Journal article  Open Access

Nanoscale Biomolecular Detection Limit for Gold Nanoparticles Based on Near-Infrared Response

D'Acunto M., Moroni D., Salvetti O.

Nanoparticles  Atomic and Molecular Physics  Infrared imaging  Article Subject  and Optics  Electronic  Biosensors  Nanodiagnostics  Optical and Magnetic Materials 

Gold nanoparticles have been widely used during the past few years in various technical and biomedical applications. In particular, the resonance optical properties of nanometer-sized particles have been employed to design biochips and biosensors used as analytical tools. The optical properties of nonfunctionalized gold nanoparticles and core-gold nanoshells play a crucial role for the design of biosensors where gold surface is used as a sensing component. Gold nanoparticles exhibit excellent optical tunability at visible and near-infrared frequencies leading to sharp peaks in their spectral extinction. In this paper, we study how the optical properties of gold nanoparticles and core-gold nanoshells are changed as a function of different sizes, shapes, composition, and biomolecular coating with characteristic shifts towards the near-infrared region. We show that the optical tenability can be carefully tailored for particle sizes falling in the range 100-150 nm. The results should improve the design of sensors working at the detection limit.

Source: Advances in Optical Technologies (Online) 2012 (2012): 278194. doi:10.1155/2012/278194

