[1] L. Chen, M. Ali Babar, and N. Ali, “Variability management in software product lines: a systematic review,” in SPLC'13. Carnegie Mellon University, 2009, pp. 81-90.
[2] S. B. Nasr, G. Be´can, M. Acher, J. B. Ferreira Filho, N. Sannier, B. Baudry, and J.-M. Davril, “Automated extraction of product comparison matrices from informal product descriptions,” JSS, vol. 124, pp. 82-103, 2017.
[3] A. Ferrari, G. O. Spagnolo, and F. Dell'Orletta, “Mining commonalities and variabilities from natural language documents,” in SPLC'13. ACM, 2013, pp. 116-120.
[4] Y. Li, S. Schulze, and G. Saake, “Reverse engineering variability from natural language documents: A systematic literature review,” in SPLC'17. ACM, 2017, pp. 133-142.
[5] N. Itzik, I. Reinhartz-Berger, and Y. Wand, “Variability analysis of requirements: Considering behavioral differences and reflecting stakeholders perspectives,” IEEE Transactions on Software Engineering, vol. 42, no. 7, pp. 687-706, 2016.
[6] N. H. Bakar, Z. M. Kasirun, and N. Salleh, “Feature extraction approaches from natural language requirements for reuse in software product lines: A systematic literature review,” JSS, vol. 106, pp. 132- 149, 2015.
[7] A. Fantechi, S. Gnesi, and L. Semini, “Ambiguity defects as variation points in requirements,” in VAMOS '17. New York, NY, USA: ACM, 2017, pp. 13-19.
[8] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini, “Hacking an ambiguity detection tool to extract variation points: an experience report,” in VAMOS'18. ACM, 2018, pp. 43-50.
[9] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An automatic quality evaluation for natural language requirements,” in REFSQ'01, vol. 1, 2001, pp. 4-5.
[10] S. Gnesi, G. Lami, and G. Trentanni, “An automatic tool for the analysis of natural language requirements,” Comput. Syst. Sci. Eng., vol. 20, no. 1, 2005.
[11] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh, “Speculative requirements: Automatic detection of uncertainty in natural language requirements,” in RE'12. IEEE, 2012, pp. 11-20.
[12] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity as a resource to disclose tacit knowledge,” in RE'15. IEEE, 2015, pp. 26-35.
[13] D. M. Berry, A. Bucchiarone, S. Gnesi, G. Lami, and G. Trentanni, “A new quality model for natural language requirements specifications,” in REFSQ'06, 2006, pp. 115-128.
[14] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “PURE: A dataset of public requirements documents,” in RE'17. IEEE, 2017, pp. 502-505.
[15] J. L. Fleiss, B. Levin, and M. C. Paik, The measurement of interrater agreement. Wiley Online Library, 2004.
[16] J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” biometrics, pp. 159-174, 1977.
[17] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta, and S. Bacherini, “Using NLP to detect requirements defects: An industrial experience in the railway domain,” in REFSQ'17. Springer, 2017, pp. 344-360.
[18] H. Femmer, D. M. Ferna´ndez, S. Wagner, and S. Eder, “Rapid quality assurance with requirements smells,” JSS, vol. 123, pp. 190-213, 2017.
[19] S. F. Tjong and D. M. Berry, “The design of SREE - a prototype potential ambiguity finder for requirements specifications and lessons learned,” in REFSQ'13. Springer, 2013, pp. 80-95.