87 result(s)
Page Size: 10, 20, 50
Export: bibtex, xml, json, csv
Order by:

CNR Author operator: and / or
more
Typology operator: and / or
Language operator: and / or
Date operator: and / or
more
Rights operator: and / or
2021 Journal article Open Access OPEN

Predicting seasonal influenza using supermarket retail records
Miliou I., Xiong X., Rinzivillo S., Zhang Q., Rossetti G., Giannotti F., Pedreschi D., Vespignani A.
Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on realtime epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.Source: PLoS computational biology 17 (2021). doi:10.1371/journal.pcbi.1009087
DOI: 10.1371/journal.pcbi.1009087

See at: journals.plos.org Open Access | ISTI Repository Open Access | CNR ExploRA Open Access


2020 Report Open Access OPEN

Mobile phone data analytics against the COVID-19 epidemics in Italy: flow diversity and local job markets during the national lockdown
Bonato P., Cintia P., Fabbri F., Fadda D., Giannotti F., Lopalco P. L., Mazzilli S., Nanni M., Pappalardo L., Pedreschi D., Penone F., Rinzivillo S., Rossetti G., Savarese M., Tavoschi L.
Understanding human mobility patterns is crucial to plan the restart of production and economic activities, which are currently put in "stand-by" to fight the diffusion of the epidemics. A recent analysis shows that, following the national lockdown of March 9th, the mobility fluxes have decreased by 50% or more, everywhere in the country. To this purpose, we use mobile phone data to compute the movements of people between Italian provinces, and we analyze the incoming, outcoming and internal mobility flows before and during the national lockdown (March 9th, 2020) and after the closure of non-necessary productive and economic activities (March 23th, 2020). The population flow across provinces and municipalities enable for the modeling of a risk index tailored for the mobility of each municipality or province. Such an index would be a useful indicator to drive counter-measures in reaction to a sudden reactivation of the epidemics. Mobile phone data, even when aggregated to preserve the privacy of individuals, are a useful data source to track the evolution in time of human mobility, hence allowing for monitoring the effectiveness of control measures such as physical distancing. In this report, we address the following analytical questions: How does the mobility structure of a territory change? Do incoming and outcoming flows become more predictable during the lockdown, and what are the differences between weekdays and weekends? Can we detect proper local job markets based on human mobility flows, to eventually shape the borders of a local outbreak?Source: ISTI Technical Reports 005/2020, 2020, 2020
DOI: 10.32079/isti-tr-2020/005

See at: ISTI Repository Open Access | CNR ExploRA Open Access


2020 Journal article Open Access OPEN

Give more data, awareness and control to individual citizens, and they will help COVID-19 containment
Nanni M., Andrienko G., Barabasi A. -l., Boldrini C., Bonchi F., Cattuto C., Chiaromonte F., Comandé G., Conti M., Coté M., Dignum F., Dignum V., Domingo-ferrer J., Ferragina P., Giannotti F., Guidotti R., Helbing D., Kaski K., Kertesz J., Lehmann S., Lepri B., Lukowicz P., Matwin S., Jimenez D., Monreale A., Morik K., Oliver N., Passarella A., Passerini A., Pedreschi D., Pentland A., Pianesi F., Pratesi F., Rinzivillo S., Ruggieri S., Siebes A., Torra V., Trasarti R., Van Den Hoven J., Vespignani A.
The rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the "phase 2" of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking. We advocate the conceptual advantage of a decentralized approach, where both contact and location data are collected exclusively in individual citizens' "personal data stores", to be shared separately and selectively (e.g., with a backend system, but possibly also with other citizens), voluntarily, only when the citizen has tested positive for COVID-19, and with a privacy preserving level of granularity. This approach better protects the personal sphere of citizens and affords multiple benefits: It allows for detailed information gathering for infected people in a privacy-preserving fashion; and, in turn this enables both contact tracing, and, the early detection of outbreak hotspots on more finely-granulated geographic scale. The decentralized approach is also scalable to large populations, in that only the data of positive patients need be handled at a central level. Our recommendation is two-fold. First to extend existing decentralized architectures with a light touch, in order to manage the collection of location data locally on the device, and allowthe user to share spatio-temporal aggregates-if and when they want and for specific aims-with health authorities, for instance. Second, we favour a longerterm pursuit of realizing a Personal Data Store vision, giving users the opportunity to contribute to collective good in the measure they want, enhancing self-awareness, and cultivating collective efforts for rebuilding society.Source: Transactions on data privacy 13 (2020): 61–66.

