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ABSTRACT

This paper presents a novel statistical model for modelling radar
echoes measured by a synthetic aperture radar (SAR) sensor back-
scattered from the sea surface. The analysis of ocean surface is
widely performed using satellite imagery as it produces information
for wide areas under various weather conditions. An accurate SAR
amplitude distribution model ensures better results for applications
of despeckling, ship detection/tracking and so forth. In this paper,
we propose the Laplace-Rician distribution for modelling ampli-
tude SAR images of the sea surface. The proposed statistical model
is based on Rician distribution to model the amplitude of a com-
plex SAR signal, the in-phase and quadrature components of which
are assumed to be Laplace distributed. The Laplace-Rician model
is evaluated with SAR images of the sea surface from COSMO-
SkyMed and Sentinel-1 and with a comparison study to state-of-the-
art statistical models such asK and Weibull distributions. In order to
decide the most suitable model, statistical significance analysis via
Kullback-Leibler divergence and Kolmogorov-Smirnov statistics is
performed. The results show an accurate modelling performance for
the proposed model among others for all utilised images.

Index Terms— Sea clutter modelling, SAR Imaging, Laplace-
Rician distribution.

1. INTRODUCTION

Synthetic aperture radar (SAR) imagery is an important source of
information in the analysis of sea surface thanks to its capability to
capture wider areas under different weather conditions. Accurate
statistical models for the sea surface, when being the area of inter-
est, has crucial importance for applications such as target detection,
tracking, classification.

Literature spans numerous statistical models to accurately model
SAR images of the sea surface. Among those, K-distribution dom-
inates the literature for sea clutter modelling [1, 2, 3]. It also has
several improved versions such as generalised-K [4], KK [5] distri-
butions in sea SAR applications. Weibull distribution is another im-
portant and robust statistical model for sea clutter modelling for sev-
eral SAR frequency bands [6, 7] and also in constant false alarm rate
(CFAR) based ship detection applications [8, 9]. Moreover, Log-
normal [7, 10], Pareto [3], gamma [11], and α-Stable based [12]
distributions have also been used to model sea clutter for various
applications like classification, etc.

All the statistical models given above are developed for the non-
Rayleigh case. Similarly, Rician distribution is a non-Rayleigh sta-
tistical model and has crucial importance in telecommunications for
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fading channel modelling. As for SAR modelling, despite having
seldom usage, Rician distribution appears, especially in cases when
a single scatterer dominates the scene [13, 14]. In the literature,
the Rician distribution is used in SAR imagery for automatic tar-
get recognition [15] and amplitude modelling as a combination with
inverse Gaussian distribution [16]. Sea surface could be seen as a po-
tential/unexplored application area for Rician based statistical mod-
els since SAR scenes might be dominated by a target or even by
different wave heights in the absence of a target.

In this paper, we present a novel statistical model for modelling
the amplitude of complex radar echoes measured by a SAR sensor
back-scattered from the sea surface. The proposed model is inspired
by Moser et. al. [17], in which the Rayleigh case has been ex-
tended with generalised Gaussian distributed components of com-
plex SAR back-scattered signal to cover heavier tailed SAR ampli-
tude data. We, in this study, extend this model by replacing Rayleigh
with the Rician case, where the components of the complex signal
are Laplace distributed. The proposed Laplace-Rician model is eval-
uated with various SAR images of the sea surface by compared to
state-of-the-art statistical models of K, lognormal, Weibull, Rician
as well as the Laplace-Rayleigh of [17]. The most suitable statistical
model is selected via statistical significance measures of Kullback-
Leibler (KL) divergence and Kolmogorov-Smirnov (KS) statistics.

The rest of the paper is organised as follows: we present first the
general background information including the SAR signal model and
statistical models. Then, we introduce the proposed Laplace-Rician
model and the corresponding parameter estimation method. We next
demonstrate the experimental analysis for real SAR data, followed
by concluding remarks and future work.

