
Information and Software Technology 159 (2023) 107202

A
0

Z
W
a

b

c

A

M
0
1

K
Z
L
C
R
Z
U
M
T
D
R
A
A

1

m
2
b
l
t
d

s
a
R
g
d
c
c

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ero-shot learning for requirements classification: An exploratory study
aad Alhoshan a,1, Alessio Ferrari b,∗,1, Liping Zhao c,∗,1

College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11564, Saudi Arabia
Istituto di Scienza e Tecnologie dell’Informazione ‘‘A. Faedo’’, Consiglio Nazionale delle Ricerche (ISTI-CNR), Via G. Moruzzi 1, Pisa, 56126, Italy
Department of Computer Science, University of Manchester, Manchester, M13 9PL, UK

R T I C L E I N F O

SC:
000
111

eywords:
ero-shot learning
anguage models
ontextual word-embeddings
equirements classification
ero-shot text classification
nsupervised learning
ulti-label classification
ransfer learning
eep learning
equirements engineering
I for requirements engineering
I for software engineering

A B S T R A C T

Context: Requirements engineering (RE) researchers have been experimenting with machine learning (ML) and
deep learning (DL) approaches for a range of RE tasks, such as requirements classification, requirements tracing,
ambiguity detection, and modelling. However, most of today’s ML/DL approaches are based on supervised
learning techniques, meaning that they need to be trained using a large amount of task-specific labelled
training data. This constraint poses an enormous challenge to RE researchers, as the lack of labelled data
makes it difficult for them to fully exploit the benefit of advanced ML/DL technologies.
Objective: This paper addresses this problem by showing how a zero-shot learning (ZSL) approach can be used
for requirements classification without using any labelled training data. We focus on the classification task
because many RE tasks can be framed as classification problems.
Methods: The ZSL approach used in our study employs contextual word-embeddings and transformer-based
language models (LMs). We demonstrate this approach through a series of experiments to perform three
classification tasks: (1) FR/NFR — classification functional requirements vs non-functional requirements; (2)
NFR — identification of NFR classes; (3) Security — classification of security vs non-security requirements.
Results: The study shows that the ZSL approach achieves an F1 score of 0.66 for the FR/NFR task. For the
NFR task, the approach yields F1∼ 0.72− 0.80, considering the most frequent classes. For the Security task, F1
∼ 0.66. All of the aforementioned F1 scores are achieved with zero-training efforts.
Conclusion: This study demonstrates the potential of ZSL for requirements classification. An important
implication is that it is possible to have very little or no training data to perform classification tasks. The
proposed approach thus contributes to the solution of the long-standing problem of data shortage in RE.
. Introduction

In requirements engineering (RE), system and software require-
ents specifications are typically written in natural language (NL) [1,
]. In the last few years, natural language processing (NLP) techniques
ased on supervised machine learning (ML), and, more recently, deep
earning (DL), have been applied to address several RE tasks, driven by
he success of these techniques in a range of domains, including medical
iagnosis, credit card fraud detection, and sentiment analysis [3–5].

To date, research on ML-based RE has been primarily focused on
upervised classification approaches [6], as most RE tasks can be framed
s text classification problems solved by supervised learning techniques.
elevant examples are: classifying requirements into different cate-
ories [7–9]; identifying requirements from software contracts [10];
iscerning requirements and non-requirements [11]; identifying mis-
ategorised requirements [12]; and discovering requirements-relevant
ontent from app reviews [13,14].

∗ Corresponding authors.
E-mail addresses: alessio.ferrari@isti.cnr.it (A. Ferrari), liping.zhao@manchester.ac.uk (L. Zhao).

1 Equal contribution to the research and writing of the paper.

However, supervised ML has some major limitations. The most
notable one is that supervised learners need to be trained on a large
amount of task-specific, labelled data before they can be ready for pre-
dicting the outcomes on new data [4,15]. This problem is exacerbated
in domains like RE where collecting and labelling sufficient training
data is often expensive, time-consuming and error-prone [10,16]. La-
belling data also requires substantial domain- and even project-specific
knowledge [12]. Furthermore, labelled data used in previous studies
are frequently unavailable. This happens even for the lively area of app
review analysis, in which most studies have not released their labelled
dataset, according to a recent survey (cf. [13], p. 34). This limitation
hinders RE researchers from exploring different learning techniques.

Another limitation of supervised learning methods is that models
can only classify the data belonging to seen classes (i.e., classes labelled
in the training data), but they cannot classify the data into previously
vailable online 20 March 2023
950-5849/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2023.107202
eceived 11 August 2022; Received in revised form 13 March 2023; Accepted 14 M
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2023

https://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:alessio.ferrari@isti.cnr.it
mailto:liping.zhao@manchester.ac.uk
https://doi.org/10.1016/j.infsof.2023.107202
https://doi.org/10.1016/j.infsof.2023.107202
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2023.107202&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

p
d
i

d
a
W
o
P
v
n
f
a
a
t
l
p

r
S
p
f
e
b
e
t

2

c
‘
d

unseen classes (i.e., classes not labelled in the training data) [15].
Although this limitation is inherent in supervised learning, the ability to
deal with previously unseen classes can bring huge benefits to many
real-world applications where classes are artificially defined, with no
common consensus, or where classes may evolve over time, with new
classes emerging and old ones becoming obsolete. One such example is
requirements classification where several classification schemes exist
for non-functional requirements (NFRs) [17,18].

As software applications, their requirements, and the theory of NFRs
itself evolves over time, so do the classification schemes. Consequently,
a dataset labelled using one set of classes (e.g., the PROMISE NFR
Dataset [19]) cannot be reused to train a method that intends to
predict a different set of classes (e.g., based on the latest ISO/IEC/IEEE
29148 standard [20]). Each time a new classification scheme is used,
the datasets must be relabelled accordingly, incurring expensive data-
labelling costs.

To address these problems, different learning paradigms have been
proposed in recent years [4]. One such paradigm is transfer learn-
ing [21], which aims to alleviate the problems of data shortages and
expensive data labelling efforts by adapting existing well-trained ML
models to different, but related domains or tasks [22]. However, model
adaptation still requires thousands or tens of thousands of labelled
task-specific instances [23].

More recently, zero-shot learning (ZSL) has emerged as a promising
aradigm [15]. ZSL directly applies previously trained models to pre-
icting both seen and unseen classes without using any labelled training
nstances [24,25].

Expanding on our preliminary study [26], this paper aims to con-
uct an in-depth study of using ZSL for requirements classification
nd to gain insight into this new paradigm in the context of RE.
hereas our preliminary study only assessed ZSL on the classification

f security and usability requirements selected from a portion of the
ROMISE NFR dataset [19], this paper substantially extends the pre-
ious contribution by evaluating ZSL on different classification tasks,
amely differentiation between functional requirements (FRs) and non-
unctional requirements (NFRs), identification of different NFR classes,
nd classification of security vs. non-security requirements. These tasks
re carried out on two datasets: the full PROMISE NFR dataset and
he SecReq dataset [27]. In addition, we have selected four different
anguage models (LMs) to evaluate ZSL, to allow us to compare the
erformance of ZSL under different models.

The remaining paper is structured as follows: Section 2 briefly
eviews the current ML approaches for requirements classification.
ection 3 introduces the zero-shot learning approach used in this
aper and its related concepts. Section 4 defines the research questions
or our study and details our study design. Section 5 analyzes the
xperimental results, while Section 6 answers our research questions
ased on these results. Section 7 examines the validity threats to our
xperiments and our mitigation strategies. Finally, Section 8 concludes
he paper.

. Related work

Most studies in ML-based requirements classification focus on the
ategorization between functional (FR) and non-functional (NFR, or
‘quality’’ [28]) requirements, and on the further categorization of
ifferent NFR classes, such as security, performance, usability, etc.

However, the distinction between FR and NFR has been a matter of
debate in the RE community [16,29], and the empirical study by
Eckhardt et al. [18] shows that NFRs can include functional aspects.
Furthermore, there is a more fine-grained representation of FRs and
NFRs given by the ISO/IEC/IEEE 29148:2018(E) Standard [20], which
distinguishes between functional/performance, quality, usability, in-
terface, and other classes, thus refining the conceptualization already
elaborated by the NFR classification from Glinz [17]. Yet, despite the
lack of consensus what NFRs are, and how we should classify and
2

represent them, the differentiation between FRs and NFRs is a common
categorization in RE, and in the following we will use this distinction,
keeping in mind that it is an artificial construct [18].

ML-based approaches for requirements classification were examined
in a systematic literature review by Binkhonain and Zhao [6]. Here we
briefly review some closely related representative works.

2.1. Classification of FRs and NFRs

One of the earliest adoptions of ML to RE was due to Cleland-
Huang et al. [7], who proposed to use a set of indicator terms to
identify different classes of NFR. The approach was supervised, in that
it first identified a set of indicator terms on a set of manually annotated
requirements, and then used this set to classify unseen cases. The
approach achieved a recall up to 0.80, but suffered from low precision,
up to 0.21. This study also introduced the PROMISE NFR dataset [19],
which has been widely used by the research community, and it is also
one of the benchmarks of our work.

To mitigate the problem of dataset annotation, Casamayor et al.
[30] proposed a semi-supervised method, based on an iterative process
similar to active learning, in which the user provided feedback to
the classifier. Their approach used Naive Bayes (NB) as a classifi-
cation algorithm and the PROMISE NFR dataset as the training set.
After multiple iterations in which an increasing number of training
examples were used, they obtained a maximum precision of above
0.80 and a maximum recall of above 0.70 on most classes, except
underrepresented ones.

Another well-known ML approach is provided by Kurtanović and
Maalej [8], who applied Support Vector Machine (SVM) for require-
ments classification. They selected relevant features with an ensemble
of different supervised classifiers and achieved precision and recall up
to 0.92 for identifying FRs and NFRs on the PROMISE NFR dataset. For
the identification of specific NFRs classes, they achieved the highest
precision and recall for security and performance classes with 0.92
precision and 0.90 recall. Dalpiaz et al. [16] reconstructed the study
by Kurtanović and Maalej and used the results obtained as a base-
line to evaluate their proposed approach using interpretable linguistic
features.

To overcome the problem of labour intensive feature engineering,
Navarro et al. [31] proposed one of the first approaches using a deep
learning (DL) model. They used a CNN (Convolutional Neural Network)
model on the PROMISE dataset, and obtained precision and recall of
0.80 and 0.79 respectively, thus addressing the problem of limited
precision observed by Cleland-Huang et al.. Similar approaches were
proposed by Dekhtyar and Fong [32], and more recently, by Aldhafer
et al. [33].

A more closely related work to ours is Hey et al. [9], who proposed
NoRBERT, a transfer learning approach for requirements classification.
Their approach is based on fine-tuning the BERT model (Bidirectional
Encoder Representations from Transformers) [23]. They achieved sim-
ilar or better results with respect to previous works, achieving 0.92
precision and 0.95 recall for FR vs. NFR classification on the PROMISE
dataset. NoRBERT also outperformed recent approaches at classifying
NFRs classes. The most frequent classes were classified with precision
up to 0.94 and recall up to 0.90. The proposed solution was also ap-
plied for the classification of different types of functional requirements
concerns in PROMISE, achieving precision up to 0.88 and recall up to
0.95.

2.2. Classification of security requirements

One of the early works on security requirements classification was
by Knauss et al. [34], who used a Bayesian classifier to identify security-
relevant requirements on three industrial datasets. These datasets are
also used in our paper (aggregated into the SeqReq dataset). They
achieved precision > 0.8 and recall > 0.9. In another work, Riaz

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

B
L
o
d
e
s
‘
B
t
c
r
c

a
d
I
d

t
p
(
G
c
N
e
d
l

3

e
l
r
l
p
t
n
o
a
a
e
r
r

e
c
e
s
s
c
t
t
t

t
V

w

et al. [35] proposed an approach to extract security-relevant sentences
from requirements documents. They used a dataset of 10,963 sentences
belonging to six different documents from the healthcare domain. The
proposed approach was semi-automatic and based on KNN (K-nearest
Neighbours) classification. The authors achieved a precision of 0.82,
and a recall of 0.79.

Addressing the lack of domain-specific data sets, Munaiah et al. [36]
proposed a domain-independent classification model for identifying
domain-specific security requirements. The proposed approach, a one-
class SVM classifier, was used to identify general descriptions related to
software security weaknesses, but not the actual security requirements
per se, as the classifier was trained using the Common Weakness
Enumeration database [37]. The authors showed that the one-class
classifier achieved an average precision and recall of 0.67 and 0.70
respectively. Varenov et al. [38] compared the performance of dif-
ferent LMs, namely BERT, XLNET, and DistilBERT, for security re-
quirements classification. They identified 1086 security requirements
of seven different classes collected from multiple existing datasets, such
as PURE [39], SecReq [34] and Riaz’s dataset [35]. Unlike previous
studies, the work by Varenov et al. [38] aimed to classify security
requirements into more fine-grained classes, i.e., Confidentiality, In-
tegrity, Availability, Accountability, Operational, Access Control, and
Other. DistilBERT achieved the best results, with precision of 0.80 and
recall of 0.82.

