2016
Journal article  Open Access

A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation

Pagnini G., Paradisi P.

Mathematical Physics (math-ph)  60G22  60G20  Mathematical Physics  Anomalous diffusion  26A33  FOS: Mathematics  Fractional diffusion equation  82C31  Statistical Mechanics (cond-mat.stat-mech)  FOS: Physical sciences  Probability (math.PR)  Analysis  Gaussian processes  Mathematics - Probability  Self-similar stochastic process  Signal processing  Condensed Matter - Statistical Mechanics  Applied Mathematics 

The stochastic solution with Gaussian stationary increments is established for the symmetric space-time fractional diffusion equation when 0 < ? < ? <= 2, where 0 < ? <= 1 and 0 < ? <= 2 are the fractional derivation orders in time and space, respectively. This solution is provided by imposing the identity between two probability density functions resulting (i) from a new integral representation formula of the fundamental solution of the symmetric space-time fractional diffusion equation and (ii) from the product of two independent random variables. This is an alternative method with respect to previous approaches such as the scaling limit of the continuous time random walk, the parametric subordination and the subordinated Langevin equation. A new integral representation formula for the fundamental solution of the space-time fractional diffusion equation is firstly derived. It is then shown that, in the symmetric case, a stochastic solution can be obtained by a Gaussian process with stationary increments and with a random wideness scale variable distributed according to an arrangement of two extremal Lévy stable densities. This stochastic solution is self-similar with stationary increments and uniquely defined in a statistical sense by the mean and the covariance structure. Numerical simulations are carried out by choosing as Gaussian process the fractional Brownian motion. Sample paths and probability densities functions are shown to be in agreement with the fundamental solution of the symmetric space-time fractional diffusion equation.

Source: Fractional Calculus & Applied Analysis (Online) 19 (2016): 408–440. doi:10.1515/fca-2016-0022

Publisher: Institute of Mathematics & Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria


[1] O. C. Akin, P. Paradisi, P. Grigolini, Perturbation-induced emergence of poisson-like behavior in non-poisson systems. J. Stat. Mech.: Theory Exp., (2009), P01013.
[2] O.C. Akin, P. Paradisi, P. Grigolini, Periodic trend and fluctuations: The case of strong correlation. Physica A 371, (2006), 157-170.
[3] P. Allegrini, P. Paradisi, D. Menicucci, M. Laurino, R. Bedini, A. Piarulli, A. Gemignani, Sleep unconsciousness and breakdown of serial critical intermittency: New vistas on the global workspace. Chaos Solitons Fract. 55, (2013), 32-43.
[4] B. Baeumer, M. M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, (2001), 481-500.
[5] B. Baeumer, M. M. Meerschaert, E. Nane, Brownian subordinators and fractional Cauchy problems. T. Am. Math. Soc. 361, No 7 (2009), 3915-3930.
[6] B. Baeumer, M. M. Meerschaert, E. Nane, Space-time fractional diffusion. J. Appl. Prob. 46, (2009), 1100-1115.
[7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific Publishers, New Jersey (2012). Series on Complexity, Nonlinearity and Chaos, volume 3.
[8] E. Barkai, CTRW pathways to the fractional diffusion equation. Chem. Phys. 284, (2002), 13-27.
[9] D. A. Benson, M. M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective. Adv. Water Resour. 51, (2013), 479-497.
[10] F. Biagini, Y. Hu, B. Øksendal, T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications. Springer (2008).
[11] S. Bianco, P. Grigolini, P. Paradisi, A fluctuating environment as a source of periodic modulation. Chem. Phys. Lett. 438, No 4-6 (2007), 336-340.
[12] D. O. Cahoy, On the parametrization of the M-Wright function. Far East J. Theor. Stat. 34, No 2 (2011), 155-164.
[13] D. O. Cahoy, Estimation and simulation for the M-Wright function. Commun. Stat.-Theor. M. 41, No 8 (2012), 1466-1477.