2. BACKGROUND

2.1. SAR Signal Model

The general model for the back-scattered complex signal, R = x1 +
jx2, received by a SAR sensor from a given area follows several
assumptions: i) there are large number of scatterers, ii) the scat-
terers are statistically independent, iii) The amplitude and phase of
the scatterer are independent random variables, iv) the phase is uni-
formly distributed in [0, 2π] v) reflectors are small when compared
to the illuminated area, and vi) there is no dominating scatterers in
the whole scene [17, 18].

Considering the first two assumptions which invoke the central
limit theorem, the real and imaginary parts of the reflected signal
R are assumed to be jointly Gaussian. Under the assumption (vi)
along with (i) and (ii), x1 and x2 are turned out to be indepen-
dent, identically distributed and zero-mean Gaussian random vari-
ables with equal variances, hence leads the amplitude distribution to



be Rayleigh distributed as

f(r|γ) =
r

γ2
exp

(
− r2

2γ2

)
(1)

where r =
√
x2

1 + x2
2 refers to the amplitude, θ = arctan(x1/x2)

is the phase and γ is the scale parameter.
In the case of having one scatterer dominates the whole il-

luminated scene, the assumption (vi) will no longer be valid and
the signal components x1 and x2 will be independent, identically
distributed, and however nonzero-mean Gaussian random variables
with equal variances. Thus, the amplitude distribution ofR becomes
the Rician (or Rice) distribution which is given as

f(r|σ, δ) =
r

σ2
exp

(
−r

2 + δ2

2σ2

)
I0

(
rδ

σ2

)
(2)

where δ =
√

2µ, I0(·) refers to the zeroth-order modified Bessel
function of the first kind, and µ > 0 is the non-zero mean of compo-
nents x1 and x2.

2.2. Non-Rayleigh Statistical models

As discussed earlier in the paper, there are several statistical models
that have been utilised to model sea surface in SAR images under
the assumption that the back-scattered signal components are non-
Gaussian, equivalently the amplitude distribution is non-Rayleigh.
Among those Weibull, K and lognormal distributions have great im-
portance in the literature and are utilised in this study. To this end,
please note that this selection of models is not exhaustive, as the list
can be extended in a detailed study without page limitations.

The univariate probability density function (pdf) expressions of
Weibull, K and lognormal distributions are expressed as [19, 20]
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2.3. Generalised Gaussian Rayleigh Distribution

Similar to [18, 21] which proposes a generalisation of Rayleigh
distribution in terms of symmetric α-Stable distributions, in the
generalised Gaussian Rayleigh (GGRay) derivation of [17], it has
been assumed that the received signal components, x1 and x2 are
non-Gaussian and have heavier tails than Gaussian distribution.
Thus, components are assumed to be zero-mean generalised Gaus-
sian (GG) distributed as xi ∼ GG(γ, α), for i = 1, 2 where the
generalised Gaussian distribution is defined for the shape parameter
α and the scale parameter γ as

f(xi|α, γ) =
α

2γΓ( 1
α

)
exp

(
−
∣∣∣∣xiγ
∣∣∣∣α) , for i = 1, 2. (3)

According to [17], having GG distributed components leads the
amplitude distribution to be the GGRay distribution, the pdf expres-
sion of which can be defined as

f(r|α, γ) =
α2r

4γ2Γ2( 1
α

)
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(4)

A statistical model of this-type has special members for α equal
to 2 and 1, which are the Rayleigh and Laplace-Rayleigh (L-Ray)
distributions, respectively. In particular, it is straightforward to show
that (4) can be simplified to Rayleigh distribution for α = 2, and in
the case of α = 1, one can obtain the L-Ray distribution by replacing
α with 1 in (4) as

f(r|γ) =
r

4γ2

∫ 2π

0

exp [−(r/γ) (| cos θ|+ | sin θ|)] dθ. (5)

3. LAPLACE-RICIAN MODEL FOR SAR IMAGES

In terms of the proposed methodology, we apply the generalisation
idea of Rayleigh distribution based on the generalised Gaussian dis-
tribution of Moser et. al [17], to the Rician distribution. For non-zero
location parameter µ of the components, the pdf definition in (4) will
no longer be valid and needs reconstruction.