2.3. Our contribution

In comparison with the related work, our study aims to present a
comparative analysis of different ZSL configurations for the classifica-
tion of requirements. Similarly to the proposal of Hey et al. [9], we
explore the potential of a DL solution on the widely used PROMISE
dataset. Differently from Hey et al. [9], this is the first work in RE
that proposes to use ZSL for the classification task. While Hey et al.
focus on addressing generalizability of the classifier by means of trans-
fer learning, our proposal: (1) avoids the need of a tagged dataset,
therefore addressing the well known problem of the scarcity of an-
notated datasets in RE [1,12,39,40]; (2) is inherently generalizable
to different projects, thus addressing the problem of decreasing per-
formance with unseen projects, which typically affects requirements
classifiers [9,16]. Concerning security requirements classification, our
proposal overcomes the problem of dataset annotation as Munaiah
et al. [36]. However, their approach is specific to security requirements,
while our proposal is more generalizable and adaptable to different
classification tasks.

3. Zero-shot learning

Zero-short learning is an emerging learning paradigm that aims to
perform learning tasks without using training data. ZSL was originally
used in image processing to predict unseen images [41], but has
recently been adapted to many NLP tasks, including entity recogni-
tion [42], relation extraction [43], document classification [44], and
text classification [45]. The fundamental idea of ZSL is that some
previously trained language models are so accurate that they can be
directly applied to predicting new data without any training [24,25].
In this section, we first introduce the concepts of language models and
then focus on a specific ZSL approach – embedding-based ZSL – used
in our study.

3.1. Language models and transfer learning

Language models (LMs) are deep neural networks for represent-
ing words and sentences in natural language. These models are de-
veloped to support NLP tasks such as language understanding and
inference. Traditional LMs, such as Skip-gram [46], Word2Vec [47],
3

P

and GloVe [48], use static word embeddings, i.e., fixed vector rep-
resentations, to represent the words and sentences in a text [46].
More recently, transformer-based LMs, such as OpenAI GPT [49] and

ERT [23], have made significant improvements over the traditional
Ms in language representation, as they can capture the deep meaning
f words and sentences through dynamic or contextual word embed-
ings [50]. In other words, traditional LMs are static as they simply
xpand the words in a sentence with related ones. For example, the
entence ‘‘This is not about usability ’’ is mapped onto a vector similar to
‘This is about usability ’’, as the two sentences only differ in one word.
y contrast, with transformer-based LMs, the vector representations of
hese two sentences are different, as they have opposite meanings. This
haracteristic naturally plays a crucial role in requirements analysis, as
equirements sentences often use a very restricted vocabulary [39], but
onvey different meanings.

Today, pretrained LMs (PLMs) are widely available.2 These PLMs
re typically pretrained for some generic NLP tasks using unlabelled
ata such as app reviews and Wikipedia, available en masse through the
nternet [51]. Such LMs can be adapted— i.e., transferred—to different
ownstream tasks [52]. This concept is known as transfer learning [53].

There are two approaches for adapting a PLM: feature-based and fine-
uning [54]. The feature-based approach uses the representations of a
re-trained model as input features to train a downstream task model
e.g., ELMo [55]), while the fine-tuning approach, adopted by OpenAI
PT and BERT, involves modifying the weights and parameters in
ertain layers of the PLM so as to enable the model to perform a specific
LP downstream task. Transfer learning helps to reduce the cost and
ffort required for training new models, and allows users to explore
ifferent NLP tasks with a relatively small amount of task-specific
abelled data.

.2. Embedding-based zero-shot learning

There are two common approaches to ZSL: entailment-based and
mbedding-based. The former treats the classification task as a natural
anguage inference (NLI) task [56], whereas the latter uses language
epresentations to predict if an input text is related to a given class
abel. More specifically, the entailment-based approach treats an in-
ut text sequence as a premise and the labels as a hypothesis, and
hen infers if the input text is an entailment of any of the labels or
ot [56]. For example, given the sentence ‘‘the system must be deployed
n Azure’’ as a premise, and the label string ‘‘this is about software
rchitecture’’ as a hypothesis, the entailment-based classifier provides
score which is then translated into one of the following outputs:

ntailment (yes), contradiction (no), or undecided. This ZSL approach
equires a large inference-based PLM3 that can interpret the entailment
elation between an input sequence and a label.

The embedding-based ZSL approach was introduced by Veeranna
t al. [57]. Under this approach, both class labels (e.g., ‘‘usability’’, ‘‘se-
urity’’) and input text are represented as word sequences using word
mbeddings. Text classification then involves computing the semantic
imilarity between each label sequence and the text sequence. If the
imilarity score is greater than a certain threshold, then the text can be
lassified into a specific category represented by the label; otherwise,
he text does not belong to that category. Note that, since a label is
reated as a sequence of words, it can contain any number of words or
heir combinations.

The simplicity of the embedding-based approach to ZSL has led us
o applying it to our study. However, unlike the original proposal by
eeranna et al. [57], who used the static word-embedding technique

2 For example, a large number of PLMs are freely available at Hugging Face
ebsite: https://huggingface.co/models.
3 Hereafter we simply call a ‘‘PLM’’ ‘‘LM’’, as the LMs used in our study are

LMs.

https://huggingface.co/models

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.
Fig. 1. An illustration of the contextual word embedding-based ZSL approach.
(Skip-gram) for word representation, we take advantage of transformer-
based LMs and use them to produce contextual word-embeddings for
both labels and input text. In so doing, our embeddings not only
capture syntactic and semantic characteristics of the words, but also
their context.

Another difference between our approach and the original one is
that we do not use similarity thresholds to determine the predicted
label; instead, we treat all text classification as a multi-label classifica-
tion task and rank-order all the labels with their similarity scores. For
a binary or multi-class classification task, we select the label with the
highest similarity score as the predicted label. For a multi-label task, we
check the top-𝑛 labels. The usage of similarity thresholds could help
identify misclassifications, when the highest similarity has a low value.
However, selecting appropriate thresholds is a task per se, which we do
not consider in this paper.

The contextual word embedding-based approach adopted in our study
(Fig. 1) can be explained using a simple example: Given a requirement
‘‘CNG shall support mechanisms for secure authentication and commu-
nication with the remote management system’’ and two class labels as
‘‘usability’’ and ‘‘security’’, we want to find out if the requirement
should be classified into the ‘‘usability’’ or the ‘‘security’’ class. ZSL
performs this classification task by taking the three word sequences
(the requirement statement plus the two labels) as input to a LM
to produce three contextual word embeddings. It then compares the
requirement with each label using the 𝐶𝑜𝑠𝑖𝑛𝑒 similarity function.4 The
comparison will return 𝑛 similarity scores, each score for a label and the
requirement pair. The pair with the highest similarity score means that
the requirement belongs to the category denoted by its associated label.
In our example, ZSL would return two similarity scores: 0.86 for the
‘‘security’’ label and the given requirement, and 0.25 for the ‘‘usability’’
label and the given requirement. Based on these scores, we deduce that
the given requirement is a security requirement.

The above example shows that the accuracy of the embedding-based
ZSL approach depends highly on the choice of (1) the labels and (2)
the PLMs. Whereas the above example only uses single word labels
(i.e., ‘‘usability’’ and ‘‘security’’), our study will investigate different
label configurations. For example, by composing the usability label
using a set of synonyms and related words, such as instructive, easy,
helpful, useful, learnable, explainable, intuitive, and understandable,
the LM can produce a more dynamic embedding that can capture a
range of connotations of the usability requirements.

4. Experimental design

To evaluate the effectiveness of embedding-based ZSL for require-
ments classification, our study aims to answer the following three
research questions (RQs):

RQ1: Which language model is more effective for which zero-shot require-
ments classification task?

4 The 𝐶𝑜𝑠𝑖𝑛𝑒 similarity function is the standard way to compute semantic
similarity between a label and a text [47,48,50,58].
4

RQ2: To what extent do different label configurations affect the effec-
tiveness of zero-shot requirements classification?

RQ3: How effective is zero-shot learning for requirements classification
compared to related supervised learning approaches?

We answer these questions through a series of experiments. In this
section, we describe our experimental design, consisting of five steps:
selection of datasets and tasks; selection of LMs; label configuration;
performance measure selection; technical setup of the experiments.

4.1. Dataset and task selection

The following two datasets are selected for our experiments:

• PROMISE NFR dataset [19], introduced by Cleland Huang et al.
[7]: This dataset contains 625 requirements, partitioned into 255
FRs, and 370 NFRs. The NFRs are further partitioned into 11
different classes, namely: A = Availability (21 requirements), L =
Legal (13), LF = Look and feel (38), MN = Maintainability (17), O
= Operational (62), PE = Performance (54), SC = Scalability (21),
SE = Security (66), US = Usability (67), FT = Fault tolerance (10),
and PO = Portability (1). These classes are unevenly distributed,
ranging from 67 requirements for Usability to one for Portability.
Each one of the most frequent classes—Usability, Security, Oper-
ational, and Performance—has more than 50 examples, while the
less frequent classes—Fault Tolerance, Legal, Maintainability and
Portability—have from one to 17 requirements each. The dataset
has been widely used in the literature, e.g., by Kurtanović and
Maalej [8], and by Hey et al. [9].

• SecReq dataset [27], introduced by Knauss et al. [34]: This
dataset contains 510 requirements, made of security-related re-
quirements (187) and non-security related requirements (323).
The requirements were collected from three projects: Common
Electronic Purse (ePurse), Customer Premises Network (CPN), and
Global Platform Spec (GPS). The dataset has been used, e.g., by
Varenov et al. [38].

We select the following typical requirements classification tasks for
our study:

• Task FR/NFR — Binary Classification of FRs vs. NFRs. With this
task we aim to distinguish FRs from NFRs, assuming that a
requirement belongs to either a FR or a NFR class. We use the
PROMISE NFR dataset for this task.

• Task NFR — Binary, Multi-class and Multi-label Classification of
NFRs. This task aims to classify different types of NFRs based
on the 10 different classes of the PROMISE NFR dataset (we
excluded the Portability class as it only has one single sample in
the dataset). We perform three sub-tasks to understand how ZSL
reacts to different ways of classifying NFRs: (1) binary classifi-
cation which discerns if a NFR belongs to a particular class or
not; (2) multi-class single-label classification (simply, multi-class
classification) which assigns a NFR to one of the top or all NFR
classes; (3) multi-class multi-label classification (simply, multi-
label classification), which allocates a NFR to one or more NFR

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

f
t

4

g
S

s

s
2
s
a
a
i
R
l

b
c
r

classes. The purpose of the third sub-task is to check if the top-
n NFR classes returned by the ZSL classifier correlate with the
assigned NFR label in the dataset.

• Task Security — Binary Classification of security related vs. non-
security related requirements. This task assumes that a requirement
belongs only to one of these two classes: security related and
non-security related. We use the SeqReq dataset for this task.

These datasets and tasks are selected for our experiments as they are
requently considered in the literature (cf. Section 2) and will enable us
o compare our results directly with those obtained by previous work.

.2. Language model selection

We select the following four BERT-based LMs for our study: two
eneric and two domain-specific LMs. The two generic LMs are
entence-BERT (Sbert) and All-MiniLM-L12 (AllMini), which are

freely available at the HuggingFace website,5 a well-known NLP com-
munity repository that provides open source pretrained LMs and other
language resources. The two domain-specific LMs, Bert4RE [59] and
BERTOverflow (SObert) [60], were developed for requirements and
oftware engineering tasks.

We focus on the BERT-based models, due to their popularity and
uitability for requirements classification [9]. Other LMs, such as GPT-
and GPT-3 by OpenAI, and XLNet [61], have not been included in our

tudy, as they are not suitable for requirements classification. For ex-
mple, GPT-2 and GPT-3 are mainly for language generation tasks, such
s language translation and text summarization [62], whereas XLN-Net
s for NLP involving processing long texts such as paragraphs [61].
equirements classification typically deals with texts at the sentence

evel. Below we introduce the four LMs used in our experiments.

• Sbert: This generic LM,6 proposed by Reimers and Gurevych [63],
is a fine-tuned version of BERT LM which aims to enrich the
semantic embedding representation, i.e., to aid in deriving se-
mantically meaningful sentence embeddings. The LM overcomes
the drawbacks of the original BERT models, which use word
embeddings to generate sentence embeddings and thus result in
weak semantic representations of sentences [63].