[14] D. O. Cahoy, Moment estimators for the two-parameter M-Wright distribution. Computation. Stat. 27, No 3 (2012), 487-497.
[15] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, A. Vulpiani, On strong anomalous diffusion. Physica D 134, (1999), 75-93.
[16] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating skewed stable random variables. J. Amer. Statist. Assoc. 71, (1976), 340-344.
[17] M. Chevrollier, N. Mercadier, W. Guerin, R. Kaiser, Anomalous photon diffusion in atomic vapors. Eur. Phys. J. D 58, (2010), 161-165.
[18] A. Compte, Stochastic foundations of fractional dynamics. Phys. Rev. E 53, No 4 (1996), 4191-4193.
[19] D.R. Cox, Renewal Theory. Methuen & Co. Ltd., London (1962).
[20] J. L. da Silva, Local times for grey Brownian motion. Int. J. Mod. Phys. Conf. Ser. 36, (2015), 1560003. [7th Jagna International Workshop (2014)].
[21] J. L. da Silva, M. Erraoui, Grey Brownian motion local time: Existence and weak-approximation. Stochastics 87, (2014), 347-361.
[22] D. del Castillo-Negrete, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, No 8 (2004), 3854-3864.
[23] D. del Castillo-Negrete, Non-diffusive, non-local transport in fluids and plasmas. Nonlin. Processes Geophys. 17, (2010), 795-807.
[24] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Nondiffusive transport in plasma turbulence: A fractional diffusion approach. Phys. Rev. Lett. 94, (2005), 065003.
[25] D. del Castillo-Negrete, P. Mantica, V. Naulin, J. J. Rasmussen, JET EFDA contributors, Fractional diffusion models of non-local perturbative transport: numerical results and application to JET experiments. Nucl. Fusion 48, (2008), 075009.
[26] T. Dieker, Simulation of Fractional Brownian Motion. CWI and University of Twente, The Netherlands (2004). Ph.D. Thesis, Department of Mathematical Sciences, University of Twente, The Netherlands.
[27] P. Dieterich, R. Klages, R. Preuss, A. Schwab, Anomalous dynamics of cell migration. Proc. Nat. Acad. Sci. 105, No 2 (2008), 459-463.
[28] G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku, C. S. Chang, On the validity of the local diffusive paradigm in turbulent plasma transport. Phys. Rev. E 82, (2010), 025401(R).
[29] B. Dybiec, Anomalous diffusion: temporal non-Markovianity and weak ergodicity breaking. J. Stat. Mech.-Theory Exp., (2009), P08025.
[30] B. Dybiec, E. Gudowska-Nowak, Subordinated diffusion and continuous time random walk asymptotics. Chaos 20, No 4 (2010), 043129.
[31] S. Eule, R. Friedrich, Subordinated Langevin equations for anomalous diffusion in external potentials-biasing and decoupled external forces. Europhys. Lett. 86, (2009), 3008.
[32] W. Feller, An Introduction to Probability Theory and its Applications, volume 2. Wiley, New York (1971), second edition.
[33] H. C. Fogedby, Langevin equations for continuous time L´evy flights. Phys. Rev. E 50, No 2 (1994), 1657-1660.
[34] D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E 77, (2008), 021122.
[35] D. Fulger, E. Scalas, G. Germano, Random numbers form the tails of probability distributions using the transformation method. Fract. Calc. Appl. Anal. 16, No 2 (2013), 332-353.
[36] G. Germano, M. Politi, E. Scalas, R. L. Schilling, Stochastic calculus for uncoupled continuous-time random walks. Phys. Rev. E 79, No 6 (2009), 066102.
[37] R. Gorenflo, A. Iskenderov, Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, (2000), 75-86.
[38] R. Gorenflo, F. Mainardi, Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 167-191.
[39] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, No 2 (2009), 400-415.
[40] R. Gorenflo, F. Mainardi, Subordination pathways to fractional diffusion. Eur. Phys. J. Special Topics 193, (2011), 119-132.
