2019
Journal article  Open Access

A pilot study of infrared thermography based assessment of local skin temperature response in overweight and lean women during oral glucose tolerance test

Bushra J., Hartwig V., Moroni D., Salvetti O., Benassi A., Jalil Z., Pistoia L., Tegrimi T., Minutoli S., Quinones-Galvan A., Iervasi G., L'Abbate A., Guiducci L.

Infrared thermography  regional skin temperature  infrared thermography  Obesity in females  Oral glucose tolerance test (OGTT)  obesity in females  [INFO.INFO-BT]Computer Science [cs]/Biotechnology  Article  [INFO.INFO-IM]Computer Science [cs]/Medical Imaging  General Medicine  Regional skin temperature  oral glucose tolerance test (OGTT) 

Obesity is recognized as a major public health issue, as it is linked to the increased risk of severe pathological conditions. The aim of this pilot study is to evaluate the relations between adiposity (and biophysical characteristics) and temperature profiles under thermoneutral conditions in normal and overweight females, investigating the potential role of heat production/dissipation alteration in obesity. We used Infrared Thermography (IRT) to evaluate the thermogenic response to a metabolic stimulus performed with an oral glucose tolerance test (OGTT). Thermographic images of the right hand and of the central abdomen (regions of interests) were obtained basally and during the oral glucose tolerance test (3 h OGTT with the ingestion of 75 g of oral glucose) in normal and overweight females. Regional temperature vs BMI, % of body fat and abdominal skinfold were statistically compared between two groups. The study showed that mean abdominal temperature was significantly greater in lean than overweight participants (34.11 +/- 0.70 degrees C compared with 32.92 +/- 1.24 degrees C, p < 0.05). Mean hand temperature was significantly greater in overweight than lean subjects (31.87 +/- 3.06 degrees C compared with 28.22 +/- 3.11 degrees C, p < 0.05). We observed differences in temperature profiles during OGTT between lean and overweight subjects: The overweight individuals depict a flat response as compared to the physiological rise observed in lean individuals. This observed difference in thermal pattern suggests an energy rate imbalance towards nutrients storage of the overweight subjects.

