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Abstract—User location and tracking information are increas-
ingly used for contact tracing and social community detection. In-
door positioning and indoor navigation systems are reaching good
performances in several realistic scenarios. After an evaluation
exclusively done through simulations, nowadays, these systems
are trying to reach robust performances and good accuracy
in heterogeneous environments. Problems are manifold as each
environment presents a structure that strongly affects inertial
sensors and radio signal propagation. Generally, systems showing
the best performances rely on an extended knowledge of the
indoor map. Moreover, they implement a model for pedestrian
dynamics in terms of e.g step length, stride and the behaviour
of the target users. Experimental results obtained during realistic
indoor competitions, clearly show that performances drop when
such systems are used in unseen scenarios in which an external
user test the proposed solution. In fact, many parameters that are
generally calibrated and set to maximize the performances might
not work as expected. In this paper, we highlight which best
practices should be applied for model calibration in smartphone-
based indoor positioning systems. We describe a reference system
based on a particle filter, and we show the most relevant
parameters and the main factors that are generally in common
with all similar systems in the literature. We also present the Run-
Once tool for reaching optimal parameters, highlighting those best
practices that should be applied to indoor positioning systems to
maximize their performances and improve their robustness.

Index  Terms—model calibration, indoor localization,
smartphone-based, particle filter, system evaluation

I. INTRODUCTION AND MOTIVATION

In the last decade, we have witnessed the growing interest of
the scientific community regarding indoor localization systems
(ILS) [1], [2]. In particular, easy-to-use smartphone-based
indoor localization systems have been gaining the attention of
the community [3]. As a matter of fact, the evolution of on-
board sensing technologies makes the smartphone a valuable
alternative to infer the user position. The user’s location is
essential in many application scenarios, ranging from contact
tracing system, to tracking and navigation services. In [4],
we started analysing how on-board sensing technologies have
evolved in the last years, from 2014 to 2019 and we showed
a trend towards the improvement of the overall performance.
Lastly, we provided insights into the role that sensing units
and software algorithms play in the evolution of smartphone-
based indoor localisation solutions [3], [5], [6]. In particular,

Corresponding author: A. Crivello {antonino.crivello@isti.cnr.it}

by reviewing eleven leading applications, we observed that the
current trend shows a massive use of IMU sensors [7], wireless
interfaces, and context data (such as indoor maps) in order to
infer and track the user’s position. All these kinds of sensed and
retrieved information are then put together with a data-fusion
strategy, such as particle or Kalman filters [8], [9].

However, we observe that such technological trend strongly
relies on the environment and on the person’s behaviour using
the system [10], [11]. As a result, it is often required a time-
consuming calibration phase (based on a ground-truth path) in
order to identify the optimal parameters to use in a specific
environment. In practice, the user repeats the same ground-
truth path several times, changing the setting parameters and
finding those with the best localization error performance.
While, in this work, we propose an alternative approach to the
traditional ground-truth calibration phase. We propose a two-
step methodology: i) to perform one single raw-data collection
phase, ii) to exhaustively explore the collected data to find the
optimal parameters leading to optimal performance in terms
of localization error. Furthermore, in this paper we highlight
the best practices that should be applied to indoor localization
systems in order to maximize their performances and improve
the robustness of the system. We describe which best practices
should be applied for model calibration in smartphone-based
indoor localization systems, describing a reference system
based on particle filtering, and showing those parameters and
the main settings that are generally in common with all similar
systems in the literature. We finally provide a novel perspective
to the calibration problem as, to the best of our knowledge,
we are not aware of Run-Once tools capable of evaluating the
overall performance of the localization system by evaluating
both the uncertainties introduced by the environment and the
uncertainties introduced by user behaviour.

