39 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
Typology operator: and / or
Language operator: and / or
Date operator: and / or
Rights operator: and / or
2023 Conference article Open Access OPEN
Medical waste sorting: a computer vision approach for assisted primary sorting
Bruno A., Caudai C., Leone G. R., Martinelli M., Moroni D., Crotti F.
Medical waste, i.e. waste produced during medical activities in hospitals, clinics and laboratories, represents hazardous waste whose management requires special care and high costs. However, this kind of waste contains a large fraction of highly valued materials that can enter a circular economy process. To this end, in this paper, we propose a computer vision approach for assisting in the primary sorting of med- ical waste. The feasibility of our approach is demonstrated on representative datasets we collected and made available to the community.Source: IWCIM2023 - 11th International Workshop on Computational Intelligence for Multimedia Understanding, Rhodes Island, Greece, 4/5-9/6/2023

See at: CNR ExploRA Open Access

2022 Journal article Open Access OPEN
Short-term abandonment versus mowing in a mediterranean-temperate meadow: effects on floristic composition, plant functionality, and soil properties - a case study
Vannucchi F., Lazzeri V., Rosellini I., Scatena M., Caudai C., Bretzel F.
Hay meadows are secondary grasslands maintained by mowing, and their ecological importance resides in the inherent biodiversity and carbon stocking. We investigated the plant community and soil properties of a sub humid acid grassland near the Fucecchio marshes (Italy), managed as a hay meadow, mowed once a year, and not fertilized. Part of the meadow had been abandoned for three years. We analysed the soil properties (i.e., organic carbon and total nitrogen content, available phosphorus, pH, cation-exchange capacity, texture, and conductibility) and the plant community structure (composition, functionality, and species richness) of the two sides of the meadow (mowed and abandoned). Our aim was to highlight the changes in soil properties and vegetation community, and to find out to what extent abandonment can affect those dynamics. Our results showed that after short-term abandonment, soil pH, C and N increased; litter biomass and perennial forbs increased; and annual forbs decreased. New species colonising after abandonment, thus enriching the flora, may keep spreading and eventually hinder the growth of the specialists if mowing is not resumed. Certain valuable meadow habitats need constant human intervention to maintain their peculiar vegetation, most especially if they are a buffer zone in the proximity of natural protected areas.Source: Agriculture (Basel) 12 (2022). doi:10.3390/agriculture12010078
DOI: 10.3390/agriculture12010078

See at: ISTI Repository Open Access | CNR ExploRA Open Access | www.mdpi.com Open Access

2022 Journal article Open Access OPEN
Low productivity substrate leads to functional diversification of green roof plant assemblage
Vannucchi F., Buoncristiano A., Scatena M., Caudai C., Bretzel F.
Green roofs are roof free spaces where living organisms can find an appropriate habitat to colonise. The establishment of plant species with different functionality can enhance biodiversity and provide ecosystem services. However, drought and nutrient availability can affect the plant development. The extensive green roof was set up in Pisa (Italy) in 2014, 12 modules of 10 cm depth were filled with three substrates composed of compost from municipal mixed waste, pelletised paper sludge, and commercial tephra product (Vulcaflor), as follows: Vulcaflor + compost, Vulcaflor + pellet + compost, and Vulcaflor + pellet, characterised by decreasing level of nitrogen content. The species planted in 2014 were chosen from the herbaceous spontaneous vegetation of urban and rural swards not often mowed, plus two sedum species. After the establishment phase, the green roof community was progressively dominated by Sedum species and other species were seeded in 2016. In 2018-19 the plant functional types and the community structure were monitored. Besides seasonal fluctuations, nitrogen shaped the composition of the community, and Sedum species showed high cover values in nitrogen-richer substrates. Annual forbs colonised the plots with a lower nitrogen content. In summer, the number of species drastically fell, and Sedum album was dominant in the three substrates. Seedling recruitment regenerated the community in the cooler season, increasing the diversity in the poor substrate. The scarcity of nitrogen led to the development of stress-tolerator annuals increasing the biodiversity in the rainy-cool season. Annual species constitute a transient seed bank which enables the system to regenerate when rain follows periods of heat and drought.Source: Ecological engineering 176 (2022). doi:10.1016/j.ecoleng.2022.106547
DOI: 10.1016/j.ecoleng.2022.106547

