2021
Journal article  Open Access

Hebbian semi-supervised learning in a sample efficiency setting

Lagani G., Falchi F., Gennaro C., Amato G.

Computer Science - Machine Learning  Cognitive Neuroscience  artificial intelligence  Neural and Evolutionary Computing (cs.NE)  deep learning  Computer Vision and Pattern Recognition (cs.CV)  FOS: Computer and information sciences  Hebbian  Bio-inspired  Neural networks  Sample efficiency  Semi-supervised  sample efficiency  Computer Science - Neural and Evolutionary Computing  Machine Learning (cs.LG)  Computer Science - Computer Vision and Pattern Recognition 

We propose to address the issue of sample efficiency, in Deep Convolutional Neural Networks (DCNN), with a semi-supervised training strategy that combines Hebbian learning with gradient descent: all internal layers (both convolutional and fully connected) are pre-trained using an unsupervised approach based on Hebbian learning, and the last fully connected layer (the classification layer) is trained using Stochastic Gradient Descent (SGD). In fact, as Hebbian learning is an unsupervised learning method, its potential lies in the possibility of training the internal layers of a DCNN without labels. Only the final fully connected layer has to be trained with labeled examples. We performed experiments on various object recognition datasets, in different regimes of sample efficiency, comparing our semi-supervised (Hebbian for internal layers + SGD for the final fully connected layer) approach with end-to-end supervised backprop training, and with semi-supervised learning based on Variational Auto-Encoder (VAE). The results show that, in regimes where the number of available labeled samples is low, our semi-supervised approach outperforms the other approaches in almost all the cases.

