[1] M. Soumekh, Synthetic Aperture Radar Signal Processing. New York: John Wiley and Sons, 1999.
[2] J. W. Goodman, Some fundamental properties of speckle, J. Opt. Soc. Amer., vol. 66, pp. 1145 1150, November 1976.
[3] J. G. Abbott and F. L. Thurstone, Acoustic speckle: Theory and experimental analysis, Ultrason. Imag., vol. 1, pp. 303 324, 1979.
[4] A. K. Jain, Fundamental of Digital Image Processing. NJ: Prentice-Hall, 1989.
[5] V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, A model for radar images and its application to adaptive digital ltering of multiplicative noise, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 4, pp. 157 166, 1982.
[6] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, Adaptive noise smoothing lter for images with signal-dependent noise, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 7, pp. 165 177, 1985.
[7] J. S. Lee, Digital image enhancement and noise ltering by use of local statistics, IEEE Trans. on Pattern Anal. and Machine Intell., vol. 2, pp. 165 168, 1980.
[8] M. R. Azimi-Sadjadi and S. Bannour, Two-dimensional adaptive block Kalman ltering of SAR imagery, IEEE Trans. on Geosci. and Remote Sensing, vol. 29, pp. 742 753, 1991.
[9] J. Bruniquel and A. Lopes, Multi- variate optimal speckle reduction in SAR imagery, International Journal of Remote Sensing, vol. 18, pp. 603 627, Feb 1997.
[10] A. Baraldi and F. Parmigiani, A re ned Gamma MAP SAR speckle lter with improved geometrical adaptivity, IEEE Trans. on Geosci. and Remote Sensing, vol. 33, pp. 1245 1257, Sept. 1995.
[11] F. Argenti and L. Alparone, Speckle removal from SAR images in the undecimated wavelet domain, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 2363 2374, Nov. 2002.
[12] H. Xie, L. E. Pierce, and F. T. Ulaby, SAR speckle reduction using wavelet denoising and Markov random eld modeling, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 2196 2212, Oct. 2002.
[13] A. Achim, P. Tsakalides, and A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling, IEEE Trans. Geosci. and Remote Sensing, vol. 41, pp. 1773 1784, Aug. 2003.
[14] S. Solbo and T. Eltoft, Hommomorphic wavelet-based statistical despeckling of SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 42, pp. 711 721, April 2004.
[15] E. E. Kuruoglu and J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution, IEEE Trans. on Image Processing, vol. 13, pp. 527 533, April 2004.
[16] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications. New York: John Wiley and Sons, 1995.
[17] P. Tsakalides and C. L. Nikias, High-resolution autofocus techniques for SAR imaging based on fractional lower order statistics, IEE Proc.-Radar. Sonar Navig., vol. 148, pp. 267 276, Oct. 2001.
[18] G. Moser, J. Zerubia, and S. B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian scattering model, Research Report 5153, INRIA, March 2004.
[19] G. Moser, J. Zerubia, and S. B. Serpico, Dictionary-based stochastic expectationmaximization for SAR amplitude probability density function estimation, Research Report 5154, INRIA, March 2004.
[20] J. Bertrand, P. Bertrand, and J. P. Ovarlez, The mellin transform, in The Transforms and Applications Handbook (A. Poularikas, ed.), CRC Press, 1990.
[21] J. M. Nicolas, Introduction aux statistiques de deuxième espèce: applications des logmoments et des log-cumulants à l'analyse des lois d'images radar, Traitement du Signal, vol. 19, pp. 139 167, 2002.
[22] C. Tison, J. M. Nicolas, F. Tupin, and H. Maitre, A new statistical model for Markovian classi cation of urban areas in high resolution SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 42, pp. 2046 2057, Oct. 2004.
[23] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images. Boston: Artech House, 1998.
[24] A. C. Frery, H.-J. Müller, C. C. F. Yanasse, and S. J. S. Sant'Anna, A model for extremely heterogeneous clutter, IEEE Trans. on Geoscience and Remote Sensing, vol. 35, pp. 648 659, May 1997.
[25] L. Gagnon and A. Jouan, Speckle ltering of SAR images - a comparative study between complex-wavelet based and standard lters, SPIE Proc. #3169, pp. 80 91, 1997.
[26] A. Achim, A. Bezerianos, and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imag., vol. 20, pp. 772 783, Aug. 2001.
[27] H. H. Arsenault and G. April, Properties of speckle integrated with a nite aperture and logarithmically transformed, J. Opt. Soc. Amer., vol. 66, pp. 1160 1163, November 1976.
[28] H. Xie, L. E. Pierce, and F. T. Ulaby, Statistical properties of logarithmically transformed speckle, IEEE Trans. on Geosci. and Remote Sensing, vol. 40, pp. 721 727, March 2002.
[29] B. Epstein, Some applications of the Mellin transform in statistics, The Annals of Mathematical Statistics, vol. 19, pp. 370 379, Sep 1948.
[30] V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory, Theory of Probability and its Applications, no. 4, pp. 432 460, 1957.
[31] E. E. Kuruoglu and J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution, Proc. Asilomar Conference, Oct. 2000.
[32] F. Sattar, L. Floreby, G. Salomonsson, and B. Lövström, Image enhancement based on a nonlinear multiscale method, IEEE Trans. Image Processing, vol. 6, pp. 888 895, June 1997.
[33] M. Walessa and M. Datcu, Model-based despeckling and information extraction from SAR images, IEEE Trans. on Geosci. and Remote Sensing, vol. 38, pp. 2258 2269, Sep. 2000.