2020
Report  Open Access

Le biblioteche italiane durante la pandemia COVID-19: un'indagine sui servizi

Giannini S., Lombardi S., Molino A.

COVID-19  Computer Science - Social and Information Networks  Computer Science - Machine Learning  Retail market data  Library management  seasonal influenza  forecasting  Digital libraries  Library services  Computer Science - Artificial Intelligence 

A causa della pandemia causata dal Covid-19, dalla metà del mese di febbraio le biblioteche in Italia hanno iniziato gradualmente a chiudere al pubblico. In un lasso di tempo molto breve, i bibliotecari italiani si sono trovati a dover implementare soluzioni diverse per garantire l'erogazione dei servizi e il supporto all'utenza anche da remoto. Lo scopo della nostra indagine è quello di fornire una fotografia della situazione in cui si sono trovate ad operare le biblioteche italiane durante la fase 1 della pandemia, in particolare nel periodo marzo-aprile 2020. Abbiamo cercato di capire in che modo i bibliotecari italiani hanno reagito alle sfide poste da questa particolare e improvvisa situazione, e in quale misura le modalità eccezionali adottate durante l'emergenza possano diventare degli standard lavorativi nel futuro. Per raggiungere questo obiettivo, abbiamo proposto alla comunità dei bibliotecari italiani un questionario strutturato in tredici sezioni, ciascuna corrispondente a un aspetto specifico che intendevamo analizzare. Abbiamo collezionato 1134 risposte anonime in undici giorni, provenienti dall'intero panorama bibliotecario italiano. I risultati ci hanno dimostrato che i bibliotecari italiani si sono adattati abbastanza rapidamente alla nuova realtà lavorativa con un grado di difficoltà medio. In generale, c'è stato un uso estensivo dei mezzi digitali. Inoltre, nonostante le comunicazioni con l'utenza siano state principalmente virtuali, la consapevolezza del pubblico nei confronti della biblioteca e dei suoi servizi sembrerebbe essere rimasta quantomeno stabile, se non aumentata. La maggior parte dei compilatori ritiene che quanto sperimentato durante la fase 1 dell'emergenza porterà sicuramente a delle conseguenze nella vita delle biblioteche e per le modalità lavorative dei bibliotecari anche nel futuro.