• AllMini: Introduced by Wang et al. [64] at Microsoft Research,
this LM7 aims to overcome the complexity of some LMs such
as BERT models which usually consist of millions of parameters
and can be challenging for pre-training and fine-tuning. AllMini
reduces (or distils) the size of the BERT models, while preserving
their performance. The main purpose of AllMini is to support
sentence embeddings. In this experiment, we use a version of
AllMini (All-MiniLM v2), which was fine-tuned using one billion
sentence pairs. This LM is used for encoding sentences and short
paragraphs and is particularly efficient for semantic search and
sentence clustering tasks.

• Bert4RE: This is a RE domain-specific LM [59] which was trained
on the BERTbase model using more than seven million words
from different RE-related datasets, including the PROMISE NFR
dataset, the PURE dataset [39], and app reviews from Google
Playstore and App Store. Although Bert4RE aims to support a
wide range of RE tasks, it has only been tested on the task of
identifying semantic roles from requirements documents. As this
is the only publicly available RE-specific LM, we include it in our
study. The BERT4RE LM is provided by the authors in a Zenodo
repository.8

5 https://huggingface.co.
6 huggingface.co/deepset/sentence_bert.
7 huggingface.co/sentence-transformers/all-MiniLM-L12-v2.
8

5

zenodo.org/record/6354280. Z
• SObert: This is a SE domain-specific LM [60] that was trained
on 152 million sentences from Stack Overflow.9 SObert10 shares
the same vision as Bert4RE, aiming to capture semantics of the
SE terminology. Although SObert has been trained to perform SE
specific named entity recognition (NER) tasks, it is among the few
SE specific LMs that can potentially be adopted for requirements
classification.11

4.3. Label creation and configuration

Different label creation strategies are used to produce the labels for
each requirements class, described as follows.

• Original labels: These labels were derived from the original class
names used in the dataset without using any external knowledge.
For example for the task FR/NFR, the original label for the class
FR is ‘‘functional’’, while for NFR we use two types of label: (1)
the expression ‘‘not about functional’’12 and (2) a string including
all the NFR class names (‘‘usability, security, availability, . . . ’’).

• Expert curated labels: These labels were curated by the three
authors of this paper based on their understanding of the require-
ments classes. The curation process took three steps: First, we
independently provided a set of terms to describe each require-
ments class, resulting in three sets of terms per class. Second,
we discussed our selections and produced a set for each class to-
gether. Third, we performed preliminary trials on a part of the re-
quirements, to select the best subset of expert-curated labels. For
example, for the task FR/NFR, the label for the class FR is com-
posed of the terms ‘‘functional, system, behavior, shall, must’’,
which are typically associated with FRs. These expert-curated
labels are expected to complement the aforementioned original
labels as they can better discriminate requirements classes.

• Word-embedding generated labels: These labels consisted of
the terms extracted and selected from word-embeddings learned
from the text of Wikipedia pages belonging to the Computer
Science (CS) portal. The idea was that the embeddings learned
from the CS portal represent the meaning of words in the CS
domain, and are therefore more suitable than a generic LM in
providing similar terms for our CS context. We adopted the
embedding approach and code provided by Ferrari and Esuli [66].
To agree on a label for each requirements class, we followed these
steps: (1) The top-n most similar terms were selected according
to the word-embeddings; (2) each of the three authors indepen-
dently annotated the terms with yes (indicating the term to be
representative for the class), no (indicating the term not to be
representative for the class), or maybe (indicating that the term
could be representative for the class); (3) each author revised
their ‘‘maybe’’ answer as either yes or no. (4) the final answer
for each class was decided through majority voting. After this
procedure, the terms that were tagged with yes were included
in the label. To assess the degree of agreement between the
three authors in step (2), we evaluate the overall percentages of
agreement on each term (i.e., all annotators tagged the term with
yes or no), partial agreement (i.e., two out of the three annotators
tagged the term with yes or no), and disagreement (i.e., the three
annotators selected three different tags: yes, no, and maybe). In

9 https://stackoverflow.com/.
10 huggingface.co/jeniya/BERTOverflow.
11 Note that another LM for SE is CodeBERT [65], but it was trained on
oth natural language and programming texts for specific tasks that involve
ode retrieval based on natural language queries, which are not suitable for
equirements classification.
12 Preliminary experiments have shown that this term is more effective for

SL with respect to ‘‘non functional’’.

https://huggingface.co
https://huggingface.co/deepset/sentence_bert
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://zenodo.org/record/6354280
https://stackoverflow.com/
https://huggingface.co/jeniya/BERTOverflow

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

c
t
t
t

4

m
b
(
a
t
m
c
w
u
f
c

4

s
c
c
a
t
t
t
c
j
T
p

Table 1
Label configurations for Task FR/NFR.

Label Abbr. Label configuration FR Label NFR Label

FR_A Original label ‘‘functional’’ ‘‘not about functional’’

FR_B Expert curated ‘‘functional, system, behavior,
shall, or must’’

‘‘not about functional, system, behavior, shall,
or must’’

FR_C Word embedding (selected
from top 20 words) + Expert
curated

‘‘functional, system, behavior,
shall, must, procedural,
structural, or characterize’’

‘‘not about functional, system, behavior, shall,
must, procedural, structural, or characterize’’

FR_D Original label ‘‘functional’’ ‘‘usability, security, availability, legal, look &
feel, scalability, fault tolerance, performance,
operational, maintainability, or portability’’

FR_E Expert curated + Original
label

‘‘functional, system, behavior,
shall, or must’’

‘‘usability, security, availability, legal, look &
feel, scalability, fault tolerance, performance,
operational, maintainability, or portability’’

FR_F Word embedding (selected
from top 20 words) + Expert
curated + Original label

‘‘functional, system, behavior,
shall, must, procedural,
structural, or characterize’’

‘‘usability, security, availability, legal, look &
feel, scalability, fault tolerance, performance,
operational, maintainability, or portability’’
t
l
t
f
O
c

m
m

step (3), after resolving the tags ‘‘maybe’’, we consider the inter-
rater agreement (IRR) based on Krippendorff’s alpha test [67]
as well as Fleiss’s Kappa [68]. These statistical tests are used to
measure the level of agreement among us. The interpretation of
the test results follows the guidelines reported in the Koch Kappa
benchmark [69].

The above three label creation strategies are combined into different
onfigurations which are then adopted to each specific classification
ask to produce task specific labels. Different label configurations and
heir associated classification tasks are reported in Section 5 for each
ask.

.4. Performance measures

For each LM and its label configuration, we measure their perfor-
ance on each class with respect to a specific classification task using

oth unweighted and weighted precision (P), recall (R), and F1-score
F1). The weighted P, R and F1 (represented respectively as wP, wR
nd wF1) are calculated using the distribution of the NFR classes in
he dataset. Basically, we performed a weighted sum of the different
easures, where the weights are the percentages of requirements in a

ertain class. These weighted results enable us to compare our results
ith other studies in requirements classification [8,9]. Instead, the
nweighted values, reported by each class, allow us to provide more-
ine grained analyses, especially for the multi-class and multi-label
ases.

.5. Experimental setup

Based on the combinations of different LMs, different label selection
trategies, and different classification tasks, we have designed and
onducted more than 360 experiments. We set up each experiment as a
ombination of one of the selected LMs, one specific label configuration
nd one specific task for each dataset. We call each LM-Label combina-
ion as a ZSL classifier. We use the Transformer API Python package13

o import and prepare the four selected LMs with their transformer-like
okenizers, and we use the 𝑡𝑜𝑟𝑐ℎ.𝑛𝑛 module14 in PyTorch to compute the
osine similarity score between two tensors (i.e., the PyTorch tensor ob-
ects obtained from the contextual representation by the selected LMs).
he sklearn.metrics module [70] is used to calculate the classification
erformance results in terms of the P, R and F1 scores.

13 huggingface.co/docs/transformers.
14 pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html.
6

5. Experimental results

In this section, we first report our label configurations and the
IRR scores achieved from our label selection for the word-embedding
strategy; we then report the experimental results obtained from using
the best label configurations.

5.1. Task FR/NFR

For the FR/NFR task we perform a binary classification, which aims
to classify a requirement as either FR or NFR.

5.1.1. Label configuration
The label configurations for the FR/NFR Task are reported in Ta-

ble 1. The labels consist of two groups, one group represents the
FR class, and the other the NFR class. Six configurations are used,
which combine the different strategies discussed in Section 4.3. In
the selection of the word-embedding generated terms, the annotation
procedure produced the following statistics: 75% perfect agreement,
25% partial agreement, and 0% disagreement. We also computed the
IRR, and we obtained 0.41 as Krippendorff’s alpha and a Fleiss’ kappa
score of 0.40, indicating a moderate agreement.

Concerning the other strategies, it is worth remarking the usage of
‘‘functional’’ vs. ‘‘not about functional’’ (strategy FR_A, Original 1). This
type of strategy, in which the original label is negated with the prefix
‘‘not about’’ is also applied for the NFR class label of FR_B and FR_C,
and will be applied also later on in this paper to represent the negation
of a class in a binary classification.

5.1.2. FR vs. NFR binary classification
Table 2, column Total, reports the overall classification results for

all LMs and labelling strategy combinations. In bold, we highlight the
best combination for each LM.

The overall best combination is Sbert + FR_E, achieving a wF1
score of 0.66, with wP = 0.71 and wR = 0.66. This indicates that
he domain agnostic Sbert model, designed to provide a semantic-
aden representation for generic sentences, substantially outperforms
he other models for this task. Furthermore, the best labelling strategy
or Sbert is FR_E, i.e., the one that uses the Expert curated labels +
riginal labels, which identifies the NFRs using the names of the NFR
lasses (Usability, Security, Availability, etc.).

Looking at Table 2, last six columns, we can see how the perfor-
ance is divided between FR and NFR classification. We see that the
odel tends to have higher precision on NFR (P = 0.82), and higher

recall on FR (R = 0.82). This is an interesting result, as FRs are less
frequent in the dataset (255 FR, 370 NFR), and one would expect to

have the opposite result. Indeed, the most frequent class is typically

https://huggingface.co/docs/transformers
https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.
Table 2
Classification results for FR and NFR classes on Task FR/NFR, obtained from the best
combination for each LM and label configuration.

ZSL classifier Total FR (255) NFR (370)

wP wR wF1 P R F1 P R F1

Sbert + FR_E 0.71 0.66 0.66 0.55 0.82 0.66 0.82 0.54 0.65
AllMini + FR_D 0.63 0.59 0.59 0.50 0.71 0.58 0.72 0.50 0.59
Bert4RE + FR_C 0.58 0.56 0.57 0.47 0.65 0.54 0.67 0.50 0.57
SObert + FR_C 0.58 0.59 0.58 0.50 0.41 0.45 0.64 0.72 0.68

returned more frequently in ML approaches, as it happens, e.g., for
NoRBERT (cf. Hey et al. [9], Table III of their paper). This phenomenon
occurs also for the other best configurations of LMs. This highlights a
characterizing element of ZSL: the performance does not depend on
the size of the dataset for each class, because no actual learning is
performed on the tagged data. A further increase in the accuracy on
the FR class could be potentially achieved with a more project-specific
labelling strategy for functional requirements (i.e., choosing terms that
characterize functional requirements in the specific project).

5.2. Task NFR

In this task, we performed three classification sub-tasks: a binary
classification to detect a specific NFR category (e.g., ‘‘usability’’ vs.
‘‘other’’); a multi-class classification to classify a requirement into one
class out of a set of NFR classes; a multi-label classification, in which
each requirement is associated with a ranked list of NFR classes, and
we want to see if the correct label is in the top-k classes. This last
approach can be applied in a semi-automatic classification context, in
which the two top-k classes are shown to the requirements analysts,
and they are asked to select the correct one. For all the sub-tasks, we
evaluate the results: (1) considering only requirements in the largest
classes, namely security, usability, performance and operational, which
include the majority of the requirements; (2) considering all the classes,
except the portability class, which includes one requirement only. For
the multi-label classification case, we consider 𝑘 = 2 when only the
4 largest classes are considered, and 𝑘 = 3 when all the classes are
considered.

5.2.1. Label configuration
Two labelling configurations are used for the three sub-tasks, one

for the binary case (Table 3), and the other for both the multi-class
and multi-label classification cases (Table 4).

Binary classification. For the binary case, we have 5 configurations for
each NFR class considered, i.e., each binary ZSL classifier. In Table 3
we report only the labels for the usability and security classes, while
the other labels are reported in the online supplementary materials.15

The strategies are analogous to those already discussed for the FR/NFR
Task. The only main difference is the usage of the top-50 words
from the word embeddings, besides the top-20. We performed some
preliminary experiments and saw that the list of similar words for the
NFR class names included relevant words also beyond the top-20, and
therefore we considered it reasonable to extend the list of terms to be
included in the labels. This phenomenon was not observed for the
previous task.