See at: ISTI Repository Open Access | CNR ExploRA Restricted | www.sciencedirect.com Restricted

2022 Conference article Open Access OPEN
Data models for an imaging bio-bank for colorectal, prostate and gastric cancer: the NAVIGATOR project
Berti A., Carloni G., Colantonio S., Pascali M. A., Manghi P., Pagano P., Buongiorno R., Pachetti E., Caudai C., Di Gangi D., Carlini E., Falaschi Z., Ciarrocchi E., Neri E., Bertelli E., Miele V., Carpi R., Bagnacci G., Di Meglio N., Mazzei M. A., Barucci A.
Researchers nowadays may take advantage of broad collections of medical data to develop personalized medicine solutions. Imaging bio-banks play a fundamental role, in this regard, by serving as organized repositories of medical images associated with imaging biomarkers. In this context, the NAVIGATOR Project aims to advance colorectal, prostate, and gastric oncology translational research by leveraging quantitative imaging and multi-omics analyses. As Project's core, an imaging bio-bank is being designed and implemented in a web-accessible Virtual Research Environment (VRE). The VRE serves to extract the imaging biomarkers and further process them within prediction algorithms. In our work, we present the realization of the data models for the three cancer use-cases of the Project. First, we carried out an extensive requirements analysis to fulfill the necessities of the clinical partners involved in the Project. Then, we designed three separate data models utilizing entity-relationship diagrams. We found diagrams' modeling for colorectal and prostate cancers to be more straightforward, while gastric cancer required a higher level of complexity. Future developments of this work would include designing a common data model following the Observational Medical Outcomes Partnership Standards. Indeed, a common data model would standardize the logical infrastructure of data models and make the bio-bank easily interoperable with other bio-banks.Source: BHI '22 - IEEE-EMBS International Conference on Biomedical and Health Informatics, Ioannina, Greece, 27-30/09/2022
DOI: 10.1109/bhi56158.2022.9926910

See at: ISTI Repository Open Access | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted

2022 Journal article Open Access OPEN
NAVIGATOR: an Italian regional imaging biobank to promote precision medicine for oncologic patients
Borgheresi R., Barucci A., Colantonio S., Aghakhanyan G., Assante M., Bertelli E., Carlini E., Carpi R., Caudai C., Cavallero D., Cioni D., Cirillo R., Colcelli V., Dell'Amico A., Di Gangi D., Erba P. A., Faggioni L., Falaschi Z., Gabelloni M., Gini R., Lelii L., Liò P., Lorito A., Lucarini S., Manghi P., Mangiacrapa F., Marzi C., Mazzei M. A., Mercatelli L., Mirabile A., Mungai F., Miele V., Olmastroni M., Pagano P., Paiar F., Panichi G., Pascali M. A., Pasquinelli F., Shortrede J. E., Tumminello L., Volterrani L., Neri E., On Behalf Of The Navigator Consortium Group
NAVIGATOR is an Italian regional project to boost precision medicine in oncology with the aim to make it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e. standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.Source: European radiology experimental Online 6 (2022). doi:10.1186/s41747-022-00306-9
DOI: 10.1186/s41747-022-00306-9

See at: eurradiolexp.springeropen.com Open Access | ISTI Repository Open Access | CNR ExploRA Open Access

