2019
Journal article  Open Access

An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study

Germanese D., Colantonio S., D'Acunto M., Romagnoli V., Salvati A., Brunetto M.

breath analysis  data processing  Article  and Optics  Instrumentation  Biochemistry  Atomic and Molecular Physics  Electrical and Electronic Engineering  Analytical Chemistry  gas sensors  hepatic encephalopathy  liver impairment  electronic noses 

Biologically inspired to mammalian olfactory system, electronic noses became popular during the last three decades. In literature, as well as in daily practice, a wide range of applications are reported. Nevertheless, the most pioneering one has been (and still is) the assessment of the human breath composition. In this study, we used a prototype of electronic nose, called Wize Sniffer (WS) and based it on an array of semiconductor gas sensor, to detect ammonia in the breath of patients suffering from severe liver impairment. In the setting of severely impaired liver, toxic substances, such as ammonia, accumulate in the systemic circulation and in the brain. This may result in Hepatic Encephalopathy (HE), a spectrum of neuro-psychiatric abnormalities which include changes in cognitive functions, consciousness, and behaviour. HE can be detected only by specific but time-consuming and burdensome examinations, such as blood ammonia levels assessment and neuro-psychological tests. In the presented proof-of-concept study, we aimed at investigating the possibility of discriminating the severity degree of liver impairment on the basis of the detected breath ammonia, in view of the detection of HE at its early stage.