Concerning the agreement in the word selection (top-50) we have
the following statistics: 52% perfect, 44% partial, and 2% disagree-
ment. We obtained a Krippendorff’s alpha rate of 0.45 and 0.53 at
macro and micro level, respectively, and a Fleiss’s kappa of 0.42 and
0.52 at macro and micro level, respectively (moderate agreement).

15 https://github.com/waadalhoshan/ZSL4REQ/tree/main/Appendix.
7

Multi-class and multi-label classification. For these tasks, we have a list
of labels for each configuration, cf. Table 4. The list is represented with
squared brackets, the elements in the list are separated by commas,
and each element is a label, expressed between quotes. In the table,
each label in the list is associated to one of the 4 largest classes,
namely usability, security, performance and operational NFR. The label
configurations considering all classes are reported in GitHub.15 We did
not use combinations of labelling strategies for these cases, given the
extensive number of experiments, and the exploratory nature of the
study.

5.2.2. NFR binary classification
Table 5 reports the classification results for the 4 largest NFR

classes. The overall results indicate acceptable performance rates, with
wF1 > 0.71 for all classes.

The highest wF1 score of 0.84 is achieved for the security class, with
AllMini + SE_D, which uses the word embedding selected labels (top-
20) for the security class, and the original NFR labels for the ‘‘Other’’
class. Following that is the usability class, with wF1 = 0.80, using Sbert
+ US_E, which includes the word embedding selected labels (top-50)
for the usability class, and the original labels for the ‘‘Other’’ class.
This suggests that, for this task and for highly represented classes such
as security and usability, generic LMs combined with word-embedding
terms as labels appear to be the most effective configuration. It is
also worth noting that this binary classification task leads to better
results with respect to the FR vs. NFR task (best wF1 = 84 vs. wF1
= 0.66), and the best results are obtained with more complex label
configurations. This means that, when using ZSL, it is preferable to
select relevant NFR classes and perform binary classification on them,
rather than classifying FRs vs. NFRs. Furthermore, while for the task
FR/NFR simpler label selection strategies are preferable, more complex
labels are appropriate for the NFR binary task.

Table 5, last six columns, considers P, R, and F1 for each class. We
see that all the best classifiers tend to achieve higher performance on
the ‘‘Other’’ class (best F1 for NFR class 0.70, vs. 0.89 for the ‘‘Other’’
class). This suggests that the ZSL binary classifier encounters some
difficulty in associating the requirements to the specific labels, despite
the extensive set of terms used. A more accurate selection of terms, or
the usage of terms directly coming from the requirements themselves,16

could overcome this issue.
Finally, Table 6 lists the top performance rates considering all

classes, and the entire set of requirements. Comparing these results
with Table 5, we see that there is no substantial decrease in terms of
performance for the largest classes, e.g., US still achieves wF1 = 0.80,
while SE achieves wF1 = 0.85, which is even higher than wF1 = 0.84 in
Table 5. However, the results are all biased towards the ‘Other’’ class,
since, even in the best case, F1 for the NFR class is lower than 0.50.
This problem was not so evident in Table 5, at least for the US and
SE classes, where F1 is still acceptable also for the NFR class. We can
therefore conclude that, in the case of requirements belonging to many
different classes, a binary ZSL classification leads to poor classification
results, with the selected labelling strategies.

5.2.3. NFR multi-class classification
Table 7 reports the multi-class classification results for the 4 largest

NFR classes. For this case, and for the multi-label case, we do not report
the weighted measures for the sake of space. However, we remark that
the results by class enable a more fine-grained analysis. Weighted F1
is presented in Table 13 to facilitate comparison with other works. We
see that, compared to the binary classification, results are substantially
lower, although still acceptable for SE (F1 = 0.76), O (F1 = 0.64)
and PE (F1 = 0.64). In the majority of the cases, the best results are

16 We did not consider this option, as it would have biased the classification.
However, it is a viable choice in practical contexts.

https://github.com/waadalhoshan/ZSL4REQ/tree/main/Appendix

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.
Table 3
Label configurations for Usability and Security classes for Task NFR, binary classification case.
Label Abbr. Label configuration NFR Label ‘‘Other’’ Label

Usability
US_A Original label ‘‘usability’’ ‘‘not about usability’’
US_B Expert curated ‘‘instructive, easy, helpful, useful, learnable,

explainable, affordable, intuitive, or
understandable’’

‘‘not about instructive, easy, helpful, useful,
learnable, explainable, affordable, intuitive, or
understandable’’

US_C Word embedding (selected from
top 20 words)

‘‘accessibility, aesthetic, contextual, experience,
satisfaction, HCI, UX, questionnaire, ease, or
ergonomics’’

‘‘not about accessibility, aesthetic, contextual,
experience, satisfaction, HCI, UX, questionnaire,
ease, or ergonomics’’

US_D Word embedding (selected from
top 20 words) + Original label

‘‘accessibility, aesthetic, contextual, experience,
satisfaction, HCI, UX, questionnaire, ease, or
ergonomics’’

‘‘security, performance, operational, look feel,
legal, fault tolerance, maintainability, scalability,
availability, or portability’’

US_E Word embedding (selected from
top 50 words) + Original label

‘‘accessibility, aesthetic, contextual, experience,
satisfaction, HCI, UX, questionnaire, ease,
ergonomics, designer, evaluate, multimodal,
practitioner, prototyping,
preference, personalization, suitability, focus,
clarity, responsiveness, judgement, feel, or helpful’’

‘‘security, performance, operational, look
feel, legal, fault tolerance, maintainability,
scalability, availability, or portability’’

Security
SE_A Original label ‘‘security’’ ‘‘not about security’’
SE_B Expert curated ‘‘security, authorization, or protection’’ ‘‘not about security, authorization, or protection’’

SE_C Word embedding (selected from
top 20 words)

‘‘vulnerability, securing, protecting, protection,
cybersecurity, assurance, cyber, countermeasure,
threat, privacy, authentication, prevention, or
confidentiality’’

‘‘not about vulnerability, securing, protecting,
protection, cybersecurity, assurance, cyber,
countermeasure, threat, privacy, authentication,
prevention, or confidentiality’’

SE_D Word embedding (selected from
top 20 words) + Original label

‘‘vulnerability, securing, protecting,
protection, cybersecurity, assurance, cyber,
countermeasure, threat, privacy, authentication,
prevention, or confidentiality’’

‘‘usability, performance, operational, look & feel,
legal, fault & tolerance, maintainability, scalability,
availability, or portability’’

SE_E Word embedding (selected from
top 50 words) + Original label

‘‘vulnerability, security, protection, cybersecurity,
assurance, countermeasure, threat,
privacy, authentication, prevention, confidentiality,
trusted, intrusion, compromise, safety, insecure,
defensive, breach, proactive, tampering,
penetration, policy, phishing, vulnerable,
authorization, dependability, or certification’’

‘‘usability, performance, operational, look & feel,
legal, fault & tolerance, maintainability, scalability,
availability, or portability’’
Table 4
Label configurations for the top 4 largest NFR classes (US, SE, O, and PE) for the multi-class and multi-label classification sub-tasks in Task NFR.

Label Abbr. Label configuration List of labels

MultiNFR_A Original label [‘‘usability’’, ‘‘security’’, ‘‘performance’’, ‘‘operational’’]

MultiNFR_B Expert curated [‘‘instructive, easy, helpful, useful, learnable, explainable, affordable, intuitive, or understandable’’,
‘‘security, authorization, or protection’’, ‘‘periodic execution or efficacy performance’’, ‘‘working,
running, connecting, interfacing, or operative environment’’]

MultiNFR_C Word embedding
(selected from top 20 words)

[‘‘accessibility, aesthetic, contextual, experience, satisfaction, HCI, UX, questionnaire, ease, or
ergonomics’’, ‘‘vulnerability, securing. protecting, protection, cybersecurity, assurance, cyber,
countermeasure, threat, privacy, authentication, prevention, or confidentiality’’, ‘‘throughput,
reliability, scalability, responsiveness, efficiency, workload, benchmark, latency, speed, improvement,
or accuracy’’, ‘‘environmental, organizational, coordination, systemic, or logistics’’]

MultiNFR_D Word embedding
(selected from top 50 words)

[‘‘accessibility, aesthetic, contextual, experience, satisfaction, HCI, UX, questionnaire, ease,
ergonomics, designer, evaluate, multimodal, practitioner, prototyping, preference, personalization,
suitability, focus, clarity, responsiveness, judgement, feel, or helpful’’, ‘‘vulnerability, security,
protection, cybersecurity, assurance, countermeasure, threat, privacy, authentication, prevention,
confidentiality, trusted, intrusion, compromise, safety, insecure, defensive, breach, proactive,
tampering, penetration, policy, phishing, vulnerable, authorization, dependability, or certification’’,
‘‘throughput, reliability, scalability, responsiveness, efficiency, workload, benchmark, latency, speed,
improvement, accuracy, achieve, tuning, bottleneck, better, high, optimize, effectiveness, low,
enhances, reducing, increased, quality, faster, or degrades’’, ‘‘environmental, organizational,
coordination, systemic, logistics, coordination, or automation’’]
obtained again with the domain-generic LMs, and using MultiNFR_A
or MultiNFR_B as labels. These are the shortest labels, which do not
use the word embedding strategies. This result is the opposite of what
was observed for binary classification for NFR. We argue therefore
that, in a multi-class classification setting, longer and more informative
labels can lead to some possible overlapping between the represented
meaning of each class. Instead, in a binary classification setting, more
informative labels, i.e., using word embeddings, appear to be more
8

effective.
For the multi-class classification results for all the NFR classes
(Table reported in supplementary material), the performance in terms
of F1 remains acceptable only for SE class (F1 = 0.69), while for the
other classes poor results are obtained.

5.2.4. NFR multi-label classification
Table 8 reports the multi-label classification results for the 4 largest
NFR classes, considering the top-2 labels returned by the classifier.

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

m

Table 5
Binary classification results of the top 4 NFR classes in Task NFR. The best results achieved by a LM on a specific class are in boldface.

NFR class (249) ZSL classifier Total NFR class ‘‘Other’’ class

wP wR wF1 P R F1 P R F1

US (67) Sbert + US_E 0.81 0.82 0.80 0.73 0.49 0.59 0.83 0.93 0.88
SE (66) AllMini + SE_D 0.84 0.84 0.84 0.67 0.73 0.70 0.90 0.87 0.89
O (62) Bert4RE + O_C 0.72 0.73 0.72 0.46 0.37 0.41 0.80 0.86 0.83
PE (54) Sbert + PE_E 0.78 0.78 0.78 0.50 0.46 0.48 0.85 0.87 0.86
PE (54) AllMini + PE_B 0.80 0.70 0.78 0.47 0.63 0.54 0.89 0.81 0.84
Table 6
Best performance results of binary classification of all 10 NFR classes in Task NFR. The results are different with respect to the binary classification using solely four classes because

ore requirements are involved in the classification, thus leading to lower performance.
NFR class (369) ZSL classifier Total NFR class ‘‘Other’’ class

wP wR wF1 P R F1 P R F1

US (67) Sbert + US_E 0.80 0.79 0.80 0.44 0.49 0.46 0.88 0.86 0.87
SE (66) AllMini + SE_D 0.87 0.85 0.85 0.61 0.33 0.43 0.87 0.95 0.91
O (62) Bert4RE + O_C 0.78 0.77 0.77 0.32 0.37 0.35 0.87 0.85 0.86
PE (54) Sbert + PE_E 0.82 0.78 0.80 0.33 0.46 0.38 0.90 0.84 0.87
LF (38) Sbert + LF_D 0.85 0.76 0.80 0.18 0.21 0.20 0.91 0.89 0.90
A (21) SObert + A_D 0.90 0.70 0.78 0.10 0.43 0.14 0.95 0.72 0.82
SC (21) AllMini + SC_E 0.92 0.74 0.81 0.13 0.62 0.21 0.97 0.75 0.85
MN (17) AllMini + MN_E 0.93 0.86 0.89 0.16 0.47 0.24 0.97 0.88 0.92
L (13) AllMini + L_E 0.95 0.84 0.88 0.11 0.54 0.19 0.98 0.85 0.91
FT (10) AllMini + FT_E 0.96 0.86 0.91 0.10 0.50 0.17 0.98 0.88 0.93
Table 7
Multi-class classification results for top 4 NFR classes. Results in boldface indicate the best scores achieved by a LM using a specific labelling configuration; the underlined scores
indicate the overall best performance achieved by each LM.