2022 Report Open Access OPEN
SI-Lab annual research report 2021
Righi M., Leone G. R., Carboni A., Caudai C., Colantonio S., Kuruoglu E. E., Leporini B., Magrini M., Paradisi P., Pascali M. A., Pieri G., Reggiannini M., Salerno E., Scozzari A., Tonazzini A., Fusco G., Galesi G., Martinelli M., Pardini F., Tampucci M., Berti A., Bruno A., Buongiorno R., Carloni G., Conti F., Germanese D., Ignesti G., Matarese F., Omrani A., Pachetti E., Papini O., Benassi A., Bertini G., Coltelli P., Tarabella L., Straface S., Salvetti O., Moroni D.
The Signal & Images Laboratory is an interdisciplinary research group in computer vision, signal analysis, intelligent vision systems and multimedia data understanding. It is part of the Institute of Information Science and Technologies (ISTI) of the National Research Council of Italy (CNR). This report accounts for the research activities of the Signal and Images Laboratory of the Institute of Information Science and Technologies during the year 2021.Source: ISTI Annual reports, 2022
DOI: 10.32079/isti-ar-2022/003

See at: ISTI Repository Open Access | CNR ExploRA Open Access

2021 Journal article Open Access OPEN
Integration of multiple resolution data in 3D chromatin reconstruction using ChromStruct
Caudai C., Zoppè M., Tonazzini A., Merelli I., Salerno E.
The three-dimensional structure of chromatin in the cellular nucleus carries important information that is connected to physiological and pathological correlates and dysfunctional cell behaviour. As direct observation is not feasible at present, on one side, several experimental techniques have been developed to provide information on the spatial organization of the DNA in the cell; on the other side, several computational methods have been developed to elaborate experimental data and infer 3D chromatin conformations. The most relevant experimental methods are Chromosome Conformation Capture and its derivatives, chromatin immunoprecipitation and sequencing techniques (CHIP-seq), RNA-seq, fluorescence in situ hybridization (FISH) and other genetic and biochemical techniques. All of them provide important and complementary information that relate to the three-dimensional organization of chromatin. However, these techniques employ very different experimental protocols and provide information that is not easily integrated, due to different contexts and different resolutions. Here, we present an open-source tool, which is an expansion of the previously reported code ChromStruct, for inferring the 3D structure of chromatin that, by exploiting a multilevel approach, allows an easy integration of information derived from different experimental protocols and referred to different resolution levels of the structure, from a few kilobases up to Megabases. Our results show that the introduction of chromatin modelling features related to CTCF CHIA-PET data, histone modification CHIP-seq, and RNA-seq data produce appreciable improvements in ChromStruct's 3D reconstructions, compared to the use of HI-C data alone, at a local level and at a very high resolution.Source: Biology (Basel) 10 (2021): 338. doi:10.3390/biology10040338
DOI: 10.3390/biology10040338

See at: Europe PubMed Central Open Access | ISTI Repository Open Access | CNR ExploRA Open Access | www.mdpi.com Open Access | Biology Open Access

2021 Report Open Access OPEN
SI-Lab Annual Research Report 2020
Leone G. R., Righi M., Carboni A., Caudai C., Colantonio S., Kuruoglu E. E., Leporini B., Magrini M., Paradisi P., Pascali M. A., Pieri G., Reggiannini M., Salerno E., Scozzari A., Tonazzini A., Fusco G., Galesi G., Martinelli M., Pardini F., Tampucci M., Buongiorno R., Bruno A., Germanese D., Matarese F., Coscetti S., Coltelli P., Jalil B., Benassi A., Bertini G., Salvetti O., Moroni D.
The Signal & Images Laboratory (http://si.isti.cnr.it/) is an interdisciplinary research group in computer vision, signal analysis, smart vision systems and multimedia data understanding. It is part of the Institute for Information Science and Technologies of the National Research Council of Italy. This report accounts for the research activities of the Signal and Images Laboratory of the Institute of Information Science and Technologies during the year 2020.Source: ISTI Annual Report, ISTI-2021-AR/001, pp.1–38, 2021
DOI: 10.32079/isti-ar-2021/001