Source: ISTI Technical Report, ISTI-2020-TR/012, 2020


Citations

1. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences. 2012;109(50):20425{20430.
2. Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human populations: a scoping review. PloS one. 2014;9(4):e94130.
3. Nsoesie E, Mararthe M, Brownstein J. Forecasting peaks of seasonal influenza epidemics. PLoS currents. 2013;5.
4. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the 2012{2013 season. Nature communications. 2013;4:2837.
5. Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza transmission dynamics. Proceedings of the National Academy of Sciences. 2015;112(9):2723{2728.
6. Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PloS one. 2010;5(3):e9450.
7. Adhikari B, Xu X, Ramakrishnan N, Prakash BA. Epideep: Exploiting embeddings for epidemic forecasting. In: KDD 2019; 2019. p. 577{586.
8. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457.
9. Lazer D, Kennedy R, King G, Vespignani A. The Parable of Google Flu: Traps in Big Data Analysis. Science Magazine. 2014;343(6176):1203{1205.
10. Santillana M, Zhang DW, Althouse BM, Ayers JW. What can digital disease detection learn from (an external revision to) Google Flu Trends? American journal of preventive medicine. 2014;47(3):341{347.
11. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS computational biology. 2013;9(10):e1003256.
12. Preis T, Moat HS. Adaptive nowcasting of influenza outbreaks using Google searches. Royal Society open science. 2014;1(2):140095.
13. Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences. 2015;112(47):14473{14478.
14. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining Search Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLOS Computational Biology. 2015;11(10):e1004513.
15. Zhang Q, Perra N, Perrotta D, Tizzoni M, Paolotti D, Vespignani A. Forecasting seasonal influenza fusing digital indicators and a mechanistic disease model. In: Proceedings of the 26th international conference on world wide web; 2017. p. 311{319.
16. Ertem Z, Raymond D, Meyers LA. Optimal multi-source forecasting of seasonal influenza. PLoS computational biology. 2018;14(9):e1006236.
17. Nagar R, Yuan Q, Freifeld CC, Santillana M, Nojima A, Chunara R, et al. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives. Journal of medical Internet research. 2014;16(10).
18. Yang S, Santillana M, Brownstein JS, Gray J, Richardson S, Kou S. Using electronic health records and Internet search information for accurate influenza forecasting. BMC infectious diseases. 2017;17(1):332.
19. Lu FS, Hou S, Baltrusaitis K, Shah M, Leskovec J, Hawkins J, et al. Accurate influenza monitoring and forecasting using novel Internet data streams: a case study in the Boston Metropolis. JMIR public health and surveillance. 2018;4(1):e4.
20. Kandula S, Hsu D, Shaman J. Subregional nowcasts of seasonal influenza using search trends. Journal of medical Internet research. 2017;19(11):e370.
21. Shaman J, Pitzer VE, Viboud C, Grenfell BT, Lipsitch M. Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol. 2010;8(2):e1000316.
22. McIver DJ, Brownstein JS. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS computational biology. 2014;10(4):e1003581.
23. Nsoesie EO, Buckeridge DL, Brownstein JS. Guess who's not coming to dinner? Evaluating online restaurant reservations for disease surveillance. Journal of medical Internet research. 2014;16(1):e22.
24. Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big data for infectious disease surveillance and modeling. The Journal of infectious diseases. 2016;214:S375{S379.
25. Caldwell WK, Fairchild G, Del Valle SY. Nowcasting Influenza Incidence with CDC Web Traffic Data: A Demonstration Using a Novel Data Set. arXiv preprint arXiv:190404931. 2019;.
26. Gencoglu O, Ermes M. Predicting the Flu from Instagram. arXiv preprint arXiv:181110949. 2018;.
27. Tran TQ, Sakuma J. Seasonal-adjustment Based Feature Selection Method for Predicting Epidemic with Large-scale Search Engine Logs. In: KDD 2019; 2019. p. 2857{2866.
28. Leuba SI, Yaesoubi R, Antillon M, Cohen T, Zimmer C. Tracking and predicting US influenza activity with a real-time surveillance network. PLOS Computational Biology. 2020;16(11):e1008180.
29. Al Hossain F, Lover AA, Corey GA, Reich NG, Rahman T. FluSense: a contactless syndromic surveillance platform for influenza-like illness in hospital waiting areas. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 2020;4(1):1{28.
30. Li Z, Liu T, Zhu G, Lin H, Zhang Y, He J, et al. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China. PLOS Neglected Tropical Diseases. 2017;11(3):e0005354.
31. McGough SF, Brownstein JS, Hawkins JB, Santillana M. Forecasting Zika incidence in the 2016 Latin America outbreak combining traditional disease surveillance with search, social media, and news report data. PLoS Neglected Tropical Diseases. 2017;11(1):e0005295.
32. Zhao Y, Xu Q, Chen Y, Tsui KL. Using Baidu index to nowcast hand-foot-mouth disease in China: a meta learning approach. BMC Infectious Diseases. 2018;18(1):398.
33. Aiken EL, McGough SF, Majumder MS, Wachtel G, Nguyen AT, Viboud C, et al. Real-time estimation of disease activity in emerging outbreaks using internet search information. PLoS computational biology. 2020;16(8):e1008117.
34. Hamzah FB, Lau C, Nazri H, Ligot D, Lee G, Tan C, et al. CoronaTracker: worldwide COVID-19 outbreak data analysis and prediction. Bull World Health Organ. 2020;1:32.
35. Liu D, Clemente L, Poirier C, Ding X, Chinazzi M, Davis J, et al. Real-time forecasting of the COVID-19 outbreak in Chinese provinces: machine learning approach using novel digital data and estimates from mechanistic models. Journal of medical Internet research. 2020;22(8):e20285.