ZSL classifier US SE O PE

P R F1 P R F1 P R F1 P R F1

Sbert + MultiNFR_A 0.44 0.52 0.48 0.57 0.70 0.63 0.47 0.45 0.46 0.43 0.22 0.29
Sbert + MultiNFR_B 0.73 0.43 0.54 0.69 0.64 0.66 0.53 0.71 0.61 0.48 0.57 0.52
Sbert + MultiNFR_C 0.62 0.31 0.42 0.54 0.62 0.58 0.59 0.21 0.31 0.34 0.74 0.47
Sbert + MultiNFR_D 0.69 0.40 0.51 0.65 0.53 0.58 0.38 0.23 0.47 0.46 0.53 0.58

AllMini + MultiNFR_A 0.67 0.36 0.47 0.66 0.92 0.77 0.33 0.32 0.33 0.45 0.50 0.47
AllMini + MultiNFR_B 0.77 0.36 0.49 0.63 0.94 0.76 0.64 0.64 0.64 0.59 0.70 0.64
AllMini + MultiNFR_C 0.54 0.45 0.49 0.76 0.67 0.71 0.36 0.37 0.37 0.41 0.54 0.47
AllMini + MultiNFR_D 0.34 0.43 0.38 0.88 0.33 0.48 0.25 0.42 0.31 0.47 0.28 0.35

Bert4RE + MultiNFR_A 0.32 0.09 0.14 0.18 0.11 0.13 0.33 0.02 0.03 0.19 0.67 0.30
Bert4RE + MultiNFR_B 0.33 0.60 0.42 0.00 0.00 0.00 0.28 0.53 0.37 0.13 0.02 0.03
Bert4RE + MultiNFR_C 0.33 0.06 0.10 0.18 0.08 0.11 0.24 0.68 0.36 0.25 0.17 0.20
Bert4RE + MultiNFR_D 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.34 0.28 0.25 0.04 0.06

SObert + MultiNFR_A 0.00 0.00 0.00 0.60 0.05 0.08 0.22 0.71 0.33 0.12 0.09 0.10
SObert + MultiNFR_B 0.30 0.81 0.44 0.00 0.00 0.00 0.29 0.16 0.21 0.08 0.06 0.07
SObert + MultiNFR_C 0.31 0.36 0.33 0.24 0.21 0.22 0.31 0.56 0.40 0.00 0.00 0.00
SObert + MultiNFR_D 0.20 0.04 0.07 0.00 0.00 0.00 0.24 0.90 0.38 0.00 0.00 0.00
Table 8
Multi-label classification results for the 4 largest NFR classes from the PROMISE dataset. Results in boldface indicate the best scores achieved by a LM using a specific labelling
configuration; the underlined scores indicate the overall best performance achieved by each LM.

ZSL classifier US SE O PE

P R F1 P R F1 P R F1 P R F1

Sbert + MultiNFR_A 0.60 0.67 0.60 0.74 0.84 0.79 0.72 0.71 0.72 0.68 0.46 0.55
Sbert + MultiNFR_B 0.93 0.60 0.73 0.86 0.77 0.82 0.71 0.92 0.80 0.73 0.91 0.81
Sbert + MultiNFR_C 0.84 0.73 0.78 0.76 0.79 0.78 0.81 0.48 0.60 0.57 0.91 0.70
Sbert + MultiNFR_D 0.92 0.70 0.80 0.83 0.76 0.79 0.62 0.85 0.72 0.81 0.80 0.80

AllMini + MultiNFR_A 0.82 0.60 0.69 0.79 1.00 0.88 0.62 0.58 0.60 0.69 0.74 0.71
AllMini + MultiNFR_B 0.93 0.58 0.72 0.81 0.98 0.89 0.80 0.84 0.82 0.82 0.94 0.88
AllMini + MultiNFR_C 0.63 0.70 0.66 0.94 0.73 0.82 0.63 0.63 0.63 0.64 0.72 0.68
AllMini + MultiNFR_D 0.63 0.88 0.74 0.96 0.74 0.84 0.61 0.58 0.60 0.74 0.63 0.68

Bert4RE + MultiNFR_A 0.84 0.70 0.76 0.39 0.20 0.26 0.96 0.44 0.60 0.32 0.78 0.45
Bert4RE + MultiNFR_B 0.41 0.67 0.51 1.00 0.08 0.14 0.45 0.87 0.60 0.93 0.24 0.38
Bert4RE + MultiNFR_C 0.98 0.76 0.86 0.28 0.11 0.15 0.30 0.73 0.45 0.53 0.31 0.40
Bert4RE + MultiNFR_D 1.00 0.12 0.21 0.00 0.00 0.00 0.31 0.95 0.47 0.90 0.87 0.89

SObert + MultiNFR_A 0.00 0.00 0.00 1.00 0.44 0.61 0.36 0.98 0.53 0.57 0.54 0.55
SObert + MultiNFR_B 0.39 0.85 0.54 1.00 0.05 0.09 0.75 0.92 0.83 0.29 0.13 0.18
SObert + MultiNFR_C 0.71 0.10 0.83 0.46 0.38 0.42 0.43 0.66 0.52 1.00 0.09 0.17
SObert + MultiNFR_E 0.89 1.00 0.94 0.00 0.00 0.00 0.34 0.92 0.49 1.00 0.06 0.11
9

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

r
t
w

p
t
i
w
t
r

f
c
t
r
O
a

5

5

g
t
o
2
a

5

c
m
w
r
w
n
t
r
t

c
N
i
=
b
s

Table 9
Label configurations for Task Security.

Label Abbr. Label configuration Security Non-Security

Sec_A Original label ‘‘Security’’ ‘‘not about security’’
Sec_B Expert curated ‘‘Security, authorization, or protection’’ ‘‘not about security, authorization, or protection’’

Sec_C Word embedding
(selected from top 20 words)

‘‘vulnerability, securing. protecting, protection,
cybersecurity, assurance, cyber, countermeasure,
threat, privacy, authentication, prevention, or
confidentiality’’

‘‘not about vulnerability, securing. protecting, protection,
cybersecurity, assurance, cyber, countermeasure, threat, privacy,
authentication, prevention, or confidentiality’’

Sec_D Word embedding
(selected from top 50 words)

‘‘vulnerability, security, protection, cybersecurity,
assurance, countermeasure, threat, privacy,
authentication, prevention, confidentiality, trusted,
intrusion, compromise, safety, insecure, defensive,
breach, proactive, tampering, penetration, policy,
phishing, vulnerable, authorization, dependability,
or certification’’

‘‘not about vulnerability, security, protection, cybersecurity,
assurance, countermeasure, threat, privacy, authentication,
prevention, confidentiality, trusted, intrusion, compromise,
safety, insecure, defensive, breach, proactive, tampering,
penetration, policy, phishing, vulnerable, authorization,
dependability, or certification’’
In other terms, when the right label is returned by the classifier in
the top-2 labels, we consider it a true positive. We see that in this
case the performance substantially increases with respect to the multi-
class classification case in Table 7, e.g., reaching 𝐹1 = 0.94 for US
equirements, 0.89 for SE, 0.83 for O, and 0.89 for PE. This suggests
hat the multi-label classification strategy may be the most effective
hen dealing with NFR classification.

Looking at the results based on the LMs, we do not have a clear
attern, and each LM appears to be suitable for a certain requirement
ype. Concerning labels, simple configurations as MultiNFR_A and Mult-
NFR_B appears to be the most effective for all classes, except US, for
hich the embedding-based labels are more effective. This could be due

o a better, and more clear-cut characterization of US requirements with
espect to other types.

Performance is similar in case of the multi-label classification results
or all the NFR classes (Table reported in supplementary material),
onsidering the top-3 results — i.e., if the right label is returned among
he top-3 labels, we consider it a true positive. The performance remain
ather high, frequently with F1 above 0.90 for the best configurations.
verall, we can say that ZSL in the multi-label classification context
ppears to be effective also in case of NFRs belonging to many classes.

.3. Task security

.3.1. Security label configuration
The labelling of the security class (Table 9) is similar to the labels

roups related to security as an NFR class in the binary classification
ask (cf. 5.2.1). The agreement results obtained for the word-embedding
f the term ‘‘security’’ are the following: 50% perfect, 48% partial, and
% disagreement. For IRR we obtained 0.46 as Krippendorff’s alpha
nd a Fleiss’ kappa score of 0.45, indicating a moderate agreement.

.3.2. Security binary classification
Table 10, column Total, reports the results for the Security task,

onsidering all the requirements in the three datasets. The best perfor-
ance is achieved by AllMini + Sec_B, with a wF1 score of 0.66, with
P = 0.68 and wR = 0.65. The generic LM, AllMini, thus achieves best

esults. On the other hand, the other generic model, Sbert, achieves the
orst results (wF1 = 0.31), thus suggesting that generic models are not
ecessarily better for this specific task. The best set of labels, Sec_B, is
he expert’s curated one, which includes a limited set of three security-
elated words. This suggests that a limited number of well-selected
erms is sufficient to identify security requirements in this dataset.

Table 10, last six columns, shows the performance for the two
lasses. We see that better performance in terms of F1 is achieved for
on-Security requirements (F1 = 0.70 vs. 0.58), using AllMini + Sec_B,

.e., the best configuration. Looking in more detail, the best recall (R
0.92) is obtained by Sbert + Sec_D. Therefore, if one seeks for a

etter ability to identify security requirements, i.e., high recall on this
et, this configuration – though having the worst overall performance
10
Table 10
Binary classification results for Task Security. All the requirements are considered
together in one single SeqReq dataset.

ZSL classifier Total Security (187) Non-Security (323)

wP wR wF1 P R F1 P R F1

Sbert + Sec_C 0.58 0.41 0.31 0.37 0.92 0.53 0.70 0.11 0.19
AllMini + Sec_B 0.68 0.65 0.68 0.52 0.67 0.58 0.77 0.63 0.70
Bert4RE + Sec_A 0.52 0.53 0.52 0.34 0.30 0.32 0.62 0.66 0.64
SObert + Sec_C 0.56 0.54 0.55 0.39 0.51 0.45 0.66 0.55 0.60

Table 11
Binary classification results for Task Security. The results are obtained from each of the
three projects in SecReq — CPN, GPS and ePurse.

ZSL classifier wP wR wF1

CPN

Sbert + Sec_C 0.85 0.30 0.25
AllMini + Sec_B 0.79 0.77 0.78
Bert4RE + Sec_B 0.65 0.80 0.72
SObert + Sec_A 0.65 0.80 0.72
SObert + Sec_B 0.65 0.80 0.72

GPS

Sbert + Sec_D 0.67 0.40 0.30
AllMini + Sec_B 0.62 0.61 0.61
Bert4RE + Sec_C 0.59 0.53 0.54
SObert + Sec_C 0.63 0.63 0.63

ePurse

Sbert + Sec_D 0.59 0.64 0.60
AllMini + Sec_A 0.69 0.70 0.69
Bert4RE + Sec_A 0.67 0.44 0.40
SObert + Sec_D 0.66 0.69 0.62

– should be preferred. This is an important observation, since for many
requirement tasks, including this one, high recall is more important
than high precision, as remarked by Berry [71] — if one searches for
security requirements, then one wants as less false negatives as possible.

Table 11 reports the results for the Security task, divided by each
dataset included in SecReq. Best results are achieved for CPN (wF1 =
0.78), while worst results are for GPS (wF1 = 0.63). This could be due
to the specific characteristics of the datasets. In some cases, security
and non-security requirements in GPS are expressed with very similar
sentences and are likely to be classified similarly though they belong
to different classes (e.g., class Security: The Load File Data Block Hash
is used in the computation of the Load File Data Block Signature vs. Non-
Security: The Load File Data Block Hash is used in the computation of The
Load Token).

6. Research findings

Based on the above detailed analysis of the experimental results, in
this section we answer our three RQs one by one. Additionally, we also
offer some general observations based on our experiments.

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

a
s
f
r
m

6

6.1. Best language model (RQ1)

• For Task FR/NFR, the best overall performance is obtained with
Sbert, which has achieved a wF1 score of 0.66 (with wP = 0.71
and wR = 0.66). This indicates that the generic Sbert model, al-
though designed to provide a semantic representation for generic
sentences, substantially outperforms the other LMs (including two
domain-specific LMs) for this task.

• For Task NFR, the performance of LMs in each sub-task are as
follows:

– For binary classification of NFR, the generic AllMini model
outperforms the other three LMs, particularly on the SE
class.

– For multi-class classification of NFR, in the majority of the
cases, the best results are obtained by the generic LMs (Sbert
and AllMini).

– For multi-label classification of NFR, there is no clear win-
ner as each LM appears to be suitable for a certain require-
ment class.