See at: ISTI Repository Open Access | CNR ExploRA Open Access

2021 Conference article Restricted
A deep learning approach for hepatic steatosis estimation from ultrasound imaging
Colantonio S., Salvati A., Caudai C., Bonino F., De Rosa L., Pascali M. A., Germanese D., Brunetto M. R., Faita F.
This paper proposes a simple convolutional neural model as a novel method to predict the level of hepatic steatosis from ultrasound data. Hepatic steatosis is the major histologic feature of non-alcoholic fatty liver disease (NAFLD), which has become a major global health challenge. Recently a new definition for FLD, that take into account the risk factors and clinical characteristics of subjects, has been suggested; the proposed criteria for Metabolic Disfunction-Associated Fatty Liver Disease (MAFLD) are based on histological (biopsy), imaging or blood biomarker evidence of fat accumulation in the liver (hepatic steatosis), in subjects with overweight/obesity or presence of type 2 diabetes mellitus. In lean or normal weight, non-diabetic individuals with steatosis, MAFLD is diagnosed when at least two metabolic abnormalities are present. Ultrasound examinations are the most used technique to non-invasively identify liver steatosis in a screening settings. However, the diagnosis is operator dependent, as accurate image processing techniques have not entered yet in the diagnostic routine. In this paper, we discuss the adoption of simple convolutional neural models to estimate the degree of steatosis from echographic images in accordance with the state-of-the-art magnetic resonance spectroscopy measurements (expressed as percentage of the estimated liver fat). More than 22,000 ultrasound images were used to train three networks, and results show promising performances in our study (150 subjects).Source: ICCCI 2021 - 13th International Conference on Computational Collective Intelligence, pp. 703–714, Rhodes, Greece, 29/09/2021,1/10/ 2021
DOI: 10.1007/978-3-030-88113-9_57

See at: link.springer.com Restricted | CNR ExploRA Restricted

2021 Journal article Open Access OPEN
AI applications in functional genomics
Caudai C., Galizia A., Geraci F., Le Pera L., Morea V., Salerno E., Via A., Colombo T.
We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by ''deep learning", along with a burst of ''big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.Source: Computational and Structural Biotechnology Journal 19 (2021): 5762–5790. doi:10.1016/j.csbj.2021.10.009
DOI: 10.1016/j.csbj.2021.10.009

See at: ISTI Repository Open Access | CNR ExploRA Open Access | www.sciencedirect.com Open Access

2021 Contribution to conference Restricted
Imaging e radiomica nell'ambito del progetto P.I.N.K.
Caudai C., Colantonio S., Franchini M., Molinaro S., Pascali M. A., Pieroni S., Salvatori M.
La presentazione introduce la linea di sviluppo dedicata alla radiomica nell'ambito dello studio P.I.N.K. Vengono introdotti gli aspetti e le potenzialità di Radiomics and Deep Learning per l'imaging medico , suportatti da alcuni esempi di applicazione. Vengono indicate le linee organizzative per implementare questa linea di sviluppo all'interno dello studio, affrontando gli aspetti tecnologici e modalità di attuazione previste.Source: Terzo Webinar del ciclo Agorà P.I.N.K, 21/6/2021

