2022
Journal article  Open Access

Tweet sentiment quantification: an experimental re-evaluation

Moreo A., Sebastiani F.

Quantification  Learning to quantify 

Sentiment quantification is the task of training, by means of supervised learning, estimators of the relative frequency (also called "prevalence") of sentiment-related classes (such as Positive, Neutral, Negative) in a sample of unlabelled texts. This task is especially important when these texts are tweets, since the final goal of most sentiment classification efforts carried out on Twitter data is actually quantification (and not the classification of indi- vidual tweets). It is well-known that solving quantification by means of "classify and count" (i.e., by classifying all unlabelled items by means of a standard classifier and counting the items that have been assigned to a given class) is less than optimal in terms of accuracy, and that more accurate quantification methods exist. Gao and Sebastiani 2016 carried out a systematic comparison of quantification methods on the task of tweet sentiment quantifica- tion. In hindsight, we observe that the experimentation carried out in that work was weak, and that the reliability of the conclusions that were drawn from the results is thus question- able. We here re-evaluate those quantification methods (plus a few more modern ones) on exactly the same datasets, this time following a now consolidated and robust experimental protocol (which also involves simulating the presence, in the test data, of class prevalence values very different from those of the training set). This experimental protocol (even without counting the newly added methods) involves a number of experiments 5,775 times larger than that of the original study. Due to the above-mentioned presence, in the test data, of samples characterised by class prevalence values very different from those of the training set, the results of our experiments are dramatically different from those obtained by Gao and Sebastiani, and provide a different, much more solid understanding of the relative strengths and weaknesses of different sentiment quantification methods.

Source: PloS one 17 (2022). doi:10.1371/journal.pone.0263449

Publisher: Public Library of Science, San Francisco, CA , Stati Uniti d'America


Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:470923,
	title = {Tweet sentiment quantification: an experimental re-evaluation},
	author = {Moreo A. and Sebastiani F.},
	publisher = {Public Library of Science, San Francisco, CA , Stati Uniti d'America},
	doi = {10.1371/journal.pone.0263449},
	journal = {PloS one},
	volume = {17},
	year = {2022}
}

AI4Media
A European Excellence Centre for Media, Society and Democracy

SoBigData-PlusPlus
SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics


OpenAIRE