II. WORKING PRINCIPLES OF SMARTPHONE-BASED
INDOOR POSITIONING SYSTEMS

Smartphone-based systems for indoor positioning relies on
accurate knowledge of environmental factors which are ac-
curately modelled [12]. In fact, information about distances
from Wi-Fi Access Points, anchors or any details about the
indoor map are essential to obtain good accuracy. Nowadays,
the main challenge in the field of indoor positioning and indoor
navigation is reaching a robust generalization, which means
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the systems’ capability to well perform also under uncertain
circumstances given by factors that change dynamically. An
example of these uncertainties is the unknown number of
people in the environment, which strongly affects radio signals
and their propagation. Furthermore, smartphone-based systems
are developed to be used in a real scenario. Thus a crucial
aspect is the system’s ability to generalize different aspects
of the human’s posture in terms of height, stride length, step
length and pedestrian speed. During the calibration phase,
besides these aspects mainly related to the step dynamics, a
data fusion algorithm requires to also set-up other parameters.
As an example, the dimension of the particle’s cloud should be
investigated. Basically, the model calibration for smartphone-
based system should lead to finding an optimal combination
of several factors. The goal of the proposed Run-Once tool
is reaching an optimal parameter set in model calibration by
following the process shown in Fig. 1. We suggest the use of
a closed-loop scheme. The process starts by recording all the
data available from the built-in sensors during a run, namely
the raw-data. Successively, the raw-data are pre-processed
and new events are evaluated (e.g. a new step detected, a
new Wi-Fi scan). Data and events are given in input to the
emulation controller which contains a parameters configurator.
By combining parameters, configuration and data, the run
generator is able to provide position estimation as input of
the run evaluator module. Finally, by comparing ground-truth

and estimated position, the run evaluator module allows to save
the performance obtained applying the chosen parameters and,
finally, to modify the configuration starting new emulated runs.

As an example, in this paper, we refer to an indoor local-
ization system based on a particle filter, but the same concept
could be applied to every data fusion algorithm developed for
indoor positioning purposes.

The system shown in this paper is an example for describing
best practices in model calibration relies upon particle filter. In
our implementation, smartphone records mainly two different
events: new steps detected and radio signals scans. The step
detector algorithm relies on the step detector as implemented
in modern OS, such as Android and iOS.

The flow to determine the best practices starts from a
common point among all the smartphone-based solutions for
indoor positioning. These systems collect data from the sensors
available. In literature, systems have several similarities [13]:
(a) collecting information from all the available sensors, (b)
implementing a strategy for data processing, and (c) predicting
positions using a data fusion technique (e.g., Kalman filter,
extended kalman filter, particle filter). Typically, pedestrian
dynamics and their trajectories are estimated through a pedes-
trian dead reckoning approach (PDR). PDR is a process for
evaluating users’ current position by using the knowledge of
a previous position and updating the position by estimating
speeds over elapsed time and course. For this purpose, data



from gyroscope, accelerometers, magnetometer and compass
are processed together for estimating a new step, step length,
attitude, and heading. Although these evaluations generally
suffer from noise and drift, mainly due to cheap sensors
and weak calibration, they are generally combined with map
information and radio signals.

III. RUN-ONCE: A TOOL FOR CALIBRATION AND
EVALUATION IN A CLOSED-LOOP

This section describes the idea behind the proposed tool.
Furthermore, we will show the data collection phase detailing
challenges and problems in designing an experimental cam-
paign. The process we show in this paper could be easily
adapted to every model calibration and experimental setting
drawn for smartphone-based indoor positioning.

An experimental campaign starts by defining a path that
contains a number of key-points. This path ideally will cover
all the indoor maps crossing all the areas of interest. As
meaningful an example, the evaluation could be performed
by adopting the EVAAL framework, which requires ground-
truth positions and estimated positions and is able to produce
performances statistics following the suggestions in [11]. Ba-
sically, the evaluation is performed on different key points
displaced into the environment. During a trial, the user walks
at a natural pace along a loosely-defined reference path. The
path connects some key-points on the floor. The list of time
marks, together with the ID and positions of the key-points, will
be the ground truth used by the measurement app to compute
the localisation errors. In our implementation, the positioning
system estimates the user’s location as WGS84 coordinates
x,y with a sampling frequency of 2Hz and the timestamp
expressed in milliseconds. The accuracy of the system is
evaluated considering the third quartile of the localisation errors
at the key-points. The localisation error is the distance between
the position estimation and the real position of a key-point.