See at: CNR ExploRA Restricted

2020 Journal article Open Access OPEN
A multifunctional alternative lawn where warm-season grass and cold-season flowers coexist
Bretzel F., Gaetani M., Vannucchi F., Caudai C., Grossi N., Magni S., Caturegli L., Volterrani M.
Lawns provide green infrastructure and ecosystem services for anthropized areas. They have a strong impact on the environment in terms of inputs (water and fertilizers) and maintenance. The use of warm-season grasses, such as Cynodon dactylon (L.) Pers., provides a cost-effective and sustainable lawn in the dry summers of the Mediterranean. In winter, Bermudagrass is dormant and brown, which instead of being a problem could be an opportunity for biodiversity through the coexistence of flowering species. This study assesses the possibility of growing autumn-to-spring-flowering bulbs and forbs with Bermudagrass, to provide ecosystem services in urban areas. Eight geophytes and 18 forbs were incorporated into a mature turf of hybrid Bermudagrass, Cynodon dactylon × C. transvaalensis cv. "Tifway". At the same time, a commercial flowering mix was sown in the same conditions. Two different soil preparations, scalping and turf flaming, and two different nitrogen doses, 50 and 150 kg ha, were carried out before sowing and transplanting. The flowering plants were counted. All the bulbs and six of the 18 forbs were able to grow and flower in the first and second years. The commercial mix was in full bloom from April until the cutting time for the hybrid Bermudagrass, at the end of May. Adding the flowering species did not affect the healthy growth of the warm-season grass. The fertilization dose had no effect, while turf flaming led to a wider spread of Bellis perennis L. and Crocus spp. Several flower-visiting insects were observed in the spring.Source: Landscape and ecological engineering (Print) 16 (2020): 307–317. doi:10.1007/s11355-020-00423-w
DOI: 10.1007/s11355-020-00423-w

See at: ISTI Repository Open Access | Landscape and Ecological Engineering Restricted | link.springer.com | CNR ExploRA

2020 Journal article Open Access OPEN
Can Magnetic Resonance Radiomics Analysis Discriminate Parotid Gland Tumors? A Pilot Study
Gabelloni M., Faggioni L., Attanasio S., Vani V., Goddi A., Colantonio S., Germanese D., Caudai C., Bruschini L., Scarano M., Seccia V., Neri E.
Our purpose is to evaluate the performance of magnetic resonance (MR) radiomics analysis for differentiating between malignant and benign parotid neoplasms and, among the latter, between pleomorphic adenomas and Warthin tumors. We retrospectively evaluated 75 T2-weighted images of parotid gland lesions, of which 61 were benign tumors (32 pleomorphic adenomas, 23 Warthin tumors and 6 oncocytomas) and 14 were malignant tumors. A receiver operating characteristics (ROC) curve analysis was performed to find the threshold values for the most discriminative features and determine their sensitivity, specificity and area under the ROC curve (AUROC). The most discriminative features were used to train a support vector machine classifier. The best classification performance was obtained by comparing a pleomorphic adenoma with a Warthin tumor (yielding sensitivity, specificity and a diagnostic accuracy as high as 0.8695, 0.9062 and 0.8909, respectively) and a pleomorphic adenoma with malignant tumors (sensitivity, specificity and a diagnostic accuracy of 0.6666, 0.8709 and 0.8043, respectively). Radiomics analysis of parotid tumors on conventional T2-weighted MR images allows the discrimination of pleomorphic adenomas from Warthin tumors and malignant tumors with a high sensitivity, specificity and diagnostic accuracy.Source: Diagnostics (Basel) 10 (2020). doi:10.3390/diagnostics10110900
DOI: 10.3390/diagnostics10110900

See at: Diagnostics Open Access | Diagnostics Open Access | ISTI Repository Open Access | CNR ExploRA Open Access | Diagnostics Open Access | Diagnostics Open Access

2019 Journal article Open Access OPEN
Estimation of the spatial chromatin structure based on a multiresolution bead-chain model
Caudai C., Salerno E., Zoppe M., Tonazzini A.
We present a method to infer 3D chromatin configurations from Chromosome Conformation Capture data. Quite a few methods have been proposed to estimate the structure of the nuclear DNA in homogeneous populations of cells from this kind of data. Many of them transform contact frequencies into Euclidean distances between pairs of chromatin fragments, and then reconstruct the structure by solving a distance-to-geometry problem. To avoid inconsistencies, our method is based on a score function that does not require any frequency-to-distance translation. We propose a multiscale chromatin model where the chromatin fibre is suitably partitioned at each scale. The partial structures are estimated independently, and connected to rebuild the whole fibre. Our score function consists in a data-fit part and a penalty part, balanced automatically at each scale and each subchain. The penalty part enforces "soft" geometric constraints. As many different structures can fit the data, our sampling strategy produces a set of solutions with similar scores. The procedure contains a few parameters, independent of both the scale and the genomic segment treated. The partition of the fibre, along with intrinsically parallel parts, make this method computationally efficient. Results from human genome data support the biological plausibility of our solutions.Source: IEEE/ACM transactions on computational biology and bioinformatics (Print) 16 (2019): 550–559. doi:10.1109/TCBB.2018.2791439
DOI: 10.1109/tcbb.2018.2791439

