𝑘 ′ for 𝑘 ′ mutation such that (𝑙, 𝑣) 𝛼−→ftg |𝑚′ . Then ftg |𝑚 is
non-subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3 and the fact that 𝑡 is non-redundant,

𝑚 has introduced either (i) more uncontrollable behaviour or (ii) less

controllable behaviour. □

The next lemma instead shows when the mutation operator CXL
applied on a transition produces a mutant that is subsumed.

Lemma 5.11 (CXL Subsumed Transitions). Let ftg be an FTG
and let [[𝜑]] be the set of mutants with 𝑚,𝑚′ ∈ [[𝜑]] and 𝑚 =

{cxl𝑡 }∪𝑚′ for some 𝑡 ∈ Transftg |𝑚′ with source 𝑙 and either (i) action
in Act𝑐 and guard 𝑔 = 𝑥 ≤ 𝑘 or (ii) action in Act𝑢 , guard 𝑔 == 𝑘

𝑠0 𝑠1 𝑥 ≤ 4

D,

𝑥 := 0

𝑥 ≥ 4,

𝑠0 𝑠1 𝑥 ≤ 4

D,

𝑥 := 0

𝑥 ≥ 2,

Figure 5: Mutants ftg |𝑚1
(left) and ftgfmm |𝑚′

1

(right)

and Inv(l) = 𝑥 ≤ 𝑘 or (iii) action in Act𝑢 and guard 𝑔 = 𝑥 ≥ 𝑘 . Then
ftg |𝑚 is subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3, the increment mutation introduces

(i) more controllable or (ii,iii) less uncontrollable behaviour. □

Example 5.12. Recall from Example 4.2 the mutation operator

CXL applied to the FTG ftgfmm depicted in Fig. 2(right), and consider

its mutants 𝑚1 = {𝑡, cxl𝑡2 , cxs𝑠1 } and 𝑚′
1
= {𝑡, cxs𝑠1 }, depicted in

Fig. 5(left) and Fig. 5(right), respectively, i.e., with 𝑡2 = 𝑠1
𝑥≥2,−−−−−−→ 𝑠0.

Since 𝑡2 is an uncontrollable transition, Lemma 5.11(iii) implies

that ftgfmm |𝑚1
is subsumed by ftgfmm |𝑚′

1

, i.e., this is not a good

candidate mutation for the configuration𝑚′
1
.

The next lemma provides the conditions under which the appli-

cation of the mutation operator CXL on an invariant of a location 𝑙

(written as cxl𝑙), yields a non-subsumed mutant.

Lemma 5.13 (CXL Non-subsumed Invariants). Let ftg be an
FTG and let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 =

{cxl𝑙 } ∪𝑚′ for some location 𝑙 ∈ Locftg |𝑚′ and either (i) Inv(𝑙) =

𝑥 ≥ 𝑘 and there exists a valuation 𝑣 of clock 𝑥 such that 𝑘 < 𝑣 ≤ 𝑘 ′

for 𝑘 ′ mutation such that (𝑙, 𝑣) is reached through a transition with
action in Act𝑐 and target 𝑙 or (ii) Inv(𝑙) = 𝑥 ≤ 𝑘 . Then ftg |𝑚 is
non-subsumed by ftg |𝑚′ .

Proof. For case (i), the increment mutation has less controllable

behaviour and (ii) the increment mutation has more uncontrollable

(timing) behaviour. In both cases, by Proposition 5.3, ftg |𝑚 is non-

subsumed by ftg |𝑚′ □

Finally, the next lemma identifies the conditions under which

applying CXL on an invariant yields a subsumed mutant.

Lemma 5.14 (CXL Subsumed Invariants). Let ftg be an FTG and
let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {cxl𝑙 }∪𝑚′

for some location 𝑙 ∈ Locftg |𝑚′ with Inv(𝑙) = 𝑥 ≥ 𝑘 and for all
valuations 𝑣 of clock 𝑥 such that 𝑘 < 𝑣 ≤ 𝑘 ′ for 𝑘 ′ mutation, (𝑙, 𝑣)
can only be reached through a transition with action in Act𝑢 and
target 𝑙 . Then ftg |𝑚 is subsumed by ftg |𝑚′ .