36. Ayyoubzadeh SM, Ayyoubzadeh SM, Zahedi H, Ahmadi M, Kalhori SRN. Predicting COVID19 incidence through analysis of google trends data in iran: data mining and deep learning pilot study. JMIR Public Health and Surveillance. 2020;6(2):e18828.
37. Mackey T, Purushothaman V, Li J, Shah N, Nali M, Bardier C, et al. Machine Learning to Detect Self-Reporting of Symptoms, Testing Access, and Recovery Associated With COVID-19 on Twitter: Retrospective Big Data Infoveillance Study. JMIR Public Health and Surveillance. 2020;6(2):e19509.
38. Zhu G, Li J, Meng Z, Yu Y, Li Y, Tang X, et al. Learning from Large-Scale Wearable Device Data for Predicting Epidemics Trend of COVID-19. Discrete Dynamics in Nature and Society. 2020;2020.
39. Kuniya T. Prediction of the epidemic peak of coronavirus disease in Japan, 2020. Journal of clinical medicine. 2020;9(3):789.
40. ISI Foundation. Influenzanet - Italy; 2020. https://www.influenzanet.eu.
41. Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, et al. Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. Clinical Microbiology and Infection. 2014;20(1):17{21.
42. Chunara R, Aman S, Smolinski M, Brownstein JS. Flu near you: an online self-reported influenza surveillance system in the USA. Online Journal of Public Health Informatics. 2013;5(1).
43. Crawley A, Wojcik O, Olsen J, Brownstein J, Smolinski M. Flu near you: Comparing crowd-sourced reports of influenza-like illness to the CDC outpatient influenza-like illness surveillance network, October 2012 to March 2014. In: 2014 CSTE Annual Conference. Cste; 2014. p. 1.
44. Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wojcik O, et al. Flu near you: crowdsourced symptom reporting spanning 2 influenza seasons. American journal of public health. 2015;105(10):2124{2130.
45. Carlson SJ, Durrheim DN, Dalton CB. Flutracking provides a measure of field influenza vaccine effectiveness, Australia, 2007{2009. Vaccine. 2010;28(42):6809{6810.
46. Dalton CB, Carlson SJ, Butler MT, Elvidge E, Durrheim DN. Building influenza surveillance pyramids in near real time, Australia. Emerging infectious diseases. 2013;19(11):1863.
47. Dalton CB, Carlson SJ, McCallum L, Butler MT, Fejsa J, Elvidge E, et al. Flutracking weekly online community survey of influenza-like illness: 2013 and 2014. Commun Dis Intell Q Rep. 2015;39(3):E361{E368.
48. Barlacchi G, Perentis C, Mehrotra A, Musolesi M, Lepri B. Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors. EPJ Data Science. 2017;6(1).
49. Frias-Martinez E, Williamson G, Frias-Martinez V. An agent-based model of epidemic spread using human mobility and social network information. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on; 2011. p. 57{64.
50. Zhang Q, Gioannini C, Paolotti D, Perra N, Perrotta D, Quaggiotto M, et al. Social data mining and seasonal influenza forecasts: the FluOutlook platform. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases; 2015. p. 237{240.
51. Biggerstaff M, Alper D, Dredze M, Fox S, Fung ICH, Hickmann KS, et al. Results from the centers for disease control and prevention's predict the 2013{2014 Influenza Season Challenge. BMC infectious diseases. 2016;16(1):357.
52. McGowan CJ, Biggerstaff M, Johansson M, Apfeldorf KM, Ben-Nun M, Brooks L, et al. Collaborative efforts to forecast seasonal influenza in the United States, 2015{2016. Scientific reports. 2019;9(1):683.
53. Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC, et al. Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics. 2018;24:26{33.
54. Ray EL, Reich NG. Prediction of infectious disease epidemics via weighted density ensembles. PLoS computational biology. 2018;14(2):e1005910.
55. Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, et al. A collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the United States. Proceedings of the National Academy of Sciences. 2019;116(8):3146{3154.
56. Yamana TK, Kandula S, Shaman J. Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States. PLoS computational biology. 2017;13(11):e1005801.
57. Perrotta D, Tizzoni M, Paolotti D. Using Participatory Web-based Surveillance Data to Improve Seasonal Influenza Forecasting in Italy. In: Proceedings of the 26th International Conference on World Wide Web - WWW '17. ACM Press; 2017. p. 303{310.
58. Rossetti G, Milli L, Giannotti F, Pedreschi D. Forecasting success via early adoptions analysis: A data-driven study. PLOS ONE. 2017;12(12):e0189096.
59. Guidotti R, Coscia M, Pedreschi D, Pennacchioli D. Going Beyond GDP to Nowcast WellBeing Using Retail Market Data. In: Advances in Network Science. Springer International Publishing; 2016. p. 29{42.
60. Guidotti R, Monreale A, Nanni M, Giannotti F, Pedreschi D. Clustering Individual Transactional Data for Masses of Users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '17. ACM Press; 2017. p. 195{204.
61. Pennacchioli D, Coscia M, Rinzivillo S, Giannotti F, Pedreschi D. The retail market as a complex system. EPJ Data Science. 2014;3(1).
62. Everitt B, Skrondal A. The Cambridge dictionary of statistics. vol. 106. Cambridge University Press Cambridge; 2002.
63. Politis DN, Romano JP. The stationary bootstrap. Journal of the American Statistical association. 1994;89(428):1303{1313.
64. Pearson K. Notes on Regression and Inheritance in the Case of Two Parents Proceedings of the Royal Society of London, 58, 240-242; 1895.
65. Agrawal SR. R. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB; 1994. p. 487{499.
66. Kavzoglu T, Colkesen I. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation and Geoinformation. 2009;11(5):352{359.
4 week ahead 1 week ahead 4 week ahead 1 week ahead


Back to previous page