See at: ISTI Repository Open Access | IEEE/ACM Transactions on Computational Biology and Bioinformatics Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted

2019 Journal article Open Access OPEN
ChromStruct 4: a Python code to estimate the chromatin structure from Hi-C data
Caudai C., Salerno E., Zoppè M., Merelli I., Tonazzini A.
A method and a stand-alone Python(TM) code to estimate the 3D chromatin structure from chromosome conformation capture data are presented. The method is based on a multiresolution, modified-bead-chain chromatin model, evolved through quaternion operators in a Monte Carlo sampling. The solution space to be sampled is generated by a score function with a data-fit part and a constraint part where the available prior knowledge is implicitly coded. The final solution is a set of 3D configurations that are compatible with both the data and the prior knowledge. The iterative code, provided here as additional material, is equipped with a graphical user interface and stores its results in standard-format files for 3D visualization. We describe the mathematical-computational aspects of the method and explain the details of the code. Some experimental results are reported, with a demonstration of their fit to the data.Source: IEEE/ACM transactions on computational biology and bioinformatics (Online) 16 (2019): 1867–1878. doi:10.1109/TCBB.2018.2838669
DOI: 10.1109/tcbb.2018.2838669

See at: ISTI Repository Open Access | IEEE/ACM Transactions on Computational Biology and Bioinformatics Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted

2019 Conference article Open Access OPEN
La radiomica come elemento fondante della medicina di precisione in ambito oncologico
Colantonio S., Carlini E., Caudai C., Germanese D., Manghi P., Pascali M. A., Barucci A., Farnesi D., Zoppetti N., Colcelli V., Pini R., Carpi R., Esposito M., Neri E., Romei C., Occhipinti M.
Questo documento introduce e inquadra le attività che un gruppo interdisciplinare di ricercatori e clinici sta portando avanti grazie a tecniche di analisi di immagini, machine learning e intelligenza artificiale, a supporto della medicina di precisione in ambito oncologico. Partendo dalla comprensione del fenomeno fisico e dalla caratterizzazione dei processi biologici che sottendono alla formazione delle immagini biomedicali, attraverso tecniche di analisi radiomica dei dati radiologici e di mining di dati complessi, terogenei e multisorgente, le soluzioni studiate mirano a supportare i clinici nel continuum dei processi diagnostici, prognostici e terapeutici in ambito oncologico.Source: Ital-IA: primo Convegno Nazionale CINI sull'Intelligenza Artificiale, Roma, Italy, 18-19 marzo 2019

See at: ISTI Repository Open Access | CNR ExploRA Open Access | www.ital-ia.it Open Access

2019 Conference article Closed Access
Radiomics to predict prostate cancer aggressiveness: a preliminary study
Germanese D., Mercatelli L., Colantonio S., Miele V., Pascali M. A., Caudai C., Zoppetti N., Carpi R., Barucci A., Bertelli E., Agostini S.
Radiomics is encouraging a paradigm shift in oncological diagnostics towards the symbiosis of radiology and Artificial Intelligence (AI) techniques. The aim is to exploit very accurate, robust image processing algorithms and provide quantitative information about the phenotypic differences of cancer traits. By exploring the association between this quantitative information and patients' prognosis, AI algorithms are boosting the power of radiomics in the perspective of precision oncology. However, the choice of the most suitable AI method can determine the success of a radiomic application. The current state-of-the art methods in radiomics aim at extracting statistical features from biomedical images and, then, process them with Machine Learning (ML) techniques. Many works have been reported in the literature presenting various combinations of radiomic features and ML methods. In this preliminary study, we aim to analyse the performance of a radiomic approach to predict prostate cancer (PCa) aggressiveness from multiarametric Magnetic Resonance Imaging (mp-MRI). Clinical mp-MRI data were collected from patients with histology-confirmed PCa and labelled by a team of expert radiologists. Such data were used to extract and select two sets of radiomic features; hence, the classification performances of five classifiers were assessed. This analysis is meant as a preliminary step towards the overall goal of investigating the potential of radiomic-based analyses.Source: BIBE 2019: 19th annual IEEE International Conference on Bioinformatics and Bioengineering, pp. 972–976, Athens, Greece, 28-30 October 2019
DOI: 10.1109/bibe.2019.00181