Proof. The mutation has more uncontrollable behaviour. By

Proposition 5.3, ftg |𝑚 is non-subsumed by ftg |𝑚′ □

5.5 CXS mutation
We now turn our attention to the mutation CXS that decreases the

constant of a clock constraint. Again, let 𝑐 be a clock and let 𝑘 be

some constant. Then such a mutation produces a non-subsumed

mutant when applied to a guard of the form 𝑥 ≤ 𝑘 of a controllable

transition or to a guard of the form 𝑥 ≥ 𝑘 of an uncontrollable

transition, as the next lemma shows.

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Basile, et al.

Lemma 5.15 (CXS Non-subsumed Transitions). Let ftg be an
FTG and let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 =

{cxs𝑡 }∪𝑚′ for some 𝑡 ∈ Transftg |𝑚′ with source 𝑙 and either (i) action
in Act𝑐 , 𝑔 = 𝑥 ≤ 𝑘 and there exists a clock valuation 𝑘 ′ < 𝑣 ≤ 𝑘 with
𝑘 ′ mutation such that (𝑙, 𝑣) 𝛼−→ftg |𝑚′ or (ii) action in Act𝑢 , 𝑔 = 𝑥 ≥ 𝑘

and there exists a clock valuation 𝑘 ′ ≤ 𝑣 < 𝑘 with 𝑘 ′ mutation such
that (𝑙, 𝑣) 𝛼−→ftg |𝑚 . Then ftg |𝑚 is non-subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3 and the fact that 𝑡 is reachable and

thus executable, 𝑚 has introduced either (i) less controllable be-

haviour or (ii) more uncontrollable behaviour. This is because

(i) 𝑔 = 𝑥 ≤ 𝑘 and the mutation has changed the guard into

𝑔′ = 𝑥 ≤ 𝑘 ′ for some 𝑘 ′ < 𝑘 or (ii) 𝑔 = 𝑥 ≥ 𝑘 and the muta-

tion has changed the guard into 𝑔′ = 𝑥 ≥ 𝑘 ′ for some 𝑘 ′ < 𝑘 . □

The next lemma shows that the mutation operator CXS applied
to a guard of the form 𝑥 ≤ 𝑘 of an uncontrollable transition or to

a guard of the form 𝑥 ≥ 𝑘 of a controllable transition produces a

mutant that is subsumed.

Lemma 5.16 (CXS Subsumed Transitions). Let ftg be an FTG
and let [[𝜑]] be the set of mutants with 𝑚,𝑚′ ∈ [[𝜑]] and 𝑚 =

{cxs𝑡 } ∪𝑚′ for some 𝑡 ∈ Transftg |𝑚′ with either (i) action in Act𝑢

and guard 𝑔 = 𝑥 ≤ 𝑘 ; or (ii) action in Act𝑐 and guard 𝑔 = 𝑥 ≥ 𝑘 .
Then ftg |𝑚 is subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3 and hypothesis, the increment mu-

tation is introducing (i) more controllable behaviour or (ii) less

uncontrollable behaviour. □

The next lemma provides the conditions under which the appli-

cation of the mutation operator CXS on an invariant of a location 𝑙

(written as cxs𝑙) produces a non-subsumed mutant.

Lemma 5.17 (CXS Non-subsumed Invariants). Let ftg be an
FTG and let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 =

{𝑐𝑥𝑠𝑙 } ∪𝑚′ for some location 𝑙 ∈ Locftg |𝑚′ and either (i) Inv(𝑙) =

𝑥 ≥ 𝑘 and there exists a valuation 𝑣 of clock 𝑥 such that 𝑘 ′ ≤ 𝑣 < 𝑘

for 𝑘 ′ mutation such that (𝑙, 𝑣) is reached through a transition with
action in Act𝑢 and target 𝑙 or (ii) Inv(𝑙) = 𝑥 ≤ 𝑘 and there exists a
valuation 𝑣 of clock 𝑥 such that 𝑘 ′ ≤ 𝑣 < 𝑘 for 𝑘 ′ mutation such that
(𝑙, 𝑣) is reached through a transition with action in Act𝑐 and target 𝑙 .
Then ftg |𝑚 is non-subsumed by ftg |𝑚′ .