Source: Journal of clinical medicine 8 (2019). doi:10.3390/jcm8020260

Publisher: MDPI, Basel, Svizzera


1. Agha, M.; Agha, R. The rising prevalence of obesity. Int. J. Surg. Oncol. 2017, 2, e17. [CrossRef] [PubMed]
2. Salvetti, O. Workshop on Advanced Infrared Technology and Application (AITA 7) 9-11 September 2003 Pisa, Italy. Infrared Phys. Technol. 2004, 46, 1-190.
3. Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221-235. [CrossRef]
4. Savastano, D.M.; Gorbach, A.M.; Eden, H.S.; Brady, S.M.; Reynolds, J.C.; Yanovski, J.A. Adiposity and human regional body temperature. Am. J. Clin. Nutr. 2009, 90, 1124-1131. [CrossRef] [PubMed]
5. Chudecka, M.; Lubkowska, A.; Kempi n´ska-Podhorodecka, A. Body surface temperature distribution in relation to body composition in obese women. J. Therm. Biol. 2014, 43, 1-6. [CrossRef] [PubMed]
6. Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.-J.; Enerbäck, S.; et al. Functional Brown Adipose Tissue in Healthy Adults. N. Engl. J. Med. 2009, 360, 1518-1525. [CrossRef]
7. Hartwig, V.; Guiducci, L.; Marinelli, M.; Pistoia, L.; Tegrimi, T.M.; Iervasi, G.; Quinones-Galvan, A.; L'Abbate, A. Multimodal Imaging for the Detection of Brown Adipose Tissue Activation in Women: A Pilot Study Using NIRS and Infrared Thermography. J. Healthc. Eng. 2017, 2017. [CrossRef]
8. Prentice, A.M.; Black, A.E.; Coward, W.A.; Davies, H.L.; Goldberg, G.R.; Murgatroyd, P.R.; Ashford, J.; Sawyer, M.; Whitehead, R.G. High levels of energy expenditure in obese women. Br. Med. J. 1986, 292, 983-987. [CrossRef]
9. Bloesch, D.; Schutz, Y.; Breitenstein, E.; Jéquier, E.; Felber, J.P. Thermogenic response to an oral glucose load in man: Comparison between young and elderly subjects. J. Am. Coll. Nutr. 1988, 7, 471-483. [CrossRef]
10. Laville, M.; Cornu, C.; Normand, S.; Mithieux, G.; Beylot, M.; Riou, J.P. Decreased glucose-induced thermogenesis at the onset of obesity. Am. J. Clin. Nutr. 1993, 57, 851-856. [CrossRef]
11. Claessens-van Ooijen, A.M.J.J.; Westerterp, K.R.; Wouters, L.; Schoffelen, P.F.M.M.; van Steenhoven, A.A.; van Marken Lichtenbelt, W.D. Heat production and body temperature during cooling and rewarming in overweight and lean men. Obesity 2006, 14, 1914-1920. [CrossRef] [PubMed]
12. Kreith, F.; Manglik, R.M.; Bohn, M. Principles of Heat Transfer; Cengage Learning: Andover, UK, 2011; ISBN 1439061866.
13. Bernard, V.; Staffa, E.; Mornstein, V.; Bourek, A. Infrared camera assessment of skin surface temperature-effect of emissivity. Phys. Med. 2013, 29, 583-591. [CrossRef] [PubMed]
14. Fluke Corporation Ti9, Ti10, Ti25, TiRx, TiR and TiR1: Users manual. 2010. Available online: https: //dam-assets.fluke.com/s3fs-public/ti10____umeng0200.pdf (accessed on 9 January 2019).
15. Durnin, J.V.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr. 1974, 32, 77-97. [CrossRef] [PubMed]
16. Anderwald, C.; Gastaldelli, A.; Tura, A.; Krebs, M.; Promintzer-Schifferl, M.; Kautzky-Willer, A.; Stadler, M.; DeFronzo, R.A.; Pacini, G.; Bischof, M.G. Mechanism and Effects of Glucose Absorption during an Oral Glucose Tolerance Test Among Females and Males. J. Clin. Endocrinol. Metab. 2011, 96, 515-524. [CrossRef]
17. Heuberger, R.; Kinnicutt, P.; Domina, T. The relationship between thermal imaging and waist circumference in young adults. Health 2012, 04, 1485-1491. [CrossRef]
18. Song, E.; Kim, E.; Kim, K.; Cho, J.; Song, M.-Y. Correlation between Abdominal Fat Distribution and Abdominal Temperature in Korean Premenopausal Obese Women. J. Korean Med. 2013, 34, 1-9. [CrossRef]
19. Ang, Q.Y.; Goh, H.J.; Cao, Y.; Li, Y.; Chan, S.P.; Swain, J.L.; Henry, C.J.; Leow, M.K.S. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J. Physiol. Sci. 2017, 67, 395-406. [CrossRef] [PubMed]
20. El Hadi, H.; Frascati, A.; Granzotto, M.; Silvestrin, V.; Ferlini, E.; Vettor, R.; Rossato, M. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. Physiol. Meas. 2016, 37, N118-N128. [CrossRef] [PubMed]
21. Law, J.M.; Morris, D.E.; Engbeaya, C.I.; Salem, V.; Coello, C.; Robinson, L.; Jayasinghe, M.; Scott, R.; Gunn, R.; Rabiner, E.; et al. Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans. J. Nucl. Med. 2017, 59. [CrossRef]
22. Symonds, M.E.; Budge, H. How promising is thermal imaging in the quest to combat obesity? Imaging Med. 2012, 4, 589-591. [CrossRef]
23. Frim, J.; Livingstone, S.D.; Reed, L.D.; Nolan, R.W.; Limmer, R.E. Body composition and skin temperature variation. J. Appl. Physiol. 1990, 68, 540-543. [CrossRef] [PubMed]
24. Chudecka, M.; Lubkowska, A. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa. Eur. Eat. Disord. Rev. 2016, 24, 57-61. [CrossRef] [PubMed]
25. Chierighini Salamunes, C.A.; Wan Stadnik, A.M.; Neves, E.B. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J. Therm. Biol. 2017, 66, 1-9. [CrossRef] [PubMed]
26. Winslow, C.; Herrington, L.; Gagge, A. Physiological reactions of the human body to varying environmental temperatures. Am. J. Physiol. 1937, 120, 1-22. [CrossRef]
27. Ho, K.K.Y. Diet-induced thermogenesis: Fake friend or foe? J. Endocrinol. 2018, 238, R185-R191. [CrossRef] [PubMed]
28. Domina, T.; Kinnicutt, P.; Macgillivray, M. Thermal Pattern Variations Analyzed Using 2D/3D Mapping Techniques among Females. Design 2011, 7, 1-15.