See at: doi.org Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted

2019 Conference article Open Access OPEN
May radiomic data predict prostate cancer aggressiveness?
Germanese D., Colantonio S., Caudai C., Pascali M. A., Barucci A., Zoppetti N., Agostini S., Bertelli E., Mercatelli L., Miele V., Carpi R.
Radiomics can quantify tumor phenotypic characteristics non-invasively by defining a signature correlated with biological information. Thanks to algorithms derived from computer vision to extract features from images, and machine learning methods to mine data, Radiomics is the perfect case study of application of Artificial Intelligence in the context of precision medicine. In this study we investigated the association between radiomic features extracted from multi-parametric magnetic resonance imaging (mp-MRI)of prostate cancer (PCa) and the tumor histologic subtypes (using Gleason Score) using machine learning algorithms, in order to identify which of the mp-MRI derived radiomic features can distinguish high and low risk PCa.Source: CAIP 2019 - International Conference on Computer Analysis of Images and Patterns, pp. 65–75, Salerno, Italy, 6 September, 2019
DOI: 10.1007/978-3-030-29930-9_7

See at: ISTI Repository Open Access | doi.org Restricted | link.springer.com Restricted | CNR ExploRA Restricted

2018 Conference article Open Access OPEN
Parallelizable strategy for the estimation of the 3D structure of biological macromolecules
Caudai C., Zoppè M., Salerno E., Merelli I., Tonazzini A.
We present a parallelizzable, multilevel algorithm for the study of three-dimensional structure of biological macromolecules, applied to two fundamental topics: the 3D reconstruction of Chromatin and the elaboration of motion of proteins. For Chromatin, starting from contact data obtained through Chromosome Conformation Capture techniques, our method first subdivides the data matrix in biologically relevant blocks, and then treats them separately, at several levels, depending on the initial data resolution. The result is a family of configurations for the entire fiber, each one compatible with both experimental data and prior knowledge about specific genomes. For Proteins, the method is conceived as a solution for the problem of identifying motion and alternative conformations to the deposited structures. The algorithm, using quaternions, processes the main chain and the aminoacid side chains independently; it then exploits a Monte Carlo method for selection of biologically acceptable conformations, based on energy evaluation, and finally returns a family of conformations and of trajectories at single atom resolution.Source: PDP 2018 - 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 134–137, Cambridge, UK, 21-23 March 2018
DOI: 10.1109/pdp2018.2018.00026

See at: ISTI Repository Open Access | doi.org Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted

2018 Software Unknown
ChromStruct v4.2 - Reconstruction of 3D chromatin structure from chromosome conformation capture data
Salerno E., Caudai C.
This Python (v.2.7.10) code provides an estimate of the 3D structure of the chromatin fibre in cell nuclei from the contact frequency data produced by a 'Chromosome conformation capture' experiment. The only input required is a text file containing a general real matrix of contact frequencies. The code features a GUI where all the tuneable parameters are made available to the user. The fibre is divided in independent segments whose structures are first estimated separately and then modelled as single elements of a lower-resolution fibre, which is treated iteratively in the same way until it cannot be divided anymore into independent segments. The full-resolution chain is then reconstructed by another iterative procedure. See the Readme file and the cited references for more detail.

See at: CNR ExploRA | www.researchgate.net