Proof. By Proposition 5.3, the increment mutation has more (i)

uncontrollable behaviour or (ii) less controllable behaviour. □

Example 5.18. Recall from Example 4.2 the mutation operator

CXS applied to the FTG ftgfmm depicted in Fig. 2(right), and consider

its mutants𝑚1 = {𝑡, cxs𝑠1 } and𝑚′
1
= {𝑡}, depicted in Fig. 5(right)

and Fig. 1(top-right), respectively. Since the clock constraint 𝑥 ≤ 5

acting as an invariant of 𝑠1 is reached through the controllable

transition 𝑠0
D,𝑥 :=0−−−−−→ 𝑠1, Lemma 5.17(ii) implies that ftgfmm |𝑚1

is

non-subsumed by ftgfmm |𝑚′
1

, i.e., this is a good candidate mutation

for the configuration𝑚′
1
.

Finally, the next lemma identifies the conditions under which

the application of CXS on an invariant yields a subsumed mutant.

Lemma 5.19 (CXS Subsumed Invariants). Let ftg be an FTG and
let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {𝑐𝑥𝑠𝑙 }∪𝑚′

for some location 𝑙 ∈ Locftg |𝑚′ and either (i) Inv(𝑙) = 𝑥 ≤ 𝑘 and for
all valuations 𝑣 of clock 𝑥 such that 𝑘 ′ ≤ 𝑣 < 𝑘 for 𝑘 ′ mutation, (𝑙, 𝑣)
can only be reached through a transition with action in Act𝑢 and
target 𝑙 or (ii) Inv(𝑙) = 𝑥 ≥ 𝑘 and for all valuations 𝑣 of clock 𝑥 such
that 𝑘 ′ ≤ 𝑣 < 𝑘 for 𝑘 ′ mutation, (𝑙, 𝑣) can only be reached through a
transition with action in Act𝑐 and target 𝑙 . Then ftg |𝑚 is subsumed
by ftg |𝑚′ .

Proof. By Proposition 5.3, the increment mutation has either

(i) less uncontrollable or (ii) more controllable behaviour. □

5.6 CCNmutation
Finally, we turn our attention to the CCN operator that negates a

clock constraint of a transition. For all non-redundant TG, this

mutation always generates a non-subsumed mutant.

Lemma 5.20 (CCN Non-subsumed). Let ftg be an FTG and let
[[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] and𝑚 = {ccn𝑡 } ∪𝑚′

for some 𝑡 ∈ Transftg |𝑚′ . Then ftg |𝑚 is non-subsumed by ftg |𝑚′ .

Proof. Negating a constraint always removes some behaviour

from one side and adds some behaviour to the other side, thus

the result holds by Proposition 5.3 and the assumption of non-

redundancy of the mutant. □

5.7 Classifying Mutations
The following main theorem sums up the results presented so

far. The specific additional conditions that need to hold for each

mutation operator can be found in the corresponding lemmata.

Theorem 5.21 (Classifying mutations). Let ftg be an FTG and
let [[𝜑]] be the set of mutants with𝑚,𝑚′ ∈ [[𝜑]] andwith𝑚 increment
of𝑚′ for somemutation op ∈ Opfmm. Table 1 summarizes when ftg |𝑚
is (non-)subsumed by ftg |𝑚′ based on the applied mutation, provided
that both ftg |𝑚 and ftg |𝑚′ are non-redundant.

Proof. The proof is obtained by cases, applying the lemmata

discussed in this section. □

5.8 Generating Effective Mutations
Based on our results, we provide guidelines for generating effective

FMM and their corresponding FTG. The FTG in Fig. 2 (right) is an

example of a “bad” model. This is because two out of three mutants

of the model are subsumed, and a subsumed mutant cannot be used

to generate effective test cases [19]. Hence, while building the FMM

and the corresponding FTG (cf. Section 4.1), ideally one wants to

minimise the number of subsumed mutants, thus maximising the

effectiveness of the test-case generation phase. To do so, we select

from Table 1 those results applicable by only checking the syntax

of the original model, rather than those based on the semantics.