Agha, M., Agha, R.. The rising prevalence of obesity. Int. J. Surg. Oncol.. 2017; 2: e17
Salvetti, O.. Workshop on Advanced Infrared Technology and Application (AITA 7) 9–11 September 2003 Pisa, Italy. Infrared Phys. Technol.. 2004; 46: 1-190
Lahiri, B.B., Bagavathiappan, S., Jayakumar, T., Philip, J.. Medical applications of infrared thermography: A review. Infrared Phys. Technol.. 2012; 55: 221-235
Savastano, D.M., Gorbach, A.M., Eden, H.S., Brady, S.M., Reynolds, J.C., Yanovski, J.A.. Adiposity and human regional body temperature. Am. J. Clin. Nutr.. 2009; 90: 1124-1131
Chudecka, M., Lubkowska, A., Kempińska-Podhorodecka, A.. Body surface temperature distribution in relation to body composition in obese women. J. Therm. Biol.. 2014; 43: 1-6
Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N.-J., Enerbäck, S.. Functional Brown Adipose Tissue in Healthy Adults. N. Engl. J. Med.. 2009; 360: 1518-1525
Hartwig, V., Guiducci, L., Marinelli, M., Pistoia, L., Tegrimi, T.M., Iervasi, G., Quinones-Galvan, A., L’Abbate, A.. Multimodal Imaging for the Detection of Brown Adipose Tissue Activation in Women: A Pilot Study Using NIRS and Infrared Thermography. J. Healthc. Eng.. 2017: 2017
Prentice, A.M., Black, A.E., Coward, W.A., Davies, H.L., Goldberg, G.R., Murgatroyd, P.R., Ashford, J., Sawyer, M., Whitehead, R.G.. High levels of energy expenditure in obese women. Br. Med. J.. 1986; 292: 983-987
Bloesch, D., Schutz, Y., Breitenstein, E., Jéquier, E., Felber, J.P.. Thermogenic response to an oral glucose load in man: Comparison between young and elderly subjects. J. Am. Coll. Nutr.. 1988; 7: 471-483
Laville, M., Cornu, C., Normand, S., Mithieux, G., Beylot, M., Riou, J.P.. Decreased glucose-induced thermogenesis at the onset of obesity. Am. J. Clin. Nutr.. 1993; 57: 851-856
Claessens-van Ooijen, A.M.J.J., Westerterp, K.R., Wouters, L., Schoffelen, P.F.M.M., van Steenhoven, A.A., van Marken Lichtenbelt, W.D.. Heat production and body temperature during cooling and rewarming in overweight and lean men. Obesity. 2006; 14: 1914-1920
Kreith, F., Manglik, R.M., Bohn, M.. Principles of Heat Transfer. 2011
Bernard, V., Staffa, E., Mornstein, V., Bourek, A.. Infrared camera assessment of skin surface temperature--effect of emissivity. Phys. Med.. 2013; 29: 583-591
Fluke Corporation Ti9, Ti10, Ti25, TiRx, TiR and TiR1: Users manual. 2010
Durnin, J.V., Womersley, J.. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br. J. Nutr.. 1974; 32: 77-97
Anderwald, C., Gastaldelli, A., Tura, A., Krebs, M., Promintzer-Schifferl, M., Kautzky-Willer, A., Stadler, M., DeFronzo, R.A., Pacini, G., Bischof, M.G.. Mechanism and Effects of Glucose Absorption during an Oral Glucose Tolerance Test Among Females and Males. J. Clin. Endocrinol. Metab.. 2011; 96: 515-524
Heuberger, R., Kinnicutt, P., Domina, T.. The relationship between thermal imaging and waist circumference in young adults. Health. 2012; 04: 1485-1491
Song, E., Kim, E., Kim, K., Cho, J., Song, M.-Y.. Correlation between Abdominal Fat Distribution and Abdominal Temperature in Korean Premenopausal Obese Women. J. Korean Med.. 2013; 34: 1-9
Ang, Q.Y., Goh, H.J., Cao, Y., Li, Y., Chan, S.P., Swain, J.L., Henry, C.J., Leow, M.K.S.. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J. Physiol. Sci.. 2017; 67: 395-406
El Hadi, H., Frascati, A., Granzotto, M., Silvestrin, V., Ferlini, E., Vettor, R., Rossato, M.. Infrared thermography for indirect assessment of activation of brown adipose tissue in lean and obese male subjects. Physiol. Meas.. 2016; 37: N118-N128
Law, J.M., Morris, D.E., Engbeaya, C.I., Salem, V., Coello, C., Robinson, L., Jayasinghe, M., Scott, R., Gunn, R., Rabiner, E.. Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans. J. Nucl. Med.. 2017; 59
Symonds, M.E., Budge, H.. How promising is thermal imaging in the quest to combat obesity?. Imaging Med.. 2012; 4: 589-591
Frim, J., Livingstone, S.D., Reed, L.D., Nolan, R.W., Limmer, R.E.. Body composition and skin temperature variation. J. Appl. Physiol.. 1990; 68: 540-543
Chudecka, M., Lubkowska, A.. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa. Eur. Eat. Disord. Rev.. 2016; 24: 57-61
Chierighini Salamunes, C.A., Wan Stadnik, A.M., Neves, E.B.. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography. J. Therm. Biol.. 2017; 66: 1-9
Winslow, C., Herrington, L., Gagge, A.. Physiological reactions of the human body to varying environmental temperatures. Am. J. Physiol.. 1937; 120: 1-22
Ho, K.K.Y.. Diet-induced thermogenesis: Fake friend or foe?. J. Endocrinol.. 2018; 238: R185-R191
Domina, T., Kinnicutt, P., Macgillivray, M.. Thermal Pattern Variations Analyzed Using 2D/3D Mapping Techniques among Females. Design. 2011; 7: 1-15

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:416384,
	title = {A pilot study of infrared thermography based assessment of local skin temperature response in overweight and lean women during oral glucose tolerance test},
	author = {Bushra J. and Hartwig V. and Moroni D. and Salvetti O. and Benassi A. and Jalil Z. and Pistoia L. and Tegrimi T. and Minutoli S. and Quinones-Galvan A. and Iervasi G. and L'Abbate A. and Guiducci L.},
	publisher = {MDPI, Basel, Svizzera},
	doi = {10.3390/jcm8020260},
	journal = {Journal of clinical medicine},
	volume = {8},
	year = {2019}
}