Estimated positions strongly rely on several parameters of
the chosen data fusion algorithm, the quality of the built-
in sensors and other environmental parameters which could
influence radio signal propagation. In the testing phase, if the
algorithm only saves estimated positions, a small variation of a
single parameter would result in executing a new experiment.
Experiments are particularly time and effort consuming in
this field; every trial requires walking along a predefined
path, involving different users to enhance system robustness
and, moreover, trying to reproduce in an identical manner
walking speed, body position when the user cross a key-point
and environmental characteristics. For example, if the target
scenario is a public building or a hospital, people’s presence in
the environment and their behaviour could strongly influence
the radio signal propagation. Similarly, doors and fire doors
are expected to remain in the same configuration (i.e., closed
or opened) for each experiment.

The number of parameters for such complex systems is sig-
nificant and lead to an n-dimensional problem. Consequently,
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in real-world scenario, finding an optimal solution would be
burdensome.

In this paper, our data fusion algorithm is a particle filter.
Fig. 2 shows an example of particle movements related to a
set of parameters. In detail, setting step length (70 cm), step
deviation (10 cm) and heading deviation (15°), after five steps
performed along the line B, a particle will be moved into the
area within the red dotted lines. The black segments connect
all the five estimated positions evaluated from tO to tl, and
represent the likely movement of a single particle. Supposing
one ground-truth key-point is the green circle A, it means the
system is underestimating the distance walked by the user: all
particles that fall into the red zone will never reach circle A
unless the experiment is repeated, trying to understand if it is
convenient to change the average length of the step or just its
deviation (i.e. 75 cm or 15 cm). Similarly, if the ground-truth
is placed on the green circle on the side of blue lines, it means
the system is underestimating step length and heading.

The main suggestion for avoiding the need to perform a
new experiment is to collect and save the time series (data
sensors, timestamp) for all the events that helped to determine
the estimate of the position along the chosen path. Saving all
the occurred events, for example, Wi-Fi scan and the sequence
of step detected, easily allow running the data fusion algorithm
more times and evaluating several times errors, performances
and statistics. Basically, following our guidelines, a positioning
system benefits from experimental data retrieved by real users
and an additional set of data obtained varying all the algorithm
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Fig. 3: The implemented solution consists of three main blocks: 1) Logs all the occurred events, 2) Control the emulation, 3)
Run the emulation, 4) Evaluate the runs with the EVAAL framework.

parameters. In fact, a new parameter configuration as input of
the algorithm will produce new results as output, improving
the overall robustness to stochastic variables and processes.

Fig. 3 shows in detail Run-Once. It is worth to notice that
the goal of this paper is to show best practices for calibration
and evaluation of indoor positioning systems. The idea behind
the tool is widely applicable to design every experimental
campaign of indoor positioning. The blue block, namely events
logs, represent the module responsible for logging all the events
regarding pedestrian dead reckoning, Wi-Fi scan, Bluetooth
scan or other events detected. The emulation controller block
is responsible to perform event streaming towards the run gen-
erator and to set parameters configuration. The run generator
will be finally able to estimate new trajectories of each particle
along the time, thus producing new estimated positions. The
latter will be evaluated and compared with the ground-truth
positions using the evaluation tool and the recommendations
contained in EVAAL framework [11]. The EVAAL framework
assigns a score to every set of parameters. Subsequently, the
parameters can be adjusted manually or semi-automatically
through scripts, and the process starts again in closed loop.
An important feature of Run-Once is its modularity. In fact,
to better understand underlying correlation between different

modules, the run generator allows to enable/disable single
modules. Analyzing the performances by combining different
parameters, the system architect may easily choose the best set
to improve the robustness without neglecting the accuracy.

IV. BEST PRACTICE FOR IMPROVING THE PERFORMANCES

In this section we shown some representative examples of en-
hancement using the proposed tool. Fig. 4 shows the estimated
path obtained by a single data collection in our office building.
The pink markers reported in Fig. 4a represent the estimated
positions during a trial performed physically by a user walking
along the corridors of the office and completing a rectangular
path. Green markers (as well as the other markers) represent
the same experiment emulated offline by the run generator
module, that is disabling the module ’obstacle checker’ that,
in our implementation, is designed to detect any collision
with an obstacle (e.g., walls, forbidden areas). By disabling
such module, particles’ weight is not correctly updated, as
a result the estimated position is not correct. Fig. 4b shows
the same experiment, by varying heading deviation and step
length parameters. Fig. 4c shows the impact on the particle
size enabling the obstacle checker and fixing the step length.

Parameters: The graphical interface of the emulator allows
us to easily understand the impact of varying the parameters.