Finally, we note that such guidelines could be implemented di-

rectly as constraints in the feature model of the FMM (cf. Fig. 3),

such that subsumed mutants are prevented from being generated.

In the next section, we provide an empirical evaluation of the re-

sults presented in this section, i.e., certain subsets of mutations are

guaranteed to produce mutants that are a refinement of the SUT

and thus there is no need to use them.

Tackling the Equivalent Mutant Problem in Real-Time Systems SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 1: Refinement subsumption for mutation operators.
To avoid cluttering, we refer the reader to the corresponding lemmata 5.x for

the specific additional conditions that must hold for each mutation operator.

subject
operator TMI TAD SMI CXL CXS CCN

controllable transition ✓
5.4

✗
5.8

+ clock constraint ≤ ✗
5.11

✓
5.15

✓
5.20

+ clock constraint ≥ ✓
5.10

✗
5.16

✓
5.20

uncontrollable transition ✗
5.5

✓
5.7

+ clock constraint ≤ ✓
5.10

✗
5.16

✓
5.20

+ clock constraint == ✗
5.11

+ clock constraint ≥ ✗
5.11

✓
5.15

✓
5.20

location

̸� controllable transition ✗
5.9

invariant clock constraint

� controllable transition

+ clock constraint ≤ ✓
5.13

✓
5.17

+ clock constraint ≥ ✓
5.13

✗
5.19

invariant clock constraint

� uncontrollable transition

+ clock constraint ≤ ✓
5.13

✗
5.19

+ clock constraint ≥ ✗
5.14

✓
5.17

The 12 Commandments of Model-Based Mutation Testing:

(1) the SUT shall not be redundant;

(2) TMI shall not be applied to uncontrollable transitions;

(3) TAD shall not be applied to controllable transitions;

(4) SMI shall not be applied when all incoming transitions are

uncontrollable;

(5) CXL shall not be applied to controllable transitions with

guards of the form 𝑥 ≤ 𝑘 ;

(6) CXL shall not be applied to uncontrollable transitions with

guards either (i) 𝑥 ≥ 𝑘 or (ii) 𝑥 == 𝑘 and source invariant 𝑥 ≤ 𝑘 ;

(7) CXL can be applied to invariants of the form 𝑥 ≤ 𝑘 ;

(8) CXL shall not be applied to invariants of the form 𝑥 ≥ 𝑘

whenever all incoming transitions are uncontrollable;

(9) CXS shall not be applied to controllable transitions with

guards of the form 𝑥 ≥ 𝑘 ;

(10) CXS shall not be applied to uncontrollable transitions with

guards of the form 𝑥 ≤ 𝑘 ;

(11) CXS shall not be applied to invariants of the form 𝑥 ≤ 𝑘

whenever all incoming transitions are uncontrollable;

(12) CXS shall not be applied to invariants of the form 𝑥 ≥ 𝑘

whenever all incoming transitions are controllable.

6 EVALUATION
To further validate our theoretical results and their benefits, we

conduct an empirical evaluation based on a proof-of-concept tool

we developed.

6.1 Research Questions and Methodology
The objective of our work is to identify the mutation operators

and the conditions under which a non-effective (i.e., subsumed)

mutant is generated. We already addressed this by formally proving

that mutants resulting from specific operators are subsumed under

specific conditions, as reported in Theorem 5.21 and Table 1. To raise

confidence in our results, we confront our theory with a practical

implementation. Thus, we ask:

RQ1: Are our guidelines sound, i.e., are all mutants rejected

by the guidelines indeed subsumed mutants?

Our next question concerns the benefits of avoiding the genera-

tion of mutants that are subsumed by construction. In practice, the

saved computation time is dependent on the concrete test-case gen-

eration and execution platform. Instead, we measure these benefits

in a relative way, as the percentage of subsumed mutants that our

guidelines can detect. Thus, we ask:

RQ2: How complete are our guidelines in detecting equivalent/

subsumed mutants?