[41] R. Gorenflo, F. Mainardi, Parametric subordination in fractional diffusion processes. In: J. Klafter, S. C. Lim, and R. Metzler, editors, Fractional Dynamics. Recent Advances, World Scientific, Singapore (2012), 227-261.
[42] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, (2002), 521-541.
[43] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models. Physica A 305, No 1-2 (2002), 106-112.
[44] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion: A discrete random walk approach. Nonlinear Dynam. 29, No 1-4 (2002), 129-143.
[45] R. Gorenflo, F. Mainardi, A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fract. 34, No 1 (2007), 87-103.
[46] P. Grigolini, A. Rocco, B. J. West, Fractional calculus as a macroscopic manifestation of randomness. Phys. Rev. E 59, No 3 (1999), 2603- 2613.
[47] K. Gustafson, D. del Castillo-Negrete, W. Dorland, Finite Larmor radius effects on nondiffusive tracer transport in zonal flows. Phys. Plasmas 15, (2008), 102309.
[48] J. Honkonen, Stochastic processes with stable distributions in random environments. Phys. Rev. E 55, No 1 (1996), 327-331.
[49] J. R. M. Hosking, Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 20, (1984), 1898- 1908.
[50] B. D. Hughes, Anomalous diffusion, stable processes, and generalized functions. Phys. Rev. E 65, (2002), 035105(R).
[51] J. Klafter, I. M. Sokolov, Anomalous diffusion spread its wings. Physics World 18, (2005), 29-32.
[52] D. Kleinhans, R. Friedrich, Continuous-time random walks: Simulation of continuous trajectories. Phys. Rev. E 76, (2007), 061102.
[53] X. Leoncini, L. Kuznetsov, G. M. Zaslavsky, Evidence of fractional transport in point vortex flow. Chaos Solitons Fract. 19, (2004), 259- 273.
[54] Yu. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54, (2013), 031505.
[55] M. Magdziarz, A. Weron, J. Klafter, Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: The case of a time-dependent force. Phys. Rev. Lett. 101, (2008), 210601.
[56] F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos Solitons Fract. 7, (1996), 1461-1477.
[57] F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153-192.
[58] F. Mainardi, A. Mura, G. Pagnini, The functions of the Wright type in fractional calculus. Lecture Notes of Seminario Interdisciplinare di Matematica 9, (2010), 111-128.
[59] F. Mainardi, A. Mura, G. Pagnini, The M-Wright function in timefractional diffusion processes: A tutorial survey. Int. J. Differ. Equations 2010, (2010), 104505.
[60] F. Mainardi, G. Pagnini, The Wright functions as solutions of the time-fractional diffusion equations. Appl. Math. Comput. 141, (2003), 51-62.
[61] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin transform and subordination laws in fractional diffusion processes. Fract. Calc. Appl. Anal. 6, No 4 (2003), 441-459.
[62] F. Mainardi, G. Pagnini, R. Gorenflo, Mellin convolution for subordinated stable processes. J. Math. Sci. 132(5), (2006), 637-642.
[63] F. Mainardi, G. Pagnini, R. K. Saxena, Fox H functions in fractional diffusion. J. Comput. Appl. Math. 178, (2005), 321-331.
[64] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, (2002), 041103.
[65] M. M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter (2012).
[66] Y. Meroz, I. M. Sokolov, J. Klafter, Unequal twins: Probability distributions do not determine everything. Phys. Rev. Lett. 107, (2011), 260601.
[67] R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J. Phys. A: Math. Theor. 37, No 31 (2004), R161-R208.
[68] R. Metzler, T. F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284, (2002), 67-90.
[69] E. W. Montroll, Random walks on lattices. Proc. Symp. Appl. Math. Am. Math. Soc. 16, (1964), 193-220.
[70] E. W. Montroll, G. H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, (1965), 167-181.
