[1] K. Kayabol, E. E. Kuruoglu and B. Sankur, “Bayesian separation of images modelled with MRFs using MCMC,” IEEE Trans. Image Process., vol.18, no.5, pp. 982-994, May 2009.
[2] K. Kayabol, and E. E. Kuruoglu, and B. Sankur, “Image Source Separation using Color Channel Dependencies,” in ICA 2009, LNCS, vol. 5441, pp. 499-506, Paraty, Brasil, Springer-Verlag, 2009.
[3] J.-F. Cardoso, “The three easy routes to independent component analysis; Contrasts and Geometry,” in Int. Conf. on Indepen. Comp. Anal. ICA'01, San Diego, Dec. 2001.
[4] Student (W. S. Gosset), “The probable error of a mean,” Biometrika, vol.6, no.1, pp. 1-25, 1908.
[5] D. Higdon, Spatial Applications of Markov Chain Monte Carlo for Bayesian Inference. PhD Thesis, University of Washingthon, 1994.
[6] I. Prudyus, S. Voloshynovskiy and A. Synyavskyy, “Wavelet-based MAP image denoising using provably better class of stochastic i.i.d. images models,” in Int. Conf. on Telecomm. in Modern Satell., Cable and Broadcas. TELSIKS'01, pp. 583-586, Sep. 2001.
[7] G. Chantas, N. Galatsanos, A. Likas and M. Saunders, “Variational Bayesian image restoration based on a product of t-distributions image priors,” IEEE Trans. Image Process., vol.17, no.10, pp. 1795-1805, Oct. 2008.
[8] D. Tzikas, A. Likas and N. Galatsanos, “Variational Bayesian sparse kernel-based blind image deconvolution with Student's-t priors,” IEEE Trans. Image Process., vol.18, no.4, pp. 753-764, Apr. 2009.
[9] C. Fevotte and S. J. Godsill “A Bayesian approach for blind separation of sparse sources,” IEEE Trans. Audio, Speech Language Process., vol. 14, no. 6, pp. 2174-2188, Nov. 2006.
[10] T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors,” IEEE Trans. Medical Imaging, vol.8, no.2, pp. 194-202, June 1989.
[11] D. B. Rowe, “A Bayesian approach to blind source separation,” Journal of Interdisciplinary Mathematics, vol.5, no.1, 2002.
[12] K. H. Knuth, “A Bayesian approach to source separation, ” in Int. Conf. on Indepen. Comp. Anal. ICA'99, pp. 283-288, Jan. 1999.
[13] A. Mohammad-Djafari, “A Bayesian approach to source separation,” in Int. Workshop on Maximum Entropy and Bayesian Methods, MaxEnt'99, July, 1999.
[14] A. Tonazzini, L. Bedini, and E. Salerno “A Markov model for blind image separation by a mean-field EM algorithm,” IEEE Trans. Image Process., vol. 15, pp. 473-482, Feb. 2006.
[15] E. E. Kuruoglu, A. Tonazzini, and L. Bianchi, “Source separation in noisy astrophysical images modelled by Markov random fields,” in Int. Conf. on Image Proc. ICIP'04, pp. 24-27, Oct., 2004.
[16] P. Langevin, “Sur la theorie du mouvement brownien,” (On the theory of Brownian motion), C.R. Acad. Sci., (Paris), vol. 146, pp. 530-533, 1908.
[17] R.J. Rossky, J.D. Doll, and H.L. Friedman, “Brownian dynamics as a smart Monte Carlo simulation,” J. Chem. Phys., vol. 69, pp. 4628-4633, 1978.
[18] R.M. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,” Tech. Rep. CRG-TR-93-1, Dept. Comp. Scien., University of Toronto”, Sep. 1993.
[19] D.M. Higdon, J.E. Bowsher, V.E. Johnson, T.G. Turkington, D.R. Gilland, and R. J. Jaszczak”, “Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data,” IEEE Trans. Medical Imaging, vol. 16, no. 5, pp. 516-516, Oct. 1997.