(b) changing person parameters: head-
ing deviation and step length

(a) disabling the obstacle checker

(c) changing environment parameters: par-
ticle size

Fig. 4: Graphical representation of the estimated path super-imposed to a geo-referenced indoor map.

Generally, the admissible values for the parameters is n-
dimensional, and it becomes difficult to understand the optimal
setting. Parameters can refer to features of the environment,
of the person performing the test, or of the localization
model used to process the estimated position. In our reference
implementation, the number of particles for the particle filter
is influenced by the type of environment, e.g. walking along a
corridor or in an open space. The length of the step depends
on the person and sensor sensitivity used by the smartphone.
Finally, by using the multilateration of radio signals detectable
in the environment, there are several calibration parameters to
consider, depending on the path-loss or proximity model used.

Impact of parameters: The influence and the impact of the
different types of parameters should be well defined, not only
to achieve greater precision but also for greater robustness of
the solutions. The experience we gained in systems evaluation
described also in [10], shows us that systems appear complex
enough to be deployed in every scenario but, nevertheless,
models over-fit on specific characteristics of a limited group of
users. Therefore, the performed calibration model is generally
inadequate when the system is used by new users under new
conditions.

Best practices: In summary, we claim the needs of reaching
system robustness without neglecting the overall accuracy. To
reach such an ambitious goal, the system calibration phase
should be performed following the suggestion in Fig. 1. The
best practices we propose are summarized as follows.

o The system should log every relevant event and also
collect the raw-data from the sensor units used to estimate
the position;

o Researchers should explicit consider all the parameters
affecting the implemented algorithm, by avoiding hard-
coded values;

o An experimental campaign should be designed so that
to involve users following a non-trivial path in areas of
interest. Users should also be un-aware of the internal
design of the localization system, so that to avoid a bias
during the experimental tests;

e A run generator should be developed in order to control
and change every parameter previously identified. If it is
not possible to exactly repeat a trial, new trials could be
generated using a run generator;

o From a closed-loop perspective, parameters can be mod-
ified, and the system can be evaluated by observing the
influence of one (or few) parameters at a time.

Optimal solutions: The last point concerns the complexity
of the problem, which can generally offer multiple optimal
solutions. How to move through the n-dimensional space of
the parameters.

Run-Once can conceptually be represented as a P-Diagram
(Fig. 5) for optimization of dynamic problems that can be faced
with the Taguchi methodology [14].

The Taguchi methodology proposes to standardize the op-
timization process in eight steps, including identifying an
objective function, the control factors and the range of values
they assume, selecting a determined number of parameters
from which to generate an orthogonal basis of control vectors
with respect to conduct the experiments and evaluate the
performance and optimal configurations.

Future directions: Reaching an overall robustness would
open to a new scenario in this field. For example, it could
enable more efficient and effective cooperation and interoper-
ability among different localization systems. Applying the ideas
described in [15] in a close future different indoor localization
systems could cooperate, sharing the information about their
working principles in a manifest and allowing, from a user per-
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spective, to automatically discover and retrieve relevant features
of the environment with suggested parameter settings to interact
with the infrastructure available on the site [16]. Therefore the
proposed tool is important not only to improve the accuracy of
localization algorithms but also for administrative purposes, to
easy configuration settings and realize transparent and seamless
integration of localization systems.

V. CONCLUSIONS

Indoor localization systems are gaining increasing attention
both from the industry and from the academia. Many tech-
nologies have been using and integrating with the goal of
delivering to the community, a similar user experience for
GNSS-based navigation systems commonly adopted on outdoor
scenarios. In this paper, we focus on the configuration process
for such systems, namely the process of identifying the optimal
parameter settings for a specific scenario. In particular, we
analyse in this work which best practices should be applied
for model calibration in smartphone-based indoor positioning
systems. We describe a reference system based on particle
filtering of data collected from inertial sensors, and we show the
most relevant parameters and the main factors that are generally
determinant for increasing the performance. We also present a
workflow for reaching optimal parameters, highlighting those
best practices that should be applied to indoor positioning
systems to maximize their performances and improve their
robustness. In future work, it is our intention to investigate
the applicability of Taguchi methodology to optimize and
reduce the number of experiments to be conducted to find
configurations of optimal parameters.
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