[71] A. Mura, Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Lambert Academic Publishing (2011). Ph.D. Thesis, Physics Department, University of Bologna (2008).
[72] A. Mura, F. Mainardi, A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics. Integr. Transf. Spec. F. 20, No 3-4 (2009), 185-198.
[73] A. Mura, G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. J. Phys. A: Math. Theor. 41, (2008), 285003.
[74] G. Pagnini, Erd´elyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15, No 1 (2012), 117-127.
[75] G. Pagnini, The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16, No 2 (2013), 436-453.
[76] G. Pagnini, Self-similar stochastic models with stationary increments for symmetric space-time fractional diffusion. In: Proceedings of the 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2014, Senigallia (AN), Italy, 10-12 September (2014), Paper Code MESA2014 003. Print ISBN:978-1-4799-2772-2; INSPEC Accession Number:14701095; doi:10.1109/MESA.2014.6935520.
[77] G. Pagnini, Short note on the emergence of fractional kinetics. Physica A 409, (2014), 29-34.
[78] G. Pagnini, Subordination formulae for space-time fractional diffusion processes via Mellin convolution. In: P. M. Pardalos, R. P. Agarwal, L. Koˇccinac, R. Neck, N. Mastorakis, and K. Ntalianas, editors, Recent Advances in Mathematics, Statistics and Economics. Proceedings of the 2014 International Conference on Pure Mathematics - Applied Mathematics (PM-AM'14), Venice, Italy, 15-17 March (2014), 40-45. ISBN: 978-1-61804-225-5.
[79] G. Pagnini, Generalized Equations for Anomalous Diffusion and their Fundamental Solutions. Thesis for Degree in Physics, University of Bologna, October (2000). In Italian.
[80] G. Pagnini, A. Mura, F. Mainardi, Generalized fractional master equation for self-similar stochastic processes modelling anomalous diffusion. Int. J. Stoch. Anal. 2012, (2012), 427383.
[81] G. Pagnini, A. Mura, F. Mainardi, Two-particle anomalous diffusion: Probability density functions and self-similar stochastic processes. Phil. Trans. R. Soc. A 371, (2013), 20120154.
[82] G. Pagnini, E. Scalas, Historical notes on the M-Wright/Mainardi function. Communications in Applied and Industrial Mathematics 6, No 1 (2014), e-496. DOI: 10.1685/journal.caim.496 (Editorial).
[83] P. Paradisi, Fractional calculus in statistical physics: The case of time fractional diffusion equation. Communications in Applied and Industrial Mathematics 6, No 2 (2014), e-530. doi: 10.1685/journal.caim.530.
[84] P. Paradisi, P. Allegrini, A. Gemignani, M. Laurino, D. Menicucci, A. Piarulli, Scaling and intermittency of brain events as a manifestation of consciousness. AIP Conf. Proc. 1510, (2013), 151-161.
[85] P. Paradisi, R. Cesari, D. Contini, A. Donateo, L. Palatella, Characterizing memory in atmospheric time series: an alternative approach based on renewal theory. Eur. Phys. J. Special Topics 174, (2009), 207-218.
[86] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Diffusion scaling in event-driven random walks: an application to turbulence. Rep. Math. Phys. 70, (2012), 205-220.
[87] P. Paradisi, R. Cesari, A. Donateo, D. Contini, P. Allegrini, Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence. Nonlin. Processes Geophys. 19, (2012), 113-126. Corrigendum, Nonlin. Processes Geophys. 19, (2012), 685.
[88] P. Paradisi, R. Cesari, P. Grigolini, Superstatistics and renewal critical events. Cent. Eur. J. Phys. 7, (2009), 421-431.
[89] P. Paradisi, R. Cesari, F. Mainardi, A. Maurizi, F. Tampieri, A generalized Fick's law to describe non-local transport effects. Phys. Chem. Earth 26, No 4 (2001), 275-279.
[90] P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, The fractional Fick's law for non-local transport processes. Physica A 293, No 1-2 (2001), 130-142.