In this paper, we first assume that signal components, x1 and x2

are non-zero GG distributed with α = 1, which makes each compo-
nent Laplace distributed as

f(xi|µ, γ) =
1

2γ
exp

(
−
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∣∣∣∣) , for i = 1, 2. (6)

As long as the components x1 and x2 are independent [17], the
joint pdf can be written as

f(x1, x2|µ, γ) = f(x1|µ, γ)f(x2|µ, γ) (7)

=
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Thus, the pdf expression for the amplitude can be written by
using the identity

f(r, θ|µ, γ) = rf(r cos θ, r sin θ) (9)

as
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r
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)
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Hence, the corresponding marginal amplitude pdf can be ob-
tained by averaging (10) over θ and turns out to be

f(r|µ, γ) =
r
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which can be basically defined as the Laplace-Rician (L-Ric) distri-
bution.

4. BAYESIAN ESTIMATION OF LAPLACE-RICIAN
DISTRIBUTION PARAMETERS

In this section, a Markov chain Monte Carlo (MCMC) methodology
is developed for estimating Laplace-Rician distribution parameters,
namely the scale parameter γ, and the location parameter µ. In par-
ticular, the method is a Metropolis-Hastings (MH) algorithm, and in
each iteration, it applies one of two different moves: (1)M1 which
updates µ for fixed γ, (2) M2 which updates γ for fixed µ. The
proposed parameter estimation procedure is given in Algorithm 1.

Assume we have the observed data y, the hierarchical model is
then expressed by Bayes’ theorem as

p(µ, γ|y) ∝ p(y|γ, µ)p(γ)p(µ) (12)



where p(µ, γ|y) is the joint posterior distribution, or namely the MH
target distribution, p(y|γ, µ) refers to the likelihood distribution, and
p(γ) and p(µ) are priors.

Due to lack of information about conjugate priors, we choose
noninformative (Jeffrey’s) priors for the location and scale param-
eters. In particular, we assume the location parameter µ is equally
likely and prior for the scale parameter γ is p(γ) = 1/γ, which lead
us to p(µ, γ) ∼ 1/γ. The likelihood p(y|γ, µ) is the Laplace-Rician
distribution in (11) with parameters γ and µ.

Depending on the selected move in iteration i, one of the pro-
posal distributions given below is used to sample candidate parame-
ters µ∗ or γ∗

µ∗ ∝ q
(
µ∗|µ(i)

)
= U

(
µ(i) − ν, µ(i) + ν

)
, (13)

γ∗ ∝ q
(
γ∗|γ(i)

)
= N

(
γ(i), ξ2

)
(14)

where U(·) is the uniform, and N (·) is the Gaussian distribution,
both of which are defined in interval [0,∞] since µ and γ are posi-
tive parameters. ξ and ν are hyperparameters belonging to the pro-
posal distributions. Please note that these selection of proposals are
not unique and can be replaced with any other distribution for better
performance, faster convergence, etc.

Consequently, the acceptance probability expressions for each
move can be constructed as

AM1 = min

1,
p(y|γ∗, µ∗)q

(
µ(i)|µ∗

)
p(y|γ(i), µ(i))q (µ∗|µ(i))

 , (15)
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(
γ(i)|γ∗

)
p(y|γ(i), µ(i))p(γ(i))q (γ∗|γ(i))

 . (16)

Algorithm 1 MCMC Parameter Estimation for Laplace-Rician Dis-
tribution

1: Inputs: Given data y.
2: Output: Joint Posterior f(µ, γ|y)

3: Initialise: µ(1), γ(1), ν and ξ.
4: for i = 1 : Niter do
5: Choose Move, m(i)

6: if m(i) →M1 then
7: Sample µ∗ ∼ q

(
µ∗|µ(i)

)
8: Set γ∗ = γ(i) and A = AM1 .
9: elseif m(i) →M2 then

10: Sample γ∗ ∼ q
(
γ∗|γ(i)

