2 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
Typology operator: and / or
Language operator: and / or
Date operator: and / or
Rights operator: and / or
2020 Journal article Open Access OPEN
Bitpart: Exact metric search in high(er) dimensions
Dearle A., Connor R.
We define BitPart (Bitwise representations of binary Partitions), a novel exact search mechanism intended for use in high-dimensional spaces. In outline, a fixed set of reference objects is used to define a large set of regions within the original space, and each data item is characterised according to its containment within these regions. In contrast with other mechanisms only a subset of this information is selected, according to the query, before a search within the re-cast space is performed. Partial data representations are accessed only if they are known to be potentially useful towards the calculation of the exact query solution. Our mechanism requires ?(NlogN) space to evaluate a query, where N is the cardinality of the data, and therefore does not scale as well as previously defined mechanisms with low-dimensional data. However it has recently been shown that, for a nearest neighbour search in high dimensions, a sequential scan of the data is essentially unavoidable. This result has been suspected for a long time, and has been referred to as the curse of dimensionality in this context. In the light of this result, the compromise achieved by this work is to make the best possible use of the available fast memory, and to offer great potential for parallel query evaluation. To our knowledge, it gives the best compromise currently known for performing exact search over data whose dimensionality is too high to allow the useful application of metric indexing, yet is still sufficiently low to give at least some traction from the metric and supermetric properties.Source: Information systems (Oxf.) (2020). doi:10.1016/j.is.2020.101493
DOI: 10.1016/j.is.2020.101493
Metrics:


See at: Information Systems Open Access | St Andrews Research Repository Open Access | Information Systems Restricted | www.sciencedirect.com Restricted | CNR ExploRA


2021 Journal article Open Access OPEN
Re-ranking via local embeddings: A use case with permutation-based indexing and the nSimplex projection
Vadicamo L., Gennaro C., Falchi F., Chavez E., Connor R., Amato G.
Approximate Nearest Neighbor (ANN) search is a prevalent paradigm for searching intrinsically high dimensional objects in large-scale data sets. Recently, the permutation-based approach for ANN has attracted a lot of interest due to its versatility in being used in the more general class of metric spaces. In this approach, the entire database is ranked by a permutation distance to the query. Typically, permutations allow the efficient selection of a candidate set of results, but typically to achieve high recall or precision this set has to be reviewed using the original metric and data. This can lead to a sizeable percentage of the database being recalled, along with many expensive distance calculations. To reduce the number of metric computations and the number of database elements accessed, we propose here a re-ranking based on a local embedding using the nSimplex projection. The nSimplex projection produces Euclidean vectors from objects in metric spaces which possess the n-point property. The mapping is obtained from the distances to a set of reference objects, and the original metric can be lower bounded and upper bounded by the Euclidean distance of objects sharing the same set of references. Our approach is particularly advantageous for extensive databases or expensive metric function. We reuse the distances computed in the permutations in the first stage, and hence the memory footprint of the index is not increased. An extensive experimental evaluation of our approach is presented, demonstrating excellent results even on a set of hundreds of millions of objects.Source: Information systems (Oxf.) 95 (2021). doi:10.1016/j.is.2020.101506
DOI: 10.1016/j.is.2020.101506
Project(s): AI4EU via OpenAIRE
Metrics:


See at: ISTI Repository Open Access | ZENODO Open Access | Information Systems Open Access | Information Systems Restricted | www.sciencedirect.com Restricted | CNR ExploRA