Source: Sensors (Basel) 19 (2019). doi:10.3390/s19173656

Publisher: Molecular Diversity Preservation International (MDPI),, Basel


Häussinger, D., Greger, R., Windhorst, U.. Physiological Functions of the Liver. Comprehensive Human Physiology. 1996: 1369-1391
Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D., Roudot-Thoraval, F.. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol.. 2013; 58: 593-608
Munoz, S.J.. Hepatic Encephalopathy. Med. Clin. N. Am.. 2008; 92: 795-812
Ferenci, P., Lockwood, A., Mullen, K., Tarter, R., Weissenborn, K., Blei, A.T.. Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna. Hepatology. 2002; 35: 716-721
Patidar, K.R., Bajaj, J.S.. Covert and overt hepatic encephalopathy: Diagnosis and management. Clin. Gastroentrol. Hepatol.. 2015; 13: 2048-2061
Bajaj, J.S., Cordoba, J., Mullen, K.D., Amodio, P., Shawcross, D.L., Butterworth, R.F., Morgan, M.Y.. Review article: The design of clinical trials in hepatic encephalopathy—An international society for hepatic encephalopathy and nitrogen metabolism (ishen) consensus statement. Aliment. Pharmacol. Ther.. 2011; 33: 739-747
Bustamante, J., Rimola, A., Ventura, P.J., Navasa, M., Cirera, I., Reggiardo, V.. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol.. 1999; 30: 890-895
Riggio, O., Amodio, P., Farcomeni, A., Merli, M., Nardelli, S., Pasquale, C., Pentassuglio, I., Gioia, S., Onori, E., Piazza, N.. A model for predicting development of overt hepatic encephalopathy in patients with cirrhosis. Clin. Gastroenterol. Hepatol.. 2015; 13: 1346-1352
Bajaj, J.S., Wade, J.B., Sanyal, A.J.. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology. 2009; 50: 2014-2021
Stahl, J.. Studies of the blood ammonia in liver disease. Its diagnosis, prognosis and therapeutic significance. Ann. Int. Med.. 1963; 58: 1-24
Weissenborn, K., Ennen, J.C., Schomerus, H., Rückert, N., Hecker, H.. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol.. 2001; 34: 768-773
Arbuthnott, K., Frank, J.. Trail Making Test, Part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol.. 2000; 22: 518-528
Blanco Vela, C., Bosques Padilla, F.. Determination of ammonia concentrations in cirrhosis patients—Still confusing after all there years?. Ann. Hepatol.. 2011; 10: 60-65
DuBois, S., Eng, S., Bhattacharya, R., Rulyak, S., Hubbard, T., Putnam, D., Kearney, D.J.. Breath Ammonia Testing for Diagnosis of Hepatic Encephalopathy. Dig. Dis. Sci.. 2005; 50: 1780-1784
Brannelly, N., Hamilton-Shield, J., Killard, A.. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit. Rev. Anal. Chem.. 2016; 46: 490-501
Shimamoto, C., Hirata, I., Katsu, K.. Breath and blood ammonia in liver cirrhosis. Hepatogastroenterology. 2000; 47: 443-445
Adrover, R., Cocozzella, D., Ridruejo, E., Garca, A., Rome, J., Podest, J.. Breath-Ammonia Testing of Healthy Subjects and Patients with Cirrhosis. Dig. Dis. Sci.. 2012; 57: 189-195
Persaud, K., Dodd, G.H.. Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature. 1982; 299: 352-355
Arshak, K., Moore, E., Lyons, G.M., Harris, J., Clifford, S.. A review of gas sensors employed in electronic nose applications. Sens. Rev.. 2004; 24: 181-198
Wilson, A.. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosens. Dis. Diagn.. 2016; 5: 15-27
Miekisch, W., Schubert, J.K., Noeldge-Schomburg, G.F.E.. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta. 2004; 347: 25-39
Wilson, A.D.. Application of electronic-nose technologies and VOC biomarkers for the non invasive early diagnosis of gastrointestinal diseases. Sensors. 2018; 18
Westenbrink, E., Arasaradnam, R.P., O’Connell, N., Bailey, C., Nwokolo, C., Bardhan, K.D., Covington, J.A.. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron.. 2015; 67: 733-738
Wilson, A.D.. Developing Electronic-nose Technologies for Clinical Practice. J. Med. Surg. Pathol.. 2018; 3: 169-171
Phillips, M., Herrera, J., Krishnan, S., Zain, M., Greenberg, J., Cataneo, R.N.. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl.. 1999; 729: 75-88
Risby, T.H., Solga, S.F.. Current status of clinical breath analysis. Appl. Phys. B. 2006; 85: 421-426
Machado, R.F., Laskowski, D., Deffenderfer, O., Burch, T., Zheng, S., Mazzone, P.J., Mekhail, T., Jennings, C., Stoller, J.K., Pyle, J.. Detection of lung cancer by sensor array analysis of exhaled breath. Am. J. Respir. Crit. Care Med.. 2005; 171: 1286-1291
De Meij, T.G., Larbi, I.B., van der Schee, M.P., Lentferink, Y.E., Paff, T., Terhaar sive Droste, J.S., Mulder, C.J., van Bodegraven, A.A., de Boer, N.K.. Electronic nose can discriminate colorectal cancer and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer. 2014; 134: 1132-1138
Peng, G., Hakim, M., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Tisch, U., Haick, H.. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer. 2010; 103: 542-551
Shuster, G., Gallimidi, Z., Reiss, A.H., Dovgolevsky, E., Billan, S., Abdah-Bortnyak, R., Kuten, A., Engel, A., Shiban, A., Tisch, U.. Classification of breast cancer precursors through exhaled breath. Breast Cancer Res. Treat.. 2011; 126: 791-796
Roine, A., Veskimäe, E., Tuokko, A., Kumpulainen, P., Koskimäki, J., Keinänen, T.A., Häkkinen, M.R., Vepsäläinen, J., Paavonen, T., Lekkala, J.. Detection of prostate cancer by an electronic nose: A proof of principle study. J. Urol.. 2014; 192: 230-235
Yusuf, N., Zakaria, A., Omar, M.I., Shakaff, A.Y.M., Masnan, M.J., Kamarudin, L.M., Rahim, N.A., Zakaria, N.Z.I., Abdullah, A.A., Othman, A.. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinform.. 2015; 16: 158-169
Montuschi, P., Mores, N., Trové, A., Mondino, C., Barnes, P.J.. The electronic nose in respiratory medicine. Respiration. 2013; 85: 72-84
Sibila, O., Garcia-Bellmunt, L., Giner, J., Merino, J.L., Suarez-Cuartin, G., Torrego, A., Solanes, I., Castillo, D., Valera, J.L., Cosio, B.G.. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir. Med.. 2014; 108: 1608-1614
Le Maout, P., Laquintinie, P.S., Lahuec, C., Seguin, F., Wojkiewicz, J.L., Redon, N., Dupont, L.. A low cost, handheld E-nose for renal diseases early diagnosis. Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). : 2817-2820