)
11: Set µ∗ = µ(i) and A = AM2 .
12: end if
13: Sample random variable R ∼ U(0, 1)
14: if R ≤ A then
15: µ(i+1) = µ∗ and γ(i+1) = γ∗

16: else
17: µ(i+1) = µ(i) and γ(i+1) = γ(i)

18: end if
19: end for

5. EXPERIMENTAL RESULTS

The proposed method was tested from two different perspectives us-
ing both simulated and real data. In the first simulation case, we

used synthetically generated L-Ric data for various parameters and
tested the parameter estimation performance of the proposed MCMC
method. In the former case, we subsequently conducted experiments
to determine the best fitting distribution for given real SAR patches
of the sea surface.

We used statistical significance measures of Kullback-Leibler
(KL) divergence, Kolmogorov-Simirnov (KS) score in order to as-
sess the performance of fitting distributions. For KL and KS val-
ues the smaller value gives the better modelling performance. KL
divergence is to test the performance by considering the estimated
pdfs and data histograms, whereas KS score is calculated by evaluat-
ing the estimated and the empirical cumulative distribution functions
(CDFs).

The number of iterations, Niter in MCMC parameter estima-
tion method was set to 1000 iterations and first 250 iterations were
discarded as burn-in period. Initial values for µ(1) and γ(1) were
set to 1. For proposal hyperparameters, we chose ν = 2.5 and
ξ = 3. Moves M1 and M2 are equiprobable whilst satisfying
p(M1) + p(M2) = 1. For all state-of-the-art statistical models
except L-Ray, we used an MCMC based maximum likelihood (ML)
methodology to estimate the model parameters. For L-Ray, a simi-
lar methodology given for L-Ric was applied by bypassing the move
M1 so as to estimate only γ.

5.1. Synthetically Generated Data

In the first set of simulations, four synthetically generated L-Ric data
sets were obtained and the proposed parameter estimation method
was used to estimate µ and γ for each data set. The corresponding
data sets were generated for (µ, γ) are (1.7, 1.3), (7, 2), (12, 15)
and (55, 22). Each data set has 1500 samples, and the results are
presented in Table 1.

Table 1. Modelling and statistical significance results for syntheti-
cally generated Laplace-Rician data sets

(µ, γ) Est. Est. KL Div. KS
Location (µ̂) Scale (γ̂) Score

(1.7, 1.3) 1.74 1.25 0.007 0.008
(7, 2) 7.01 2.01 0.004 0.005
(12, 15) 12.00 14.73 0.010 0.011
(55, 22) 54.60 22.20 0.013 0.014

Examining estimated values in Table 1, we can state that γ
and µ values are estimated in relation to the exact values. For all
four example data sets, statistical significance values are obviously
low which specifies that the model parameters are successfully
estimated.

5.2. Real SAR Data

In the second set of simulations, modelling performance of the pro-
posed statistical model was tested on real SAR images of the sea
surface. The L-Ric distribution was compared to the statistical mod-
els of K, Rician, Weibull, lognormal and L-Ray [17] distributions
in terms of KL divergence and KS statistics along with the visual
demonstrations.

Five different sea surface patches with size of 100×100 pix-
els were cropped from SAR images of two different satellite plat-
forms, namely COSMO-SkyMed and Sentinel-1. The five corre-
sponding patches were then modelled by all statistical models men-
tioned above by estimating their required parameters. The estimated
parameters for each model and each patch are given in Table 2. By
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Fig. 1. Visual demonstration for SAR sea clutter modelling. First
row depicts sea surface patches. The second and third rows show
estimated pdfs in numerical and logarithmic scales, respectively.

using the estimated parameters for each model, fitted pdfs were ob-
tained and statistical significance measures were calculated. The cor-
responding modelling results are presented in Table 3 and Figure 1.

When examining the estimated parameters in Table 2, the pro-
posed model, L-Ric, always have lower scale parameter values then
the classical Rician estimations. For all the data sets, Weibull esti-
mates are above Rayleigh (Weibull distribution is equal to Rayleigh
for α = 2) as expected, and similarly K has relatively high shape
parameter estimates even though it falls short to model all example
SAR patches.

