2018
Journal article  Open Access

Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: a preliminary study

Germanese D., Leone G. R., Moroni D., Pascali M. A., Tampucci M.

crack monitoring  image processing  Architectural heritage preservation  Close photogrammetry  Image processing  Computer Vision and Pattern Recognition  architectural heritage preservation  [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]  Computer Graphics and Computer-Aided Design  Nuclear Medicine and imaging  Electrical and Electronic Engineering  Radiology  Crack monitoring  close photogrammetry  [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]  [SPI.GCIV.STRUCT]Engineering Sciences [physics]/Civil Engineering/Structures 

This paper describes how Unmanned Aerial Vehicles (UAVs) may support the long-term monitoring of crack patterns in the context of architectural heritage preservation. In detail, this work includes: (i) a state of the art about the most used techniques in ancient structural monitoring; (ii) the description of the implemented methods, taking into account the requirements and constraints of the case study; (iii) the results of the experimentation carried out in the lab; and (iv) conclusions and future works.

Source: JOURNAL OF IMAGING 4 (2018). doi:10.3390/jimaging4080099


1. Remondino, F.; El-Hakim, S. Image-based 3D modelling: A review. Photogramm. Rec. 2006, 21, 269-291. [CrossRef]
2. Welsch, W.; Heunecke, O. Models and Terminology for the Analysis of Geodetic Monitoring Observations. In Proceedings of the FIG 10th International Symposium on Deformation Measurements, Orange, CA, USA, 19-22 March 2001; International Federation of Surveyors: Copenhagen, Denmark, 2001; Volume 25, p. 22.
3. Gruen, A.; Akca, D. Least square 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151-174. [CrossRef]
4. Cardone, A.; Gupta, S.; Karnik, M. A survey of shape similarity assessment algorithms for product desing and manifacturing applications. J. Comput. Inf. Sci. Eng. 2003, 3, 109-118. [CrossRef]
5. Armesto, J.; Arias, P.; Roca, J.; Lorenzo, H. Monitoring and assessing structural damage in historical buildings. Photogramm. Rec. 2006, 21, 269-291.
6. Eschmann, C.; Kuo, C.M.; Kuo, C.H.; Boller, C. Unmanned Aircraft Systems for Remote Building Inspection and Monitoring. In Proceedings of the 6th European Workshop on Structural Health Monitoring, Dresden, Germany, 3-6 July 2012.
7. Jahanshahi, M.R.; Masri, S.F.; Padgett, C.W.; Sukhatme, G.S. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach. Vis. Appl. 2011, 24, 227-241. [CrossRef]
8. Jahanshahi, M.R.; Masri, S.F. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart Mater. Struct. 2013, 22, 035019. [CrossRef]
9. Niemeier, W.; Riedel, B.; Fraser, C.; Neuss, H.; Stratmann, R.; Ziem, E. New Digital Crack Monitoring System or Measuring and Documentation of Width of Cracks in Concrete Structures. In Proceedings of the 13th FIG Symposium on Deformation Measurements and Analysis, Lnec, Lisbon, 12-15 May 2008.
10. Valença, J.; Dias-da Costa, D.; Júlio, E.; Araújo, H.; Costa, H. Automatic crack monitoring using photogrammetry and image processing. Measurement 2013, 46, 433-441. [CrossRef]
11. Nishiyama, S.; Minakata, N.; Kikuchi, T.; Yano, T. Improved digital photogrammetry technique for crack monitoring. Adv. Eng. Inform. 2015, 29, 851-858. [CrossRef]
12. Shortis, M.R.; Seager, J.W. A practical target recognition system for close range photogrammetry. Photogramm. Rec. 2014, 29, 337-355. [CrossRef]
13. Benning, W.; Görtz, S.; Lange, J.; Schwermann, R.; Chudoba, R. Development of an algorithm for automatic analysis of deformation of reinforced concrete structures using photogrammetry. VDI Ber. 2003, 1757, 411-418.
14. Jahanshahi, M.R.; Kelly, J.S.; Masri, S.F.; Sukhatme, G.S. A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Struct. Infrastruct. Eng. 2009, 5, 455-486. [CrossRef]
15. Ellenberg, A.; Kontsos, A.; Bartoli, I.; Pradhan, A. Masonry Crack Detection Application of an Unmanned Aerial Vehicle. In Proceedings of the ASCE 2014 Computing in Civil and Building Engineering, Orlando, FL, USA, 23-25 June 2014.
16. Garrido-Jurado, S.; noz Salinas, R.M.; Madrid-Cuevas, F.; Marín-Jiménez, M. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280-2292, doi:10.1016/j.patcog.2014.01.005. [CrossRef] Munoz-Salinas, R.; Marin-Jimenez, M.J.; Yeguas-Bolivar, E.; Medina-Carnicer, R. Mapping and localization from planar markers. Pattern Recognit. 2018, 73, 158-171. [CrossRef] Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003.
Garrido-Jurado, S.; noz Salinas, R.M.; Madrid-Cuevas, F.; Medina-Carnicer, R. Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit. 2016, 51, 481-491, doi:10.1016/j.patcog.2015.09.023. [CrossRef]

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:397421,
	title = {Long-term monitoring of crack patterns in historic structures using UAVs and planar markers: a preliminary study},
	author = {Germanese D. and Leone G. R. and Moroni D. and Pascali M. A. and Tampucci M.},
	doi = {10.3390/jimaging4080099},
	journal = {JOURNAL OF IMAGING},
	volume = {4},
	year = {2018}
}