2006
Journal article  Open Access

SAR image filtering based on the heavy-tailed rayleigh model

Achim A., Kuruoglu E. E., Zerubia J.

speckle noise  Heavy-tailed Rayleigh distribution  Computer Graphics and Computer-Aided Design  SAR image  [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]  ALPHA-STABLE DISTRIBUTIONS  MELLIN TRANSFORM  MAP ESTIMATION  alpha stable distribution  Statistical computing  HEAVY-TAILED RAYLEIGH MODEL  SYNTHETIC APERTURE RADAR  Probability and statistics. Distribution functions  Probability and statistics  Software 

Synthetic aperture radar (SAR) images are inherently affected by a signal dependent noise known as speckle, which is due to the radar wave coherence. In this paper, we propose a novel adaptive despeckling filter and derive a maximum a posteriori(MAP) estimator for the radar cross section (RCS). We first employ a logarithmic transformation to change the multiplicative speckle into additive noise. We model the RCS using the recently introduced heavy-tailed Rayleigh density function, which was derived based on the assumption that the real and imaginary parts of the received complex signal are best described using the alpha-stable family of distribution.We estimate model parameters from noisy observations by means of second-kind statistics theory, which relies on the Mellin transform. Finally, we compare the proposed algorithm with several classical speckle filters applied on actual SAR images. Experimental results show that the homomorphic MAP filter based on the heavy-tailed Rayleigh prior for the RCS is among the best for speckle removal.

Source: IEEE transactions on image processing 15 (2006): 2686–2693. doi:10.1109/TIP.2006.877362

Publisher: Institute of Electrical and Electronics Engineers,, New York, NY , Stati Uniti d'America


[1] M. Soumekh, Synthetic Aperture Radar Signal Processing. New York: John Wiley and Sons, 1999.
[2] J. W. Goodman, Some fundamental properties of speckle, J. Opt. Soc. Amer., vol. 66, pp. 1145 1150, November 1976.
[3] J. G. Abbott and F. L. Thurstone, Acoustic speckle: Theory and experimental analysis, Ultrason. Imag., vol. 1, pp. 303 324, 1979.
[4] A. K. Jain, Fundamental of Digital Image Processing. NJ: Prentice-Hall, 1989.
[5] V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, A model for radar images and its application to adaptive digital ltering of multiplicative noise, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 4, pp. 157 166, 1982.
[6] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, Adaptive noise smoothing lter for images with signal-dependent noise, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 7, pp. 165 177, 1985.
[7] J. S. Lee, Digital image enhancement and noise ltering by use of local statistics, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 2, pp. 165 168, 1980.
[8] M. R. Azimi-Sadjadi and S. Bannour, Two-dimensional adaptive block Kalman ltering of SAR imagery, IEEE Trans. on Geosci. and Remote Sensing, vol. 29, pp. 742 753, 1991.
[9] J. Bruniquel and A. Lopes, Multi- variate optimal speckle reduction in SAR imagery, International Journal of Remote Sensing, vol. 18, pp. 603 627, Feb 1997.
[10] A. Baraldi and F. Parmigiani, A re ned Gamma MAP SAR speckle lter with improved geometrical adaptivity, IEEE Trans. on Geosci. and Remote Sensing, vol. 33, pp. 1245 1257, Sept. 1995.
[11] F. Argenti and L. Alparone, Speckle removal from SAR images in the undecimated wavelet domain, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 2363 2374, Nov. 2002.
[12] H. Xie, L. E. Pierce, and F. T. Ulaby, SAR speckle reduction using wavelet denoising and Markov random eld modeling, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 2196 2212, Oct. 2002.
[13] A. Achim, P. Tsakalides, and A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Trans. Geosci. and Remote Sensing, vol. 41, pp. 1773 1784, Aug. 2003.
[14] S. Solbo and T. Eltoft, Hommomorphic wavelet-based statistical despeckling of SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 42, pp. 711 721, April 2004.
[15] E. E. Kuruoglu and J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution, IEEE Trans. on Image Processing, vol. 13, pp. 527 533, April 2004.
[16] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications. New York: John Wiley and Sons, 1995.
[17] P. Tsakalides and C. L. Nikias, High-resolution autofocus techniques for SAR imaging based on fractional lower order statistics, IEE Proc.-Radar. Sonar Navig., vol. 148, pp. 267 276, Oct. 2001.
[18] G. Moser, J. Zerubia, and S. B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian scattering model, Research Report 5153, INRIA, March 2004.
[19] G. Moser, J. Zerubia, and S. B. Serpico, Dictionary-based stochastic expectationmaximization for SAR amplitude probability density function estimation, Research Report 5154, INRIA, March 2004.
[20] J. Bertrand, P. Bertrand, and J. P. Ovarlez, The mellin transform, in The Transforms and Applications Handbook (A. Poularikas, ed.), CRC Press, 1990.
[21] J. M. Nicolas, Introduction aux statistiques de deuxième espèce: applications des logmoments et des log-cumulants à l'analyse des lois d'images radar, Traitement du Signal, vol. 19, pp. 139 167, 2002.
[22] C. Tison, J. M. Nicolas, F. Tupin, and H. Maitre, A new statistical model for Markovian classi cation of urban areas in high resolution SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 42, pp. 2046 2057, Oct. 2004.
[23] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. Boston: Artech House, 1998.
[24] A. C. Frery, H.-J. Müller, C. C. F. Yanasse, and S. J. S. Sant'Anna, A model for extremely heterogeneous clutter, IEEE Trans. on Geoscience and Remote Sensing, vol. 35, pp. 648 659, May 1997.
[25] L. Gagnon and A. Jouan, Speckle ltering of SAR images - a comparative study between complex-wavelet based and standard lters, SPIE Proc. #3169, pp. 80 91, 1997.
[26] A. Achim, A. Bezerianos, and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imag., vol. 20, pp. 772 783, Aug. 2001.
[27] H. H. Arsenault and G. April, Properties of speckle integrated with a nite aperture and logarithmically transformed, J. Opt. Soc. Amer., vol. 66, pp. 1160 1163, November 1976.
[28] H. Xie, L. E. Pierce, and F. T. Ulaby, Statistical properties of logarithmically transformed speckle, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 721 727, March 2002.
[29] B. Epstein, Some applications of the Mellin transform in statistics, The Annals of Mathematical Statistics, vol. 19, pp. 370 379, Sep 1948.
[30] V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Theory of Probability and its Applications, no. 4, pp. 432 460, 1957.
[31] E. E. Kuruoglu and J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution, Proc. Asilomar Conference, Oct. 2000.
[32] F. Sattar, L. Floreby, G. Salomonsson, and B. Lövström, Image enhancement based on a nonlinear multiscale method, IEEE Trans. Image Processing, vol. 6, pp. 888 895, June 1997.
[33] M. Walessa and M. Datcu, Model-based despeckling and information extraction from SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 38, pp. 2258 2269, Sep. 2000.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:43900,
	title = {SAR image filtering based on the heavy-tailed rayleigh model},
	author = {Achim A. and Kuruoglu E.  E. and Zerubia J.},
	publisher = {Institute of Electrical and Electronics Engineers,, New York, NY , Stati Uniti d'America},
	doi = {10.1109/tip.2006.877362},
	journal = {IEEE transactions on image processing},
	volume = {15},
	pages = {2686–2693},
	year = {2006}
}