The statistical significance analysis in Table 3 clearly shows that
the most suitable distribution to model sea surface patches is the
proposed L-Ric distribution. In terms of both KL divergence and KS
score, L-Ric has lowest values for all three COSMO-SkyMed sea
surface patches. For Sentinel-1 results, despite not having the lowest
KL values, for KS values the proposed methodology can be defined
as the most suitable choice.

Notwithstanding not having a shape parameter, it is obvious that
the generalisation presented in this paper in terms of Laplace and
Rician distributions addresses the sea surface characteristics better
than state-of-the-art models and is highly flexible for various sea
conditions, SAR platform, operating frequency, etc. Fitting results
demonstrated in Figure 1 provide visual support to the numerical re-
sults presented in Table 3, where L-Ric outperforms the reference

Table 2. Modelling results for real SAR data
Statistical

Parameters
Images

Models CSM-1 CSM-2 CSM-3 Sen1-1 Sen1-2

K α̂ 9.68 10.98 8.63 10.88 12.45
γ̂ 13.69 13.16 9.83 11.57 12.25

Rician δ̂ 73.36 76.54 49.79 68.52 77.97
γ̂ 29.34 30.22 21.84 23.46 23.56

Weibull α̂ 3.02 3.06 2.84 3.44 3.69
γ̂ 88.91 92.50 61.56 80.77 90.20

Lognormal µ̂ 4.31 4.35 3.94 4.23 4.35
γ̂ 0.37 0.37 0.40 0.33 0.28

L-Ray γ̂ 49.53 51.51 34.16 45.19 50.85

L-Ric µ̂ 50.62 52.81 34.25 47.72 54.16
γ̂ 22.69 23.37 16.72 18.26 17.77

Table 3. Statistical significance of the estimates for real data

Image
Performance Statistical Models

Measures K Rician Weibull Lognormal L-Ray L-Ric

CSM-1 KL Div. 0.2417 0.0270 0.0302 0.0266 0.4375 0.0200
KS Score 0.1542 0.0417 0.0412 0.0270 0.2256 0.0236

CSM-2 KL Div. 0.2534 0.0263 0.0284 0.0245 0.4712 0.0234
KS Score 0.1562 0.0323 0.0334 0.0277 0.2348 0.0243

CSM-3 KL Div. 0.2135 0.0323 0.0300 0.0377 0.4066 0.0264
KS Score 0.1385 0.0421 0.0414 0.0366 0.2048 0.0250

Sen1-1 KL Div. 0.3186 0.0285 0.0359 0.0473 0.5051 0.0360
KS Score 0.1871 0.0374 0.0354 0.0378 0.2509 0.0264

Sen1-2 KL Div. 0.3703 0.0319 0.0582 0.0036 0.5482 0.0151
KS Score 0.1824 0.0496 0.0570 0.0267 0.2233 0.0180

models and follows the data histogram better than the others.

6. CONCLUSION

In this paper, we proposed a novel statistical model, the Laplace-
Rician (L-Ric) distribution, for modelling SAR images of the sea
surface, which is based on a generalisation of Rician distribution in
terms of Laplace distribution. An MH-based Bayesian parameter
estimation method was proposed and estimation performance was
first tested in fitting several synthetically generated L-Ric random
sequences. The performance of L-Ric was then evaluated in mod-
elling SAR images of the sea surface from two satellite platforms
namely the COSMO-SkyMed and Sentinel-1, compared to state-of-
the-art statistical models, which are K, Rician, Weibull and lognor-
mal distributions. The proposed statistical model showed the best
fitting performance among all models for all images utilised in this
paper.

The future work will extend the proposed model into more gen-
eral cases covering GG and SαS distributions in modelling other
types of scenes, such as urban, forest as well as see surface. Devel-
oping log-cumulants based parameter estimation method is also our
one of current endeavours.
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