[91] P. Paradisi, D. Chiarugi, P. Allegrini, A renewal model for the emergence of anomalous solute crowding in liposomes. BMC Syst. Biol. 9, suppl 3 (2015), s7.
[92] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).
[93] S. Ratynskaia, K. Rypdal, C. Knapek, S. Khrapak, A. V. Milovanov, A. Ivlev, J. J. Rasmussen, G. E. Morfill, Superdiffusion and viscoelastic vortex flows in a two-dimensional complex plasma. Phys. Rev. Lett. 96, No 10 (2006), 105010.
[94] A. Rocco, B. J. West, Fractional calculus and the evolution of fractal phenomena. Physica A 265, No 3-4 (1999), 535-546.
[95] A. Saichev, G. Zaslavsky, Fractional kinetic equations: solutions and applications. Chaos 7, (1997), 753-764.
[96] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284, (2000), 376-384.
[97] E. Scalas, R. Gorenflo, F. Mainardi, Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Phys. Rev. E 69, (2004), 011107.
[98] M. Schmiedeberg, V. Yu. Zaburdaev, H. Stark, On moments and scaling regimes in anomalous random walks. J. Stat. Mech.-Theory Exp., (2009), P12020.
[99] W. R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134-144.
[100] J. H. P. Schulz, A. V. Chechkin, R. Metzler, Correlated continuos time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics. J. Phys. A: Math. Theor. 46, (2013), 475001.
[101] I. M. Sokolov, J. Klafter, A. Blumen, Fractional kinetics. Physics Today 55, (2002), 48-54.
[102] I. M. Sokolov, R. Metzler, Non-uniqueness of the first passage time density of L´evy random processes. J. Phys. A: Math. Theor. 37, (2004), L609-L615.
[103] V. V. Uchaikin, Montroll-Weiss problem, fractional equations and stable distributions. Int. J. Theor. Phys. 39, (2000), 2087-2105.
[104] V. V. Uchaikin, V. M. Zolotarev, Chance and Stability. Stable Distributions and their Applications. VSP, Utrecht (1999).
[105] G. H. Weiss, R. J. Rubin, Random walks: Theory and selected applications. Adv. Chem. Phys. 52, (1983), 363-505.
[106] A. Weron, M. Magdziarz, K. Weron, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation. Phys. Rev. E 77, (2008), 036704.
[107] R. Weron, On the Chambers-Mallows-Stuck method for simulating skewed stable random variables. Statist. Probab. Lett. 28, (1996), 165-171. Corrigendum: http://mpra.ub.uni-muenchen.de/20761/1/RWeron96 Corr.pdf or http://www.im.pwr.wroc.pl/∼hugo/RePEc/wuu/wpaper/HSC 96 01.pdf.
[108] G. M. Zaslavsky, Anomalous transport and fractal kinetics. In: H. K. Moffatt, G. M. Zaslavsky, P. Compte, and M. Tabor, editors, Topological Aspects of the Dynamics of Fluids and Plasmas, Kluwer, Dordrecht (1992), 481-491. NATO ASI Series, volume 218.
[109] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Physica D 76, (1994), 110-122.
[110] G. M. Zaslavsky, Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. Chaos 4, (1994), 25-33.
[111] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, (2002), 461-580.
[112] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press (2005).
[113] G. M. Zaslavsky, B. A. Niyazov, Fractional kinetics and accelerator modes. Phys. Rep. 283, (1997), 73-93.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:368816,
	title = {A stochastic solution with Gaussian stationary increments of the symmetric space-time fractional diffusion equation},
	author = {Pagnini G. and Paradisi P.},
	publisher = {Institute of Mathematics \& Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria},
	doi = {10.1515/fca-2016-0022 and 10.48550/arxiv.1603.05300},
	journal = {Fractional Calculus \& Applied Analysis (Online)},
	volume = {19},
	pages = {408–440},
	year = {2016}
}