To answer these questions, we apply the mutation operators to a

given original model to produce first-order mutants. Then, we check

whether those mutants violate guidelines and whether they are

subsumed by the original systemmodel, using the refinement check

implemented in the Ecdar tool [15]. Each operator is systematically

applied to each relevant element (location or transition) of the

model, producing the complete set of first-order mutants. This

allows us to validate our approach on a variety of occurrences.

Thus, higher-order mutants would not bring additional insights.

6.2 Tools and System
6.2.1 Implementations. A proof-of-concept tool

1
has been imple-

mented to automatically generate mutants of a system model. The

generated mutants are then processed through a batch script. They

are checked against the refinement and the results, together with

the performance, are stored. To enable the replication of our results,

we also provide all the mutants analysed, together with documents

describing for each mutation the element mutated by each mutant,

as well as the log results of Ecdar.

6.2.2 Subject System. The Car Alarm System (CAS) model stems

from Ford’s automotive demonstrator in the MOGENTES project.

This model has already been used for experiments in [1, 2, 19]. The

system model allows as inputs the unlocking, locking, closing, and

opening of a car’s door. The outputs are the signals for arming,

unarming, and turning the sound and flash alarms on and off. We

mainly used the adaption of the model to Ecdar in [19], in which all

input transitions are marked as controllable and all output transi-

tions as uncontrollable. The CAS model is composed of 17 states, of

which 11 states have invariants. All invariants are of the form 𝑥 ≤ 𝑘

for a clock 𝑥 and constant 𝑘 . There are 88 transitions, out of which

17 are uncontrollable and 71 are controllable. Only 20 transitions

are guarded, out of which 14 transitions have guards of the form

𝑥 ≤ 𝑘 , 3 transitions have guards of the form 𝑥 ≥ 𝑘 , and 3 transitions

have guards of the form 𝑥 == 𝑘 , for some clock 𝑥 and constant 𝑘 .

1
available at https://bitbucket.org/maxcordy/timed-mutation

https://bitbucket.org/maxcordy/timed-mutation

SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada Basile, et al.

6.3 Validation Results
Here we interpret the results of our experiments for RQ1 and RQ2.

A total of 721 mutants were generated. We applied all mutation

operators discussed in the paper, namely TMI, TAD, SMI, CXL, CXS,
and CCN. For each mutation, the results in Table 2 report the total

number of mutants, of non-subsumed mutants, of subsumed and

redundant mutants, and of mutants violating the guidelines, as

well as the ratio of mutants that need not be generated by our

approach, computed as
violating guidelines

subsumed + redundant
. From the guidelines

given in Section 5.8, rules (8), (10), and (12) were not applicable to

the CAS model.

The experiments confirmed that all mutants violating guidelines

were subsumed, as expected, thus providing further confidence in

our results and answering our first research question. Note that all

subsumed and redundant mutants that are violating the guidelines

are those that are indeed not generated if one applies the rules

(guidelines) presented in Section 5.8.

To answer the second research question, our results confirm the

gain of our approach: 88% of the subsumed mutants generated for

this case study can be avoided. Moreover, we avoid the potential

generation of up to O(2326) featured mutant models whose muta-

tions do not produce any test case. Those mutants that have not

been detected by the guidelines are discussed next. For CXS, one
location did not have all incoming transitions uncontrollable and

thus rule (11) could not be applied. The controllable input transi-

tions, however, are not redundant in the mutant and it is subsumed.

Similarly, for SMI, one location did not have all incoming transitions

uncontrollable and thus rule (4) could not be applied. However, re-

moving such a state makes the mutant redundant. Finally, for TAD,
42 mutants that were not detected have redundant uncontrollable

transitions that have been added by the mutation, and thus are

subsumed.

6.4 Threats to Validity
One threat to the generality of our results is that we considered

only one case study in our evaluation. While we are confident in

our theoretical results, the practical benefits may depend on the

considered case and the generated mutants. In particular, we note

that in the case study 80% of the transitions are uncontrollable and

27% of the guidelines were not applicable. Nevertheless, our set

of guidelines touch upon all elements of the model and, as such,

should be able to capture most of the equivalent mutants.