See at: ISTI Repository Open Access | CNR ExploRA Open Access | www.tdp.cat Open Access


2020 Report Open Access OPEN

The relationship between human mobility and viral transmissibility during the COVID-19 epidemics in Italy
Cintia P., Fadda D., Giannotti F., Pappalardo L., Rossetti G., Pedreschi D., Rinzivillo S., Bonato P., Fabbri F., Penone F., Bavarese M., Checchi D., Chiaromonte F., Vineis P., Gazzetta G., Riccardo F., Marziano V., Poletti P., Trentini F., Bella A., Xanthi A., Del Manso M., Fabiani M., Bellino S., Boros S., Urdiales A. M., Vescia M. F., Brusaferro S., Rezza G., Pezzotti P., Ajelli M., Merler S.
We describe in this report our studies to understand the relationship between human mobility and the spreading of COVID-19, as an aid to manage the restart of the social and economic activities after the lockdown and monitor the epidemics in the coming weeks and months. We compare the evolution (from January to May 2020) of the daily mobility flows in Italy, measured by means of nation-wide mobile phone data, and the evolution of transmissibility, measured by the net reproduction number, i.e., the mean number of secondary infections generated by one primary infector in the presence of control interventions and human behavioural adaptations. We find a striking relationship between the negative variation of mobility flows and the net reproduction number, in all Italian regions, between March 11th and March 18th, when the country entered the lockdown. This observation allows us to quantify the time needed to "switch off" the country mobility (one week) and the time required to bring the net reproduction number below 1 (one week). A reasonably simple regression model provides evidence that the net reproduction number is correlated with a region's incoming, outgoing and internal mobility. We also find a strong relationship between the number of days above the epidemic threshold before the mobility flows reduce significantly as an effect of lockdowns, and the total number of confirmed SARS-CoV-2 infections per 100k inhabitants, thus indirectly showing the effectiveness of the lockdown and the other non-pharmaceutical interventions in the containment of the contagion. Our study demonstrates the value of "big" mobility data to the monitoring of key epidemic indicators to inform choices as the epidemics unfolds in the coming months.Project(s): SoBigData via OpenAIRE

See at: arxiv.org Open Access | ISTI Repository Open Access | CNR ExploRA Open Access


2020 Report Open Access OPEN

Predicting seasonal influenza using supermarket retail records
Miliou I., Xiong X., Rinzivillo S., Zhang Q., Rossetti G., Giannotti F., Pedreschi D., Vespignani A.
Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.Source: ISTI Technical Reports 2020/009, 2020, 2020
DOI: 10.32079/isti-tr-2020/009
Project(s): SoBigData-PlusPlus via OpenAIRE

See at: ISTI Repository Open Access | CNR ExploRA Open Access


2019 Report Open Access OPEN

ISTI Young Researcher Award "Matteo Dellepiane" - Edition 2019
Barsocchi P., Candela L., Crivello A., Esuli A., Ferrari A., Girardi M., Guidotti R., Lonetti F., Malomo L., Moroni D., Nardini F. M., Pappalardo L., Rinzivillo S., Rossetti G., Robol L.
The ISTI Young Researcher Award (YRA) selects yearly the best young staff members working at Institute of Information Science and Technologies (ISTI). This award focuses on quality and quantity of the scientific production. In particular, the award is granted to the best young staff members (less than 35 years old) by assessing their scientific production in the year preceding the award. This report documents the selection procedure and the results of the 2019 YRA edition. From the 2019 edition on the award is named as "Matteo Dellepiane", being dedicated to a bright ISTI researcher who prematurely left us and who contributed a lot to the YRA initiative from its early start.Source: ISTI Technical reports, 2019