• For Task Security, the best overall performer is the generic AllMini
model; on the other hand, the generic Sbert model achieves the
worst results (wF1 = 0.31). This suggests that generic models are
not necessarily better for this specific task and a careful selection
of the best LM is key to the success of ZSL.

Based on the above findings, we can state that:

In the majority of the cases, generic LMs perform better than
domain-specific LMs on requirements classification tasks. When
applying ZSL in practice one does not need to define domain- or
project-specific LMs and can rely on larger ones that are freely
available.

Our findings thus contrast the claims that generic LMs do not
perform particularly well on domain-specific tasks, as they cannot
recognize highly domain-specific vocabulary [10,59,72–74].

Based on our experimental results we can conclude that generic LMs,
being trained on generic data, are more generalizable and adaptable – the
actual sense of being generic; by contrast, domain-specific LMs, being
trained on domain-specific data, are less generalizable and adaptable, – the
ctual sense of being specific. Future developments of LMs, we posit,
hould not differentiate between generic vs. specific, but rather, should
ocus on continual learning on new tasks and new data [53]. As LMs
etain and accumulate knowledge across many tasks, they will become
ore adaptable to new tasks, domain-specific or otherwise.

.2. Best label configuration (RQ2)

• For the Task FR/NFR, the best label configuration is FR_E for
Sbert. This configuration is composed of the Expert Curated and
the Original labels, which identify the NFRs using the names
of the NFR classes (Usability, Security, Availability, etc.). The
result shows that expert knowledge of NFR characteristics plays
an important role on label configuration for this task.

• For Task NFR, we show the performance of label configurations
for each sub-task as follows:

– For binary classification of NFR, the best label configuration
is SE_D for AllMini, which uses the word embedding with
top-20 words for the SE class, and the original NFR labels
for the ‘‘Other’’ class.

– For multi-class classification of NFR, in the majority of
the cases, the best label configurations for individual NFR
classes are MultiNFR_A (Original label) and MultiNFR_B (Ex-
pert curated label) for Sbert and AllMini.
11
– For multi-label classification of NFR, simple label configura-
tions based on either original label (MultiNFR_A) and expert
curated label (MultiNFR_B) appear to be most effective for
all classes, except US, for which the embedding-based labels
(MultiNFR_D and MultiNFR_E) are more effective.

• For Task Security, the best label configuration is Sec_B, curated
by expert. Although this label only contains three security-related
words, it has shown to be effective in identifying security require-
ments.

Based on the above findings, we can conclude that:

Label selection has a relevant impact on the performance of
ZSL classification. In general, simple label configurations with the
original class names or with a combination of original and expert-
curated labels appear to be more effective than more complex
word-embedding generated labels.

The above conclusion implies that, when applying ZSL in
practice, for a given requirements classification scheme, domain
experts can manually select their own labels for the classes, with-
out using word embeddings. Furthermore, they can also consider
project-specific terms that can better distinguish between classes.
Preliminary trials to select the best configuration for the problem
at hand are also recommended.

An exception is the binary classification of NFRs, where word-
embeddings enable better performance. In these cases, more com-
plex label configurations based on word embeddings should be
preferred.

Selecting the most effective label configuration is a difficult task
and requires testing many different labels by trial and error. Our
study shows how we have handcrafted each label using one of the
aforementioned three strategies. However, more work is needed in
search for a more systematic approach to label configuration. We argue
that expert knowledge of RE, both domain-specific and possibly project-
specific, plays an important part in choosing the correct terms for the
labels.

6.3. Effectiveness of ZSL for RE (RQ3)

Here we address the effectiveness of ZSL by first comparing our
best ZSL results to the state-of-the-art results achieved by Kurtanovic̀
and Maalej (K&M) [8], Hey et al. (NoRBERT) [9] and Knauss et al.
(Knauss) [34], with respect to the same classification tasks (i.e., binary
and multi-class classification). Second, we discuss our best ZSL results
obtained from multi-label classification with state-of-the-art results and
provide our insight into ZSL classification.

• Binary Classification of FR vs. NFR: Table 12 shows that both K&M
and NoRBERT outperform all our ZSL classifiers. In particular, on
FR, K&M produces the best results with a SVM model that applies
all the word features in the PROMISE dataset (i.e., without feature
selection), achieving F1 = 0.93. On NFR, NoRBERT produces
the best results with the fine-tuned BERTlarge model, with F1 =
0.93. By contrast, the best ZSL classifier (with Sbert LM) has only
managed to achieve F1 = 0.66 on FR and F1 = 0.65 on NFR. On
average, the performance of the best ZSL classifier is 0.27 lower
than that of K&M and NoRBERT. Clearly, these results show that
the ZSL approach is (much) less effective than K&M and NoRBERT

with respect to this particular task.

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

t

Table 12
Binary classification results obtained from Task FR/NFR compared to the results
obtained by K&M [8] and NoRBERT [9].

Approach (model, train/test) FR (255) NFR (370) wF1

P R F1 P R F1

K&M (word features, 10-fold) 0.92 0.93 0.93 0.93 0.92 0.92 0.92
K&M (best 100 features, 10-fold) 0.86 0.51 0.63 0.65 0.92 0.76 0.71
K&M (best 500 features, 10-fold) 0.92 0.79 0.85 0.82 0.93 0.87 0.86

NoRBERT (base+ep.16a, 10-fold) 0.89 0.88 0.89 0.92 0.93 0.92 0.91
NoRBERT (large+ep.10+OS, 10-fold) 0.92 0.88 0.90 0.92 0.95 0.93 0.92

ZSL(Sbert + FR_E, all) 0.55 0.82 0.66 0.82 0.54 0.65 0.65
ZSL(AllMini + FR_D, all) 0.50 0.71 0.58 0.72 0.50 0.59 0.59
ZSL(Bert4RE + FR_D, all) 0.47 0.65 0.54 0.67 0.50 0.57 0.56
ZSL(SObert + FR_C, all) 0.50 0.41 0.45 0.64 0.72 0.68 0.59

aep. refers to the number of passes of the training dataset during LM learning process.

• Binary Classification of NFRs: Table 13 shows that overall, both
K&M and NoRBERT outperform our best ZSL classifier, with wF1
= 0.83 achieved by their best model; on the other hand, the
performance of our best classifier (ZSL with Sbert) is 0.10 points
worse, with wF1 = 0.73. By examining the results obtained for
each class, on US, our ZSL classifier (with Sbert) performs slightly
worse than K&M, but outperforms NoRBERT. On SE, although
both K&M and NoRBERT outperform our best ZSL classifier (with
AllMini), the difference is not large. A similar observation can be
made to classes Operational (O) and Performance (PE).

• Multi-class Classification of NFRs: For this task, we notice in Ta-
ble 13 large gaps exist between the results of K&M and NoRBERT
and our results on every class. As the purpose of this task is
basically the same as the binary classification of NFR task, the
inconsistent results achieved by ZSL in these two tasks indicate
that when a requirement belongs to many classes, ZSL does not
appear to be sufficiently effective.

• Binary Classification of Security vs. Non-Security Requirements:
Table 14 reveals interesting results. When treating all the security
requirements as a whole (i.e., without separating them into
different projects), Knauss outperforms the best ZSL classifier by
0.18 points on wF1. However, when the requirements are divided
into three projects (i.e., CPN, GPS and ePurse), ZSL outperforms
Knauss on all individual projects. In particular, ZSL (AllMini +
Sec_B) achieved a high wF1 = 0.78, compared to Knauss’s wF1 =
0.40 on CPN. This again seems to suggest that ZSL performs well
with binary classification of security requirements when opposite
labels are clearly defined.

Based on the above findings, we can conclude that:

Unsupervised learning with ZSL achieves acceptable perfor-
mance for binary and multi-class classification tasks. However, it
does not outperform supervised classification models, as RE tasks
are narrowly defined, and often require well-trained, specifically
fine-tuned models on specifically labelled dataset. Nevertheless,
without training or fine-tuning, ZSL is more flexible, open to
less data-rich tasks, and easily adaptable to the evolution of
classification schemes.

When using ZSL in practice, a company can choose its re-
quirements classification scheme. This will also entail selection
of new labels. Given its lower performance in comparison with
supervised methods, ZSL is recommended for contexts with large
sets of non mission-critical requirements, where misclassification
can be tolerated.

In relation to multi-label classification, the following results are
obtained: From Table 8, concerning the 4 largest NFR classes, best
12
performance for each class are F1 ∼ 0.83 − 0.94, which are comparable
with the average results of NoRBERT (large + ep.32) for multi-class
classification (average F1 = 0.84, cf. Table 13), and are higher than
hose of K&M.

To achieve state-of-the-art performance of ZSL for multi-class
classification, a multi-label strategy is recommended. In practice,
this implies that a semi-automated classification approach should
be followed, in which a human operator is asked to select the
most suitable class among the top ones returned by the ZSL
classifier.

7. Threats to validity

Construct validity. The first threat in our study is the adopted concept
of FR and NFRs. This is an artificial distinction [18], as NFRs are often
referred to as qualities [20], and their classification is often non-binary,
i.e., a multi-label classification. However, FR/NFR is a traditional dis-
tinction, still common in industrial practice and research. Furthermore,
using ZSL for a multi-label binary case would introduce the need for
threshold values in the classification (i.e., when both classes have a cor-
relation score above a certain threshold, then classify the requirement
as both FR and NFR). For this reason, we excluded the binary, multi-
label variant of the PROMISE dataset annotated by Dalpiaz et al. [16]
from our evaluation. Therefore, the presented approach does not apply
to cases in which a requirement can be considered to be both FR and
NFR. For security vs non-security requirements, the same observations
as for FR/NFR hold. Finally, the adopted metrics for evaluation (pre-
cision, recall, weighted F1, accuracy) are those typically used for ML
systems, so we do not foresee any major construct validity issue in this
aspect.

Internal validity. As our experiments deal with software subjects, which
require only limited human intervention, this ensures minimal bias. In
the evaluation, we have used established and widely used annotated
datasets from the literature. The only internal validity threats are
somewhat inherited from the labelling performed by previous work.
While the accuracy of the labelling of the PROMISE dataset has been
questioned by previous work [9,16], the dataset represents a classical
benchmark, which can be used to compare our results with previous
proposals. Concerning internal threats due to implementation issues,
we have adopted widely used LMs. These models have been tested
in other environments, thus increasing confidence in their reliability.
Concerning the implementation of the ZSL approach, we have used the
Transformers package in Python to retrieve the LMs from HuggingFace
hub and to apply encoding for the labels and requirements represen-
tations. This package is also widely used, and we have made our code
available for inspection in a Google Colab Notebook, so that the results
can be replicated. Another possible threat is related to expert-curated
labels. To mitigate bias in label selection, we followed a procedure of
independent selection, followed by majority voting, and we reported
the obtained agreements, which was moderated in all the cases.

External validity. Our results apply to requirements classification cases
that are similar to the task considered in the paper. Different results
may be observed, e.g., for the classification of requirements vs. non-
requirements, and the extraction of relevant content from app reviews.
A main threat to external validity is due to the PROMISE dataset,
as the requirements in the dataset were largely written and labelled
by students, and this may not be representative of industrial require-
ments [8,9]. We agree that the quality of the dataset can affect the
performance of the LMs used in our evaluation. However, the PROMISE
dataset has been widely used in the RE community, as a de facto
benchmark for requirements classification, and using this dataset for
research evaluation will allow RE researchers to compare their results
with ours. We also make our code and data publicly available so that
further replication or reproduction of our approach can be carried out.
We also recognize that the lack of labelled requirements datasets has

been an open challenge to using ML approaches for RE tasks [6].

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

s
w
o

Table 13
Binary and multi-class classification results obtained from Task NFR compared to the results obtained by K&M and NoRBERT. Only top 4 NFR classes are considered.