Our empirical results essentially rely on the refinement relation

as implemented in Ecdar. Should this implementation deviate (even

slightly) from the definition we employ (itself based on the paper

introducing Ecdar [15]), we might witness the occurrence of false

positives (mutants wrongly labelled as subsumed). To mitigate this

risk, we conducted manual analyses on sampled mutants. Neverthe-

less, removing false positives would actually improve our results,

as it would increase the percentage of subsumed mutants detected

by our guidelines.

7 CONCLUSION AND FUTUREWORK
We presented a methodology for identifying effective mutations

for testing real-time systems. An effective mutant can be used to

generate test cases that distinguish the mutant from the original

Table 2: Validation results for RQ1 and RQ2.

operator

measure

mutants

non-

subsumed

subsumed +
redundant

violating

guidelines

violating

subsumed +

redundant

TMI 88 71 17 17 100%

TAD 578 247 331 289 87%

SMI 16 7 9 8 89%

CXL 20 14 6 6 100%

CXS 13 6 7 6 86%

CCN 6 6 0 0 -

totals 721 351 370 326 88%

systemmodel. The framework of TG and Ecdar refinement checking

of [19] was adopted, and mutants are organised as a product line

of mutations using the approach of [16]. Our guidelines to the

construction of such a featured mutant model can be encoded as

constraints in the feature model, to guarantee that effective mutants

will be generated. Our experiments confirmed the soundness of

our approach and demonstrated that our actionable guidelines can

significantly reduce the number of equivalent/subsumed mutants.

As future work, a family-based technique for checking refine-

ments all-at-once directly on the FTG will be investigated, in or-

der to take further advantage of the product-line approach and

of our technique for building effective featured mutant models.

That would allow the generation of the smallest set of test cases

that can distinguish all killable mutants. One way to do so is to

design a feature-aware extension of refinement checking proce-

dure of [14, 15]. By associating a feature to each mutant [16], one

can then collect the feature expressions identifying all mutants for

which the refinement holds, and those for which it does not, in a

single play. This problem was studied in the non-timed case [11]

but remain unaddressed for real-time systems. The addition of time

makes this problem challenging, as there is no known efficient way

to encode time and variability in a single data structure [13].

Our work also provides the foundations to evaluate real-time

test cases. To this aim, one can apply the approach of [16] on a

featured timed model to identify which mutants are killed. Again,

this would require data structures combining time with variability.

Finally, regarding higher-order mutations, the possibility of mu-

tating a mutant would allow the incremental application of the

results presented in this paper. For example, a second-order mutant

can be obtained either by applying two mutations to the original

system model or one mutation to a first-order mutant. Moreover,

we would like to study the partial order of mutants induced by

the refinement relation. We conjecture that this would allow to

further reduce the space of mutants to be generated. For example,

two first-order mutants𝑚1 and𝑚2 could be non-subsumed by the

original model, but𝑚2 could be a refinement of𝑚1 (because𝑚2 is

mutating an element redundant in𝑚1). In such cases, the test case

generated from𝑚2 could be used to detect both𝑚1 and𝑚2. Thus,

𝑚1 could be discarded in favour of𝑚2. Generally, the least elements

in the partial order could be used for generating test cases to detect

all subsuming mutants. This reasoning could be automated such

that only the set of subsuming mutants is generated.

Tackling the Equivalent Mutant Problem in Real-Time Systems SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

REFERENCES
[1] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert

Schlick, and Stefan Tiran. 2015. Killing Strategies for Model-Based Mutation

Testing. Softw. Test. Verif. Reliab. 25, 8 (2015), 716–748. https://doi.org/10.1002/

stvr.1522

[2] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. 2013. Time for

Mutants: Model-Based Mutation Testing with Timed Automata. In Proceedings of
the 7th International Conference on Tests and Proofs (TAP’13) (LNCS, Vol. 7942),
Margus Veanes and Luca Viganò (Eds.). Springer, 20–38. https://doi.org/10.1007/

978-3-642-38916-0_2

[3] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoret.
Comput. Sci. 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)90010-8

[4] James H. Andrews, Lionel C. Briand, Yvan Labiche, and Akbar S. Namin. 2006.

Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria.

IEEE Trans. Softw. Eng. 32, 8 (2006), 608–624. https://doi.org/10.1109/TSE.2006.83

[5] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. 1998. Controller

Synthesis for Timed Automata. IFAC Proc. Vol. 31, 18 (1998), 447–452. https:

//doi.org/10.1016/S1474-6670(17)42032-5 Proceedings of the 5th IFAC Conference

on System Structure and Control (SSC’98).

[6] Richard Baker and Ibrahim Habli. 2013. An Empirical Evaluation of Mutation

Testing for Improving the Test Quality of Safety-Critical Software. IEEE Trans.
Softw. Eng. 39, 6 (2013), 787–805. https://doi.org/10.1109/TSE.2012.56

[7] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G.

Larsen, and Didier Lime. 2007. UPPAAL-Tiga: Time for Playing Games!. In

Proceedings of the 19th International Conference on Computer Aided Verification
(CAV’07) (LNCS, Vol. 4590), Werner Damm and Holger Hermanns (Eds.). Springer,

121–125. https://doi.org/10.1007/978-3-540-73368-3_14

[8] Angelo Brillout, Nannan He, Michele Mazzucchi, Daniel Kroening, Mitra Puran-

dare, Philipp Rümmer, and GeorgWeissenbacher. 2009. Mutation-Based Test Case

Generation for Simulink Models. In Proceedings of the 8th International Sympo-
sium on Formal Methods for Components and Objects (FMCO’09) (LNCS, Vol. 6286),
Frank S. de Boer, Marcello M. Bonsangue, Stefan Hallerstede, and Michael

Leuschel (Eds.). Springer, 208–227. https://doi.org/10.1007/978-3-642-17071-3_11

[9] Tsun S. Chow. 1978. Testing Software Design Modeled by Finite-State Machines.

IEEE Trans. Softw. Eng. SE-4, 3 (1978), 178–187. https://doi.org/10.1109/TSE.1978.

231496

[10] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel

Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations

for Verifying Variability-Intensive Systems and Their Application to LTL Model

Checking. IEEE Trans. Softw. Eng. 39, 8 (2013), 1069–1089. https://doi.org/10.

1109/TSE.2012.86

[11] Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves Schobbens, Patrick

Heymans, and Axel Legay. 2012. Simulation-based abstractions for software

product-line model checking. In 34th International Conference on Software Engi-
neering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C.

Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 672–682. https:

//doi.org/10.1109/ICSE.2012.6227150

[12] Maxime Cordy, Axel Legay, Pierre-Yves Schobbens, and Louis-Marie Traonouez.

2013. A Framework for the Rigorous Design of Highly Adaptive Timed Systems.

In Proceedings of the 1st FMEWorkshop on Formal Methods in Software Engineering
(FormaliSE’13). IEEE, 64–70. https://doi.org/10.1109/FormaliSE.2013.6612279

[13] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2012.

Behavioural Modelling and Verification of Real-Time Software Product Lines. In

Proceedings of the 16th International Software Product Line Conference (SPLC’12).
ACM, 66–75. https://doi.org/10.1145/2362536.2362549

[14] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wą-

sowski. 2010. Timed I/O Automata: A Complete Specification Theory for Real-

time Systems. In Proceedings of the 13th International Conference on Hybrid Sys-
tems: Computation and Control (HSCC’10). ACM, 91–100. https://doi.org/10.1145/

1755952.1755967

[15] Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, and An-

drzej Wąsowski. 2010. ECDAR: An Environment for Compositional Design

and Analysis of Real Time Systems. In Proceedings of the 8th International
Symposium on Automated Technology for Verification and Analysis (ATVA’10)
(LNCS, Vol. 6252), Ahmed BouajjaniWei-Ngan Chin (Ed.). Springer, 365–370.

https://doi.org/10.1007/978-3-642-15643-4_29

[16] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves

Schobbens, and Patrick Heymans. 2016. Featured Model-based Mutation Analy-

sis. In Proceedings of the 38th International Conference on Software Engineering
(ICSE’16). ACM, 655–666. https://doi.org/10.1145/2884781.2884821

[17] Sandra Fabbri, José C. Maldonado, Tatiana Sugeta, and Paulo C. Masiero. 1999.