[20] X. Descombes, R.D. Morris, J. Zerubia, and M. Berthod, “Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood,” IEEE Trans. Image Process.”, vol. 8, no. 7, pp. 954-963, July 1999.
[21] R. Molina, A. K. Katsaggelos and J. Mateos, “Bayesian and regularization methods for hyperparameter estimation in image restoration,” IEEE Trans. Image Process.”, vol. 8, no. 2, pp. 231-246, Feb. 1999.
[22] K. Kayabol, E. E. Kuruoglu, B. Sankur, E. Salerno and L. Bedini, “Fast MCMC separation for MRF Modelled astrophysical components,” in Int. Conf. on Image Proc. ICIP'09, pp. 2769-2772, Nov. 2009.
[23] Planck Science Team, “PLANCK: The scientific programme,” European Space Agency (ESA), 2005. [Online]. Available: http://www.esa.int/SPECIALS/Planck/index.html
[24] W. Hu and S. Dodelson, Cosmic Microwave Background Anisotropies, Annual Review of Astronomy and Astrophysics, vol. 40, pp. 171-216, 2002.
[25] C. Baccigalupi, L. Bedini, C. Burigana, G. De Zotti, A. Farusi, D. Maino, M. Maris, F. Perrotta, E. Salerno, L. Toffolatti, A. Tonazzini “Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps,” Mon. Not. Royal Astronom. Soc., vol.318, pp. 769-780, 2000.
[26] C. A. Bonaldi, L. Bedini, E. Salerno, C. Baccigalupi, and G. De Zotti, “Estimating the spectral indices of correlated astrophysical foregrounds by a second-order statistical approach,” Mon. Not. Royal Astronom. Soc., vol.373, 271-279, 2006.
[27] G. E. Hinton,“Products of experts,” in Int. Conf. on Artificial Neural Net. ICANN'99, vol. 1, pp. 1-6, 1999.
[28] U. Grenander and M. I. Miller, “Representations of knowledge in complex systems (with discussion), ” J. R. Statist. Soc. B”, vol. 56, pp. 549-603, 1994.
[29] P. Dostert, Y. Efendiev, T. Y. Hou and W. Luo, “Coarse-gradient Langevin algorithms for dynamic data integration and uncertainty quantification, ” J. Comput. Phys.”, vol. 217, pp. 123-142, 2006.
[30] C. Liu and D. B. Rubin, “ML estimation of the t distribution using EM and its extensions, ECM and ECME,” Statistica Sinica”, vol. 5, pp. 19-39, 1995.
[31] L. Bedini, and E. Salerno, “Extracting astrophysical source from channel-dependent convolutional mixtures by correlated component analysis in the frequency domain,” in Lecture Notes in Artificial Intelligence, vol. 4694, pp. 9-16, Springer-Verlag, 2007.
[32] National Aeronautics and Space Administration, “Cosmic Background Explorer,” NASA. [Online]. Available: http://lambda.gsfc.nasa.gov/product/cobe/
[33] National Aeronautics and Space Administration, “Wilkinson Microwave Anisotropy Probe,” NASA. [Online]. Available: http://map.gsfc.nasa.gov/
[34] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika”, vol. 57, no. 1, pp. 97-109, Apr. 1970.
[35] S. Becker and Y. Le Cun, “Improving the convergence of backpropagation learning with second-order methods,” in Proc. of the 1988 Connectionist Models Summer School, pp. 29-37, 1989.
[36] L. Bedini, D. Herranz, E. Salerno, C. Baccigalupi, E. Kuruoglu, A. Tonazzini, ”Separation of correlated astrophysical sources using multiplelag data covariance matrices”, Eurasip J. on Appl. Sig. Proc., vol. 2005, no. 15, pp. 2400-2412, Aug. 2005.
[37] K. M. Go´rski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, M. Bartelmann, ”HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere”, The Astrophysical Journal, vol 622, Issue 2, pp. 759-771, 2005.