Source: Neural networks 143 (2021): 719–731. doi:10.1016/j.neunet.2021.08.003

Publisher: Pergamon,, New York , Stati Uniti d'America


[1] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game of go with deep neural networks and tree search, nature 529 (7587) (2016) 484.
[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pretraining of deep bidirectional transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).
[4] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, in: Advances in neural information processing systems, 2007, pp. 153-160.
[5] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural networks., Journal of machine learning research 10 (1) (2009).
[6] J. Weston, F. Ratle, H. Mobahi, R. Collobert, Deep learning via semi-supervised embedding, in: Neural networks: Tricks of the trade, Springer, 2012, pp. 639-655.
[7] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, M. Welling, Semi-supervised learning with deep generative models, Advances in neural information processing systems 27 (2014) 3581-3589.
[8] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, T. Raiko, Semi-supervised learning with ladder networks, in: Advances in neural information processing systems, 2015, pp. 3546-3554.
[9] Y. Zhang, K. Lee, H. Lee, Augmenting supervised neural networks with unsupervised objectives for large-scale image classification, in: International conference on machine learning, 2016, pp. 612-621.
[10] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations, in: International conference on machine learning, PMLR, 2020, pp. 1597-1607.
[11] S. Haykin, Neural networks and learning machines, 3rd Edition, Pearson, 2009.
[12] W. Gerstner, W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity, Cambridge university press, 2002.
[13] R. C. O'Reilly, Y. Munakata, Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain, MIT press, 2000.
[14] J. Weston, S. Chopra, A. Bordes, Memory networks, arXiv preprint arXiv:1410.3916 (2014).
[15] S. Grossberg, Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors, Biological cybernetics 23 (3) (1976) 121-134.
[16] T. Kohonen, Self-organized formation of topologically correct feature maps, Biological cybernetics 43 (1) (1982) 59-69.
[17] T. D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural networks 2 (6) (1989) 459-473.
[18] J. Karhunen, J. Joutsensalo, Generalizations of principal component analysis, optimization problems, and neural networks, Neural Networks 8 (4) (1995) 549-562.
[19] S. Becker, M. Plumbley, Unsupervised neural network learning procedures for feature extraction and classification, Applied Intelligence 6 (3) (1996) 185-203.
[20] C. Pehlevan, T. Hu, D. B. Chklovskii, A hebbian/anti-hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data, Neural computation 27 (7) (2015) 1461-1495.
[21] C. Pehlevan, D. B. Chklovskii, Optimization theory of hebbian/anti-hebbian networks for pca and whitening, in: 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE, 2015, pp. 1458-1465.
[22] A. Wadhwa, U. Madhow, Learning sparse, distributed representations using the hebbian principle, arXiv preprint arXiv:1611.04228 (2016).
[23] A. Wadhwa, U. Madhow, Bottom-up deep learning using the hebbian principle (2016).
[24] Y. Bahroun, A. Soltoggio, Online representation learning with single and multi-layer hebbian networks for image classification, in: International Conference on Artificial Neural Networks, Springer, 2017, pp. 354-363.
[25] D. Krotov, J. J. Hopfield, Unsupervised learning by competing hidden units, Proceedings of the National Academy of Sciences 116 (16) (2019) 7723-7731.
[26] G. Amato, F. Carrara, F. Falchi, C. Gennaro, G. Lagani, Hebbian learning meets deep convolutional neural networks, in: International Conference on Image Analysis and Processing, Springer, 2019, pp. 324-334.
[27] G. Lagani, Hebbian learning algorithms for training convolutional neural networks, Master's thesis, School of Engineering, University of Pisa, Italy (2019). URL https://etd.adm.unipi.it/theses/available/ etd-03292019-220853/
[28] A. Magotra, J. kim, Transfer learning for image classification using hebbian plasticity principles, in: Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, 2019, pp. 233-238.
[29] A. Magotra, J. Kim, Improvement of heterogeneous transfer learning e ciency by using hebbian learning principle, Applied Sciences 10 (16) (2020) 5631.
[30] F. J. A. Canto, Convolutional neural networks with hebbianbased rules in online transfer learning, in: Mexican International Conference on Artificial Intelligence, Springer, 2020, pp. 35- 49.
[31] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, arXiv preprint arXiv:1411.1792 (2014).
[32] P. Fo¨ ldiak, Forming sparse representations by local anti-hebbian learning, Biological cybernetics 64 (2) (1990) 165-170.
[33] B. A. Olshausen, D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature 381 (6583) (1996) 607.
[34] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images (2009).
[35] J. Wu, Q. Zhang, G. Xu, Tiny imagenet challenge, Tech. rep., Technical report, Stanford University, 2017. Available online at http . . . (2017).
[36] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems (2012).
[37] B. Scho¨ lkopf, A. Smola, K.-R. Mu¨ ller, Nonlinear component analysis as a kernel eigenvalue problem, Neural computation 10 (5) (1998) 1299-1319.
[38] A. Hyvarinen, J. Karhunen, E. Oja, Independent component analysis, Studies in informatics and control 11 (2) (2002) 205- 207.
[39] F. Javed, Q. He, L. E. Davidson, J. C. Thornton, J. Albu, L. Boxt, N. Krasnow, M. Elia, P. Kang, S. Heshka, et al., Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass, The American journal of clinical nutrition 91 (4) (2010) 907-912.
[40] S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, The spinnaker project, Proceedings of the IEEE 102 (5) (2014) 652-665.
[41] X. Wu, V. Saxena, K. Zhu, S. Balagopal, A cmos spiking neuron for brain-inspired neural networks with resistive synapses andin situlearning, IEEE Transactions on Circuits and Systems II: Express Briefs 62 (11) (2015) 1088-1092.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:457534,
	title = {Hebbian semi-supervised learning in a sample efficiency setting},
	author = {Lagani G. and Falchi F. and Gennaro C. and Amato G.},
	publisher = {Pergamon,, New York , Stati Uniti d'America},
	doi = {10.1016/j.neunet.2021.08.003 and 10.48550/arxiv.2103.09002},
	journal = {Neural networks},
	volume = {143},
	pages = {719–731},
	year = {2021}
}

AI4EU
A European AI On Demand Platform and Ecosystem

AI4Media
A European Excellence Centre for Media, Society and Democracy


OpenAIRE