Approach (parameters) US (67) SE (66) O (62) PE (54) wF1

P R F1 P R F1 P R F1 P R F1

NFR binary classification

10-fold cross val. on Top-4 NFR (249)

K&M(w/o features selection) 0.81 0.85 0.82 0.91 0.90 0.88 0.72 0.75 0.73 0.93 0.90 0.90 0.83
K&M (best 50 features) 0.70 0.57 0.61 0.81 0.77 0.74 0.78 0.50 0.57 0.87 0.57 0.67 0.65
K&M (best 500 features) 0.80 0.71 0.74 0.74 0.81 0.74 0.72 0.73 0.71 0.87 0.81 0.82 0.75
NoRBERT(base + ep.10) 0.81 0.69 0.74 0.93 0.82 0.87 0.80 0.53 0.64 0.88 0.80 0.83 0.77
NoRBERT(base + ep.10 - OSa) 0.78 0.70 0.74 0.90 0.86 0.88 0.88 0.71 0.79 0.88 0.80 0.83 0.81
NoRBERT(large+OS+ESb) 0.89 0.70 0.78 0.89 0.89 0.89 0.90 0.71 0.79 0.88 0.81 0.85 0.83

Test Top-4 NFR (249) w/o training

ZSL(Sbert + (NFR)_D) 0.77 0.78 0.78 0.72 0.71 0.72 0.68 0.72 0.70 0.80 0.67 0.70 0.72
ZSL(Sbert + (NFR)_E) 0.81 0.82 0.80 0.76 0.78 0.75 0.68 0.63 0.65 0.78 0.78 0.78 0.74
ZSL(AllMini + (NFR)_B) 0.54 0.35 0.35 0.73 0.73 0.73 0.71 0.65 0.67 0.80 0.70 0.78 0.62
ZSL(AllMini + (NFR)_D) 0.75 0.75 0.75 0.84 0.84 0.84 0.65 0.55 0.58 0.81 0.69 0.71 0.72
ZSL(BERT4RE + (NFR)_C) 0.52 0.43 0.46 0.62 0.65 0.63 0.72 0.73 0.72 0.68 0.41 0.43 0.56
ZSL(BERT4RE + (NFR)_D) 0.54 0.42 0.45 0.56 0.70 0.61 0.63 0.41 0.42 0.60 0.46 0.51 0.50
ZSL(SObert + (NFR)_B) 0.55 0.51 0.53 0.81 0.74 0.63 0.65 0.73 0.67 0.61 0.78 0.68 0.62
ZSL(SObert + (NFR)_C) 0.51 0.32 0.30 0.66 0.53 0.56 0.71 0.74 0.71 0.61 0.55 0.58 0.53

NFR Multi-class classification

10-fold cross val. on Top-4 NFR (249)

K&M(word features) 0.65 0.82 0.70 0.81 0.77 0.75 0.81 0.86 0.82 0.86 0.81 0.80 0.76
K&M(best 50 features) 0.49 0.68 0.55 0.60 0.50 0.39 0.42 0.47 0.33 0.85 0.53 0.63 0.47
K&M(best 500 features) 0.70 0.66 0.64 0.64 0.53 0.56 0.47 0.62 0.51 0.81 0.74 0.76 0.61
NoRBERT(base+ep.32) 0.78 0.84 0.81 0.89 0.85 0.87 0.79 0.73 0.76 0.88 0.78 0.82 0.82
NoRBERT(large+ep.32) 0.86 0.82 0.84 0.91 0.91 0.91 0.83 0.71 0.77 0.90 0.81 0.85 0.84

Test Top-4 NFR (249) w/o training

ZSL(Sbert + MultiNFR_B) 0.73 0.43 0.54 0.69 0.64 0.66 0.53 0.71 0.61 0.48 0.57 0.52 0.58
ZSL(Sbert + MultiNFR_D) 0.69 0.40 0.51 0.65 0.53 0.58 0.38 0.23 0.47 0.46 0.53 0.58 0.53
ZSL(AllMini + MultiNFR_A) 0.67 0.36 0.47 0.66 0.92 0.77 0.33 0.32 0.33 0.45 0.50 0.47 0.51
ZSL(AllMini + MultiNFR_B) 0.77 0.36 0.49 0.63 0.94 0.76 0.64 0.64 0.64 0.59 0.70 0.64 0.63
ZSL(AllMini + MultiNFR_C) 0.54 0.45 0.49 0.76 0.67 0.71 0.36 0.37 0.37 0.41 0.54 0.47 0.51
ZSL(BERT4RE + MultiNFR_A) 0.32 0.09 0.14 0.18 0.11 0.13 0.33 0.02 0.03 0.19 0.67 0.30 0.14
ZSL(BERT4RE + MultiNFR_B) 0.33 0.60 0.42 0.00 0.00 0.00 0.28 0.53 0.37 0.13 0.02 0.03 0.21
ZSL(BERT4RE + MultiNFR_D) 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.34 0.38 0.25 0.04 0.06 0.11
ZSL(SObert + MultiNFR_A) 0.00 0.00 0.00 0.60 0.05 0.08 0.22 0.71 0.33 0.12 0.09 0.10 0.13
ZSL(SObert + MultiNFR_B) 0.30 0.81 0.44 0.00 0.00 0.00 0.29 0.16 0.21 0.08 0.06 0.07 0.19
ZSL(SObert + MultiNFR_C) 0.31 0.36 0.33 0.24 0.21 0.22 0.31 0.56 0.40 0.00 0.00 0.00 0.25

aOS refers to Oversampling technique for randomly selecting data from the minority class by adding them to the training dataset Sampling.
bES refers Early Stopping, a feature that enables the model training to be automatically stopped when a selected metric (e.g., F1) has stopped improving.
Table 14
Comparison between the classification results obtained by Knauss et al. [34] and Task Security divided by the subset of SeqReq dataset: CPN,
GPS, and ePurse. Bold values indicate the best performance results. Underlined values refer to the best performance rates with the ZSL classifier.

Approach (parameters) wP wR wF1

SeqReq (510)

10-fold cross val. on SeqReq (510) Knauss et al. (Bayesian classifier) 0.79 0.91 0.84

Test SeqReq (510) w/o training

ZSL(Sbert + Labels_Sec_C) 0.58 0.41 0.31
ZSL(AllMini + Labels_Sec_B) 0.68 0.65 0.66
ZSL(BERT4RE + Labels_Sec_A) 0.52 0.53 0.52
ZSL(SObert + Labels_Sec_C) 0.56 0.54 0.55

CPN (210)

Train on ePurse (124) Knauss et al. (Bayesian classifier) 0.23 0.54 0.33
Train on GPS (176) Knauss et al. (Bayesian classifier) 0.29 0.65 0.40
Train on ePurse + GPS (300) Knauss et al. (Bayesian classifier) 0.26 0.85 0.40
Test CPN (210) w/o training ZSL(AllMini + Labels_Sec_B) 0.79 0.77 0.78

GPS (176)

Train on ePurse (124) Knauss et al. (Bayesian classifier) 0.43 0.85 0.57
Train on CPN (210) Knauss et al. (Bayesian classifier) 0.29 0.19 0.23
Train on ePurse + CPN (334) Knauss et al. (Bayesian classifier) 0.51 0.56 0.53
Test GPS (176) w/o training ZSL(SObert + Labels_Sec_C) 0.63 0.63 0.63

ePurse (124)

Train on CPN (210) Knauss et al. (Bayesian classifier) 0.99 0.33 0.47
Train on GPS (176) Knauss et al. (Bayesian classifier) 0.72 0.48 0.58
Train on ePurse + CPN (386) Knauss et al. (Bayesian classifier) 0.84 0.31 0.46
Test ePurse (124) w/o training ZSL(AllMini + Labels_Sec_A) 0.64 0.70 0.69
Conclusion validity. To reduce the threat to our conclusion, we used
tatistical significance tests to compare the variance of the means
ithin the ZSL classifiers to assess if the systems have the same effect
13

r not. We used one-way Analysis of Variance (ANOVA) with repeated c
measures, and verified the results with another non-parametric signifi-
cance test, the Friedman Test. From all the variance testing results, all
the ZSL classifiers in all tasks are statistically significant for 𝛼 = 0.05,

onfirming that the ZSL performance results are not due to chance. All

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.

8

w
c

Z

the statistical analysis tests are reported in the online supplementary
materials.17

. Conclusion

This paper reports on an extensive study of using the contextual
ord embedding-based zero-shot learning approach for requirements

lassification. The study tested this approach using 4 LMs (2 generic
and 2 domain-specific), 3 groups of requirements classification tasks
(Task FR/NFR, Task NFR, Task Security, and their subtasks), 19 label
configurations, and 2 datasets with a total of 1020 requirements. More
than 360 experiments were conducted, each based on a combination
of a specific LM, a specific task, a specific label configuration, and a
specific dataset. The study found:

• Generic LMs perform better than domain-specific LMs under the
ZSL approach.

• Simple label selection strategies, i.e., using original labels and ex-
pert curated labels, outperform complex strategies such as word-
embedding generated labels.

The study also found that in comparison with three previously re-
ported supervised learning approaches for requirements classification,
the performance results achieved by the best ZSL classifiers (i.e., the
best combinations of the LMs and label configurations) are still lower.
However, the ZSL approach is fully unsupervised that does not require
any labelled dataset or training. This approach therefore has the great
potential to address the problem of labelled data shortages in RE and
SE.

Another advantage of the ZSL approach is that it is inherently
flexible. Unlike supervised approaches that require a set of fixed classes
preassigned to the dataset, the ZSL approach can classify requirements
into any unseen new classes directed by the given labels. Consequently,
the ZSL approach is suitable for requirements classification tasks facing
changing classification schemes. As classification schemes change, all is
required is for the ZSL approach to adopt a new set of labels, which can
be defined easily, as our study shows.

Future work will consider the following directions: (1) assess ZSL for
the classification of app reviews, using existing datasets made available
by previous studies (cf., Dabrowski for a complete list [13]); (2) explore
other RE tasks to frame them as classification problems suitable for
ZSL; (3) replicate current experiments with the entailment-based ZSL
approach, to explore whether better performance can be achieved; (4)
consider the few-shot learning approach i.e., by only using a handful
of labelled examples to train the classifier, and assess to what extent
the shortcomings of ZSL can be addressed by including a limited set
of labelled examples; (5) evaluate the effects of different label sizes
(i.e., the number of words) on the performance of ZSL.

Replication

We shared our experimentation settings including Colab notebook
and the results we obtained from all the ZSL classifiers at https://
github.com/waadalhoshan/ZSL4REQ.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2023.107202.

17 https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_
SL4RE_results.ipynb.
14
Data availability

Data will be made available on request.

Acknowledgements

We wish to thank the reviewers for their valuable comments and
suggestions, for their support and interest in this paper. We thank
the Guest Editors of this special issue, Vincenzo Gervasi and Andreas
Vogelsang, for their great support and interest in our paper. Liping
Zhao and Waad Alhoshan extend their appreciation to the Deanship
of Scientific Research at IMSIU for funding and supporting this work
through Research Partnership Program no. RP-21-07-03.

References

[1] L. Zhao, W. Alhoshan, A. Ferrari, K.J. Letsholo, M.A. Ajagbe, E.-V. Chioasca,
R.T. Batista-Navarro, Natural language processing for requirements engineering:
A systematic mapping study, CSUR 54 (3) (2021) 1–41.

[2] M. Kassab, C. Neill, P. Laplante, State of practice in requirements engineering:
contemporary data, Innov. Syst. Softw. Eng. 10 (4) (2014) 235–241.

[3] J.A. Sidey-Gibbons, C.J. Sidey-Gibbons, Machine learning in medicine: a practical
introduction, BMC Med. Res. Methodol. 19 (1) (2019) 1–18.

[4] I.H. Sarker, Machine learning: Algorithms, real-world applications and research
directions, SN Comput. Sci. 2 (3) (2021) 1–21.

[5] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, J. Gao, Deep
learning–based text classification: a comprehensive review, CSUR 54 (3) (2021)
1–40.

[6] M. Binkhonain, L. Zhao, A review of machine learning algorithms for identifi-
cation and classification of non-functional requirements, Expert Syst. Appl.: X 1
(2019) 100001.

[7] J. Cleland-Huang, R. Settimi, X. Zou, P. Solc, Automated classification of
non-functional requirements, REJ 12 (2) (2007) 103–120.

[8] Z. Kurtanović, W. Maalej, Automatically classifying functional and non-functional
requirements using supervised machine learning, in: RE’17, Ieee, 2017, pp.
490–495.

[9] T. Hey, J. Keim, A. Koziolek, W.F. Tichy, NoRBERT: Transfer learning for
requirements classification, in: RE’20, IEEE, 2020, pp. 169–179.

[10] A. Sainani, P.R. Anish, V. Joshi, S. Ghaisas, Extracting and classifying re-
quirements from software engineering contracts, in: RE’20, IEEE, 2020, pp.
147–157.

[11] S. Abualhaija, C. Arora, M. Sabetzadeh, L.C. Briand, M. Traynor, Automated
demarcation of requirements in textual specifications: a machine learning-based
approach, Empir. Softw. Eng. 25 (6) (2020) 5454–5497.

[12] A. Ferrari, F. Dell’Orletta, A. Esuli, V. Gervasi, S. Gnesi, Natural language
requirements processing: A 4D vision, IEEE Softw. 34 (6) (2017) 28–35.

[13] J. Dkabrowski, E. Letier, A. Perini, A. Susi, Analysing app reviews for software
engineering: a systematic literature review, Empir. Softw. Eng. 27 (2) (2022)
1–63.

[14] W. Maalej, Z. Kurtanović, H. Nabil, C. Stanik, On the automatic classification of
app reviews, REJ 21 (3) (2016) 311–331.