Lin, Y.J., Guo, H.R., Chang, Y.H., Kao, M.T., Wang, H.H., Hong, R.I.. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem.. 2001; 76: 177-180
Behera, B., Joshi, R., Anil Vishnu, G.K., Bhalerao, S., Pandya, H.J.. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res.. 2019; 13
Mohamed, E., Linder, R., Perriello, G., di Daniele, N., Pöppl, S.J., de Lorenzo, A.. Predicting Type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr. Metab.. 2002; 15: 215-221
Tisch, U., Schlesinger, I., Ionescu, R., Nassar, M., Axelrod, N., Robertman, D., Tessler, Y., Azar, F., Marmur, A., Aharon-Peretz, J.. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine. 2013; 8: 43-56
Guo, D., Zhang, D., Li, N., Zhang, L., Yang, J.. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng.. 2010; 57: 2753-2763
Lourenco, C., Turner, C.. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites. 2014; 4: 465-498
Van Den Velde, S., Nevens, S., van Hee, P., van Steenberghe, D., Quirynen, M.. GC-MS analysis of breath odour compounds in liver patients. J. Chromatogr. B Anal. Tech. Biomed. Life Sci.. 2008; 875: 344-348
Hibbard, T., Killard, A.. Breath ammonia analysis: Clinical application and measurement. Crit. Rev. Anal. Chem.. 2011; 41: 21-35
Smith, D., Wang, T., Pysanenko, A., Španěl, P.. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom.. 2008; 22: 783-789
Morisco, F., Aprea, E., Lembo, V., Fogliano, V., Vitaglione, P., Mazzone, G., Cappellin, L., Gasperi, F., Masone, S., de Palma, G.D.. Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS ONE. 2013; 8
Timmer, B., van Delft, M., Koelmans, W., Olthuis, W., van den Berg, A.. Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip. IEEE Sens. J.. 2006; 6: 829-835
Toda, K., Li, J., Dasgupta, K.. Measurement of Ammonia in Human Breath with a Liquid-Film Conductivity Sensor. Anal. Chem.. 2006; 78: 7284-7291
Yimit, A., Itoh, K., Murabayashi, M.. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens. Actuators B. 2003; 88: 239-245
Zan, H., Tsai, W., Lo, Y., Wu, Y., Yang, Y.. Pentacene-Based organic Thin Film Transistors for Ammonia Sensing. IEEE Sens. J.. 2012; 12: 594-601
Crone, B., Dodabalapur, A., Gelperin, A., Torsi, L., Katz, H.E., Lovinger, A.J., Bao, Z.. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett.. 2001; 78: 22-29
Gouma, P., Kalyanasundaram, K., Yun, X.. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath. IEEE Sens. J.. 2010; 10: 49-53
Hibbard, T., Crowley, K., Killard, A.. Direct measurment of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Anal. Chim. Acta. 2013; 779: 56-63
Germanese, D., Righi, M., Benassi, A., D’Acunto, M., Leone, R., Magrini, M., Paradisi, P., Puppi, D., Salvetti, O., De Gloriam, A.. A low cost, portable device for breath analysis and self-monitoring, the Wize Sniffer. Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society 2016. 2017; Volume 409: 51-57
Germanese, D., D’Acunto, M., Magrini, M., Righi, M., Salvetti, O.. A low cost technology-based device for breath analysis and self-monitoring. Proceedings of the Second International Conference on Advances in Signal, Image and Video Processing, SIGNAL2017. : 8-13
Shier, D., Butler, J., Lewis, R.. Holes Human Anatomy and Physiology. 2007
Clifford, P., Tuma, D.. Characteristics of semiconductor gas sensors I. Steady state gas response. Sens. Actuators. 1982; 3: 233-254
Germanese, D., D’Acunto, M., Magrini, M., Righi, M., Salvetti, O.. Cardio-metabolic diseases prevention by self-monitoring the breath. Sens. Transducers J.. 2017; 215: 19-26
Germanese, D., D’Acunto, M., Righi, M., Magrini, M., Salvetti, O.. The Wize Sniffer Knows What You Did: Prevent Cardio-Metabolic Risk by Analyzing Your Breath. Int. J. Adv. Life Sci.. 2017; 9: 198-207
Gutierrez-Osuna, R.. Pattern analysis for machine olfaction: A review. IEEE Sens. J.. 2002; 2: 189-202
Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., Zhang, S.. Electronic nose feature extraction methods: A review. Sensors. 2015; 15: 2784-27831
Setkus, A., Olekas, A., Senuliene, D., Falasconi, M., Pardo, M., Sberveglieri, G.. Analysis of the dynamic features of metal oxide sensors in response to spme fiber gas release. Sens. Act. B Chem.. 2010; 146: 539-544
Zou, X., Zhao, J., Wu, S., Huang, X.. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors. 2003; 3: 101-109
Kermit, M., Tomic, O.. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J.. 2003; 3: 500-511
Llobet, E., Brezmes, J., Vilanova, X., Sueiras, J.E., Correig, X.. Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array. Sens. Actuators B. 1997; 41: 13-21
Bowie, C., Harvey, P.. Administration and interpretation of the trail making test. Nat. Prot.. 2006; 1: 2277-2281
Thekedar, B., Szymczak, W., Hollriegl, V., Hoeschen, C., Oeh, U.. Investigations on the variability of breath gas sampling using ptr-ms. J. Breath Res.. 2009; 3
Miekisch, W., Kischkel, S., Sawacki, A., Lieban, T., Mieth, M., Schubert, J.. Impact of sampling procedures on the results of breath analysis. J. Breath Res.. 2008; 2
Thekedar, B., Oeh, U., Szymczak, W., Hoeschen, C., Paretzke, H.G.. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. J. Breath Res.. 2011; 5
Dhiman, R.K., Chawla, Y.K.. Minimal hepatic encephalopathy. Indian J. Gastroenterol.. 2009; 28: 5-16
Zhan, T., Stremmel, W.. The diagnosis and treatment of minimal hepatic encephalopathy. Dtsch. Ärzteblatt Int.. 2012; 109: 180-187
Di Francesco, F., Falcitelli, M., Marano, L., Pioggia, G.. A radially symmetric measurement chamber for electronic noses. Sens. Actuators B Chem.. 2005; 105: 295-303
Panayotov, I., Valerie, O., Cuisinier, F., Yachouh, J.. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med.. 2016; 27: 118

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:417659,
	title = {An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study},
	author = {Germanese D. and Colantonio S. and D'Acunto M. and Romagnoli V. and Salvati A. and Brunetto M.},
	publisher = {Molecular Diversity Preservation International (MDPI),, Basel },
	doi = {10.3390/s19173656},
	journal = {Sensors (Basel)},
	volume = {19},
	year = {2019}
}