Publisher: Hindawi Publishing Corporation, Cairo, Egitto


Ramsey, J. M., van der Berg, A.. Micro Total Analysis Systems. 2001
Reyes, D. R., Iossifidis, D., Auroux, P. A., Manz, A.. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry. 2002; 74 (12): 2623-2636
Auroux, P. A., Iossifidis, D., Reyes, D. R., Manz, A.. Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry. 2002; 74 (12): 2637-2652
Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., Dai, H.. Nanotube molecular wires as chemical sensors. Science. 2000; 287 (5453): 622-625
Cui, Y., Wei, Q., Park, H., Lieber, C. M.. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001; 293 (5533): 1289-1292
Sheehan, P. E., Whitman, L. J.. Detection limits for nanoscale biosensors. Nano Letters. 2005; 5 (4): 803-807
Jeng, E. S., Moll, A. E., Roy, A. C., Gastala, J. B., Strano, M. S.. Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Letters. 2006; 6 (3): 371-375
Nair, P. R., Alam, M. A.. Screening-limited response of NanoBiosensors. Nano Letters. 2008; 8 (5): 1281-1285
Soleymani, L., Fang, Z., Sargent, E. H., Kelley, S. O.. Programming the detection limits of biosensors through controlled nanostructuring. Nature Nanotechnology. 2009; 4 (12): 844-848
Azzazy, H. M. E., Mansour, M. M. H., Kazmierczak, S. C.. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clinical Chemistry. 2006; 52 (7): 1238-1246
Weissleder, R., Tung, C. H., Mahmood, U., Bogdanov, A.. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology. 1999; 17 (4): 375-378
Chan, W. C. W., Nie, S.. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998; 281 (5385): 2016-2018
Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., Weisman, R. B.. Structure-assigned optical spectra of single-walled carbon nanotubes. Science. 2002; 298 (5602): 2361-2366
Wu, X. Y., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F., Bruchez, M. P.. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology. 2003; 21 (4): 41-43
Amiot, C. L., Xu, S., Liang, S., Pan, L., Zhao, J. X.. Near-infrared fluorescent materials for sensing of biological targets. Sensors. 2008; 8 (5): 3082-3105
Azzazy, H. M. E., Mansour, M. M. H., Kazmierczak, S. C.. From diagnostics to therapy: prospects of quantum dots. Clinical Biochemistry. 2007; 40 (13-14): 917-927
Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S.. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005; 307 (5709): 538-544
Xing, Y., Rao, J.. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomarkers. 2008; 4 (6): 307-319
Jin, Z., Hildebrandt, N.. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends in Biotechnology. 2012; 30 (7): 394-403
Fritz, J., Baller, M. K., Lang, H. P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H. J., Gerber, C., Gimzewski, J. K.. Translating biomolecular recognition into nanomechanics. Science. 2000; 288 (5464): 316-318
McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H. P., Baller, M. K., Certa, U., Meyer, E., Güntherodt, H. J., Gerber, C.. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99 (15): 9783-9788
Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martín-Gago, J. A., Briones, C., Tamayo, J.. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nature Nanotechnology. 2008; 3 (5): 301-307
Datar, R., Kim, S., Jeon, S., Hesketh, P., Manalis, S., Boisen, A., Thundat, T.. Cantilever sensors: nanomechanical tools for diagnostics. MRS Bulletin. 2009; 34 (6): 449-454
Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J.. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996; 382 (6592): 607-609
You, C. C., Miranda, O. R., Gider, B., Ghosh, P. S., Kim, I. B., Erdogan, B., Krovi, S. A., Bunz, U. H. F., Rotello, V. M.. Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. Nature Nanotechnology. 2007; 2 (5): 318-323
Baptista, P., Pereira, E., Eaton, P., Doria, G., Miranda, A., Gomes, I., Quaresma, P., Franco, R.. Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry. 2008; 391 (3): 943-950
Ho, J. A. A., Chang, H. C., Shih, N. Y., Wu, L. C., Chang, Y. F., Chen, C. C., Chou, C.. Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Analytical Chemistry. 2010; 82 (14): 5944-5950
Kumar, A., Boruah, B. M., Liang, X. J.. Gold nanoparticles: promising nanomaterials for the diagnosis of cancer and HIV/AIDS. Journal of Nanomaterials. 2011; 2011-17
Jain, P. K., Lee, K. S., El-Sayed, I. H., El-Sayed, M. A.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. Journal of Physical Chemistry B. 2006; 110 (14): 7238-7248
Wang, J., O’Toole, M., Massey, A., Biswas, S., Nantz, M., Achilefu, S., Kang, K. A.. Highly specific, MIR fluorescent contrast agent with emission controlled by gold nanoparticle. Advances in Experimental Medicine and Biology. 2011; 701 (4): 149-154
Chung, T., Lee, S. Y., Song, E. Y., Chun, H., Lee, B.. Plasmonic nanostructures for nano-scale bio-sensing. Sensors. 2011; 11 (11): 10907-10929
Chen, S., Svedendahl, M., Käll, M., Gunnarsson, L., Dmitriev, A.. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology. 2009; 20 (43)
Myroshnychenko, V., Rodríguez-Fernández, J., Pastoriza-Santos, I., Funston, A. M., Novo, C., Mulvaney, P., Liz-Marzán, L. M., García De Abajo, F. J.. Modelling the optical response of gold nanoparticles. Chemical Society Reviews. 2008; 37 (9): 1792-1805
Jackson, J. D.. Classical Electrodynamics. 1999
Mie, G.. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik. 1908; 330 (3): 377-445
De Voe, H.. Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction. The Journal of Chemical Physics. 1964; 41 (2): 393-400
Draine, B. T., Flatau, P. J.. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A. 1994; 11 (4): 1491-1499

Jung, Y. W., Yoon, J. J., Kim, Y. D., Woo, D.. Study of the interaction between biomolecule monolayers using total internal reflection ellipsometry. Journal of the Korean Physical Society. 2011; 58 (42): 1031-1034

Back to previous page
BibTeX entry
	title = {Nanoscale Biomolecular Detection Limit for Gold Nanoparticles Based on Near-Infrared Response},
	author = {D'Acunto M. and Moroni D. and Salvetti O.},
	publisher = {Hindawi Publishing Corporation, Cairo, Egitto},
	doi = {10.1155/2012/278194},
	journal = {Advances in Optical Technologies (Online)},
	volume = {2012},
	pages = {278194},
	year = {2012}