[15] W. Wang, V.W. Zheng, H. Yu, C. Miao, A survey of zero-shot learning: Settings,
methods, and applications, ACM TIST 10 (2) (2019) 1–37.

[16] F. Dalpiaz, D. Dell’Anna, F.B. Aydemir, S. Çevikol, Requirements classification
with interpretable machine learning and dependency parsing, in: RE’19, IEEE,
2019, pp. 142–152.

[17] M. Glinz, On non-functional requirements, in: RE’07, IEEE, 2007, pp. 21–26.
[18] J. Eckhardt, A. Vogelsang, D.M. Fernández, Are "non-functional" requirements re-

ally non-functional? an investigation of non-functional requirements in practice,
in: ICSE’16, 2016, pp. 832–842.

[19] J. Cleland-Huang, S. Mazrouee, H. Liguo, D. Port, NFR, 2007, http://dx.doi.org/
10.5281/zenodo.268542.

[20] I. 29148:2018(E), ISO/IEC/IEEE International Standard - Systems and software
engineering – Life cycle processes – Requirements engineering, 2018, pp. 1–104,
http://dx.doi.org/10.1109/IEEESTD.2018.8559686.

[21] S.J. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. Knowl. Data Eng.
22 (10) (2009) 1345–1359.

[22] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A
comprehensive survey on transfer learning, Proc. IEEE 109 (1) (2020) 43–76.

[23] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidi-
rectional transformers for language understanding, in: J. Burstein, C. Doran, T.
Solorio (Eds.), NAACL-HLT’19, ACL, 2019, pp. 4171–4186.

[24] H. Larochelle, D. Erhan, Y. Bengio, Zero-data learning of new tasks, in: AAAI’08,
2008, pp. 646–651.

[25] C.H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object classes
by between-class attribute transfer, in: CVPR’09, IEEE, 2009, pp. 951–958.

https://github.com/waadalhoshan/ZSL4REQ
https://github.com/waadalhoshan/ZSL4REQ
https://github.com/waadalhoshan/ZSL4REQ
https://doi.org/10.1016/j.infsof.2023.107202
https://doi.org/10.1016/j.infsof.2023.107202
https://doi.org/10.1016/j.infsof.2023.107202
https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_ZSL4RE_results.ipynb
https://github.com/waadalhoshan/ZSL4REQ/blob/main/StatAnalysis_ZSL4RE_results.ipynb
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb1
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb2
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb3
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb4
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb5
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb6
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb7
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb8
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb9
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb10
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb11
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb12
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb13
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb14
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb15
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb16
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb17
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb18
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb18
http://dx.doi.org/10.5281/zenodo.268542
http://dx.doi.org/10.5281/zenodo.268542
http://dx.doi.org/10.5281/zenodo.268542
http://dx.doi.org/10.1109/IEEESTD.2018.8559686
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb21
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb22
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb23
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb24
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb25
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb25

Information and Software Technology 159 (2023) 107202W. Alhoshan et al.
[26] W. Alhoshan, L. Zhao, A. Ferrari, K.J. Letsholo, A zero-shot learning approach
to classifying requirements: A preliminary study, in: REFSQ’22, Springer, 2022,
pp. 52–59.

[27] E. Knauss, S.H. Houmb, S. Islam, J. Jürjens, K. Schneider, SecReq, 2021, http:
//dx.doi.org/10.5281/zenodo.4530183.

[28] F.-L. Li, J. Horkoff, J. Mylopoulos, R.S. Guizzardi, G. Guizzardi, A. Borgida, L.
Liu, Non-functional requirements as qualities, with a spice of ontology, in: RE’14,
IEEE, 2014, pp. 293–302.

[29] M. Broy, Rethinking nonfunctional software requirements, Computer 48 (05)
(2015) 96–99.

[30] A. Casamayor, D. Godoy, M. Campo, Identification of non-functional require-
ments in textual specifications: A semi-supervised learning approach, IST 52 (4)
(2010) 436–445.

[31] R. Navarro-Almanza, R. Juarez-Ramirez, G. Licea, Towards supporting software
engineering using deep learning: A case of software requirements classification,
in: CONISOFT’17), IEEE, 2017, pp. 116–120.

[32] A. Dekhtyar, V. Fong, RE data challenge: Requirements identification with
word2vec and tensorflow, in: RE’17, IEEE, 2017, pp. 484–489.

[33] O. AlDhafer, I. Ahmad, S. Mahmood, An end-to-end deep learning system for
requirements classification using recurrent neural networks, IST 147 (2022)
106877.

[34] E. Knauss, S. Houmb, K. Schneider, S. Islam, J. Jürjens, Supporting requirements
engineers in recognising security issues, in: REFSQ’11, Springer, 2011, pp. 4–18.

[35] M. Riaz, J. King, J. Slankas, L. Williams, Hidden in plain sight: Automatically
identifying security requirements from natural language artifacts, in: RE’14, IEEE,
2014, pp. 183–192.

[36] N. Munaiah, A. Meneely, P.K. Murukannaiah, A domain-independent model for
identifying security requirements, in: RE’17, IEEE, 2017, pp. 506–511.

[37] S. Christey, J. Kenderdine, J. Mazella, B. Miles, Common Weakness Enumeration,
Mitre Corporation, 2013.

[38] V. Varenov, A. Gabdrahmanov, Security requirements classification into groups
using NLP transformers, in: REW’21, IEEE, 2021, pp. 444–450.

[39] A. Ferrari, G.O. Spagnolo, S. Gnesi, Pure: A dataset of public requirements
documents, in: RE’17, IEEE, 2017, pp. 502–505.

[40] F. Dalpiaz, A. Ferrari, X. Franch, C. Palomares, Natural language processing for
requirements engineering: The best is yet to come, IEEE Softw. 35 (5) (2018)
115–119.

[41] B. Romera-Paredes, P. Torr, An embarrassingly simple approach to zero-shot
learning, in: ICML’15, 2015, pp. 2152–2161.

[42] Y. Ma, E. Cambria, S. Gao, Label embedding for zero-shot fine-grained named
entity typing, in: Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, 2016, pp. 171–180.

[43] O. Levy, M. Seo, E. Choi, L. Zettlemoyer, Zero-shot relation extraction via reading
comprehension, 2017, arXiv preprint arXiv:1706.04115.

[44] J. Nam, E.L. Mencía, J. Fürnkranz, All-in text: Learning document, label, and
word representations jointly, in: AAAI’16, 2016, pp. 1948–1954.

[45] P.K. Pushp, M.M. Srivastava, Train once, test anywhere: Zero-shot learning for
text classification, 2017, arXiv preprint arXiv:1712.05972.

[46] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representa-
tions of words and phrases and their compositionality, Adv. Neural Inf. Process.
Syst. 26 (2013).

[47] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word
representations in vector space, 2013, arXiv preprint arXiv:1301.3781.

[48] J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word
representation, in: EMNLP’14, 2014, pp. 1532–1543.

[49] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving Language
Understanding by Generative Pre-Training, Technical Report, OpenAI, 2018.

[50] K. Ethayarajh, How contextual are contextualized word representations? compar-
ing the geometry of BERT, ELMo, and GPT-2 embeddings, 2019, arXiv preprint
arXiv:1909.00512.
15
[51] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
P.J. Liu, et al., Exploring the limits of transfer learning with a unified text-to-text
transformer, J. Mach. Learn. Res. 21 (140) (2020) 1–67.

[52] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., Language
models are unsupervised multitask learners, OpenAI Blog 1 (8) (2019) 9.

[53] S. Ruder, M.E. Peters, S. Swayamdipta, T. Wolf, Transfer learning in natural
language processing, in: NAACL’19, 2019, pp. 15–18.

[54] S. Ruder, Neural Transfer Learning for Natural Language Processing (Ph.D.
thesis), National University of Ireland, Galway, 2019.

[55] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. Zettle-
moyer, Deep contextualized word representations, in: ACL’18, ACL, 2018, pp.
2227–2237.

[56] J.H. Wenpeng Yin, D. Roth, Benchmarking zero-shot text classification: Datasets,
evaluation and entailment approach, in: EMNLP’19, 2019, pp. 3914–3923.

[57] P.V. Sappadla, J. Nam, E.L. Mencía, J. Fürnkranz, Using semantic similarity
for multi-label zero-shot classification of text documents, in: ESANN, 2016, pp.
423–428.

[58] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with
subword information, Trans. Assoc. Comput. Linguist. 5 (2017) 135–146.

[59] M. Ajagbe, L. Zhao, Retraining a BERT model for transfer learning in re-
quirements engineering: A preliminary study, in: RE’22, IEEE, 2022, pp.
309–315.

[60] J. Tabassum, M. Maddela, W. Xu, A. Ritter, Code and named entity recognition
in StackOverflow, in: ACL’20, ACL, Online, 2020, pp. 4913–4926.

[61] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.R. Salakhutdinov, Q.V. Le, Xlnet:
Generalized autoregressive pretraining for language understanding, in: NeurIPS,
Vol. 32, 2019.

[62] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, 2020, arXiv preprint arXiv:2005.14165.

[63] N. Reimers, I. Gurevych, Sentence-BERT: Sentence embeddings using siamese
BERT-networks, 2019, arXiv preprint arXiv:1908.10084.

[64] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, M. Zhou, MiniLM: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers,
in: NeurIPS’20, Vol. 33, 2020, pp. 5776–5788.

[65] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D.
Jiang, M. Zhou, CodeBERT: A pre-trained model for programming and natural
languages, in: EMNLP’20, ACL, 2020, pp. 1536–1547.

[66] A. Ferrari, A. Esuli, An NLP approach for cross-domain ambiguity detection in
requirements engineering, Autom. Softw. Eng. 26 (3) (2019) 559–598.

[67] K. Krippendorff, Content Analysis: An Introduction to its Methodology, Sage
publications, 2018.

[68] J.L. Fleiss, J. Cohen, The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability, Educ. Psychol. Meas. 33 (3)
(1973) 613–619.

[69] J.R. Landis, G.G. Koch, The measurement of observer agreement for categorical
data, Biometrics (1977) 159–174.

[70] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning
in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[71] D.M. Berry, Empirical evaluation of tools for hairy requirements engineering
tasks, Empir. Softw. Eng. 26 (6) (2021) 1–77.

[72] I. Beltagy, K. Lo, A. Cohan, SciBERT: A pretrained language model for scientific
text, 2019, arXiv preprint arXiv:1903.10676.

[73] I. Chalkidis, M. Fergadiotis, P. Malakasiotis, N. Aletras, I. Androutsopoulos,
LEGAL-BERT: The muppets straight out of law school, 2020, arXiv preprint
arXiv:2010.02559.

[74] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, BioBERT: a pre-
trained biomedical language representation model for biomedical text mining,
Bioinformatics 36 (4) (2020) 1234–1240.

http://refhub.elsevier.com/S0950-5849(23)00056-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb26
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb26
http://dx.doi.org/10.5281/zenodo.4530183
http://dx.doi.org/10.5281/zenodo.4530183
http://dx.doi.org/10.5281/zenodo.4530183
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb28
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb29
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb30
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb31
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb32
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb33
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb34
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb35
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb36
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb37
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb38
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb39
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb40
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb41
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb42
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb42
http://arxiv.org/abs/1706.04115
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb44
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb44
http://arxiv.org/abs/1712.05972
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb46
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb46
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb48
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb49
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb49
http://arxiv.org/abs/1909.00512
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb51
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb52
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb53
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb54
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb55
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb56
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb57
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb58
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb58
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb58
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb59
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb60
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb61
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb61
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1908.10084
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb64
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb65
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb66
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb67
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb68
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb69
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb70
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb71
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb71
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb71
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/2010.02559
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb74
http://refhub.elsevier.com/S0950-5849(23)00056-3/sb74

	Zero-shot learning for requirements classification: An exploratory study
	Introduction
	Related Work
	Classification of FRs and NFRs
	Classification of Security Requirements
	Our Contribution

	Zero-Shot Learning
	Language Models and Transfer Learning
	Embedding-Based Zero-Shot Learning

	Experimental Design
	Dataset and Task Selection
	Language Model Selection
	Label Creation and Configuration
	Performance Measures
	Experimental Setup

	Experimental Results
	Task FR/NFR
	Label Configuration
	FR vs. NFR Binary Classification

	Task NFR
	Label Configuration
	NFR Binary Classification
	NFR Multi-class Classification
	NFR Multi-label Classification

	Task Security
	Security Label Configuration
	Security Binary Classification

	Research Findings
	Best Language Model (RQ1)
	Best Label Configuration (RQ2)
	Effectiveness of ZSL for RE (RQ3)

	Threats to Validity
	Conclusion
	Replication
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References