Mutation testing applied to validate specifications based on statecharts. In Pro-
ceedings of the 10th International Symposium on Software Reliability Engineering
(ISSRE’99). IEEE, 210–219. https://doi.org/10.1109/ISSRE.1999.809326

[18] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. IEEE Trans. Softw. Eng. 37, 5 (2011), 649–678. https://doi.org/

10.1109/TSE.2010.62

[19] KimG. Larsen, Florian Lorber, BrianNielsen, and UlrikM. Nyman. 2017. Mutation-

Based Test-Case Generation with Ecdar. In Proceedings of the 10th IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW’17). IEEE, 319–328. https://doi.org/10.1109/ICSTW.2017.60

[20] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. 2007. Modal I/O Automata

for Interface and Product Line Theories. In Proceedings of the 16th European
Symposium on Programming (ESOP’07) (LNCS, Vol. 4421), Rocco De Nicola (Ed.).

Springer, 64–79. https://doi.org/10.1007/978-3-540-71316-6_6

[21] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014.

Overcoming the Equivalent Mutant Problem: A Systematic Literature Review

and a Comparative Experiment of Second Order Mutation. IEEE Trans. Softw.
Eng. 40, 1 (2014), 23–42. https://doi.org/10.1109/TSE.2013.44

[22] Jeff Offutt. 2011. A mutation carol: Past, present and future. Inf. Softw. Technol.
53, 10 (2011), 1098–1107. https://doi.org/10.1016/j.infsof.2011.03.007

[23] Mike Papadakis and Nicos Malevris. 2010. An Empirical Evaluation of the First

and Second Order Mutation Testing Strategies. In Proceedings of the 3rd Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW’10). 90–99. https://doi.org/10.1109/ICSTW.2010.50

[24] Maurice H. ter Beek, Sjef van Loo, Erik P. de Vink, and Tim A.C. Willemse.

2020. Family-Based SPL Model Checking Using Parity Games with Variability.

In Proceedings of the 23rd International Conference on Fundamental Approaches
to Software Engineering (FASE’20) (LNCS, Vol. 12076), Heike Wehrheim and Jordi

Cabot (Eds.). Springer, 245–265. https://doi.org/10.1007/978-3-030-45234-6_12

[25] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A Taxonomy of

Model-Based Testing Approaches. Softw. Test. Verif. Reliab. 22, 5 (2012), 297–312.
https://doi.org/10.1002/stvr.456

[26] Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. 1994. Automatically Gener-

ating Test Data from a Boolean Specification. IEEE Trans. Softw. Eng. 20, 5 (1994),
353–363. https://doi.org/10.1109/32.286420

https://doi.org/10.1002/stvr.1522
https://doi.org/10.1002/stvr.1522
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1007/978-3-642-38916-0_2
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1016/S1474-6670(17)42032-5
https://doi.org/10.1109/TSE.2012.56
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-642-17071-3_11
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1109/ICSE.2012.6227150
https://doi.org/10.1109/FormaliSE.2013.6612279
https://doi.org/10.1145/2362536.2362549
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1007/978-3-642-15643-4_29
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ISSRE.1999.809326
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/ICSTW.2017.60
https://doi.org/10.1007/978-3-540-71316-6_6
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1109/ICSTW.2010.50
https://doi.org/10.1007/978-3-030-45234-6_12
https://doi.org/10.1002/stvr.456
https://doi.org/10.1109/32.286420

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Timed Games
	3.2 Featured Timed Games

	4 Featured Mutants Model
	4.1 Building Featured Mutants Models

	5 Classifying Mutations
	5.1 TMI mutation
	5.2 TAD mutation
	5.3 SMI mutation
	5.4 CXL mutation
	5.5 CXS mutation
	5.6 CCN mutation
	5.7 Classifying Mutations
	5.8 Generating Effective Mutations

	6 Evaluation
	6.1 Research Questions and Methodology
	6.2 Tools and System
	6.3 Validation Results
	6.4 Threats to Validity

	7 Conclusion and Future Work
	References