See at: ISTI Repository Open Access | CNR ExploRA Open Access


2019 Contribution to book Open Access OPEN

Analysis and visualization of performance indicators in university admission tests
Natilli M., Fadda D., Rinzivillo S., Pedreschi D., Licari F.
This paper presents an analytical platform for evaluation of the performance and anomaly detection of tests for admission to public universities in Italy. Each test is personalized for each student and is composed of a series of questions, classified on different domains (e.g. maths, science, logic, etc.). Since each test is unique for composition, it is crucial to guarantee a similar level of difficulty for all the tests in a session. For this reason, to each question, it is assigned a level of difficulty from a domain expert. Thus, the general difficultness of a test depends on the correct classification of each item. We propose two approaches to detect outliers. A visualization-based approach using dynamic filter and responsive visual widgets. A data mining approach to evaluate the performance of the different questions for five years. We used clustering to group the questions according to a set of performance indicators to provide labeling of the data-driven level of difficulty. The measured level is compared with the a priori assigned by experts. The misclassifications are then highlighted to the expert, who will be able to refine the ques- tion or the classification. Sequential pattern mining is used to check if biases are present in the composition of the tests and their performance. This analysis is meant to exclude overlaps or direct dependencies among questions. Analyzing co-occurrences we are able to state that the compo- sition of each test is fair and uniform for all the students, even on several sessions. The analytical results are presented to the expert through a visual web application that loads the analytical data and indicators and composes an interactive dashboard. The user may explore the patterns and models extracted by filtering and changing thresholds and analytical parameters.Source: Formal Methods. FM 2019 International Workshops, edited by Emil Sekerinski et al..., pp. 186–199, 2019
DOI: 10.1007/978-3-030-54994-7_14

See at: ISTI Repository Open Access | academic.microsoft.com Restricted | dblp.uni-trier.de Restricted | link.springer.com Restricted | link.springer.com Restricted | CNR ExploRA Restricted


2019 Conference article Open Access OPEN

A visual analytics platform to measure performance on university entrance tests
Boncoraglio D., Deri F., Distefano F., Fadda D., Filippi G., Forte G., Licari F., Natilli M., Pedreschi D., Rinzivillo S.
Data visualization dashboards provide an efficient approach that helps to improve the ability to understand the information behind complex databases. It is possible with such tools to create new insights, to represent keys indicators of the activity, to communicate (in real-time) snapshots of the state of the work. In this paper, we present a visual analytics platform created for the exploration and analysis of performance data on entrance tests taken by Italian students when entering the university career. The data is provided by CISIA (Consorzio Interuniversitario Sistemi Integrati per l'Accesso), a non-profit consortium formed exclusively by public universities. With this platform, it is possible to explore the performance of the students along different dimensions, such as gender, high school of provenience, type of test and so on.Source: 27th Italian Symposium on Advanced Database Systems, Castiglione della Pescaia, Grosseto, Italy (Grosseto), Italy, 16-19 June 2019

See at: ceur-ws.org Open Access | ISTI Repository Open Access | CNR ExploRA Open Access


2019 Conference article Open Access OPEN

Learning data mining
Guidotti R., Monreale A., Rinzivillo S.
In the last decade the usage and study of data mining and machine learning algorithms have received an increasing attention from several and heterogeneous fields of research. Learning how and why a certain algorithm returns a particular result, and understanding which are the main problems connected to its execution is a hot topic in the education of data mining methods. In order to support data mining beginners, students, teachers, and researchers we introduce a novel didactic environment. The Didactic Data Mining Environment (DDME) allows to execute a data mining algorithm on a dataset and to observe the algorithm behavior step by step to learn how and why a certain result is returned. DDME can be practically exploited by teachers and students for having a more interactive learning of data mining. Indeed, on top of the core didactic library, we designed a visual platform that allows online execution of experiments and the visualization of the algorithm steps. The visual platform abstracts the coding activity and makes available the execution of algorithms to non-technicians.Source: DSAA, pp. 361–370, Turin, Italy, 1-4/10/2018
DOI: 10.1109/dsaa.2018.00047
Project(s): SoBigData via OpenAIRE

See at: Archivio della Ricerca - Università di Pisa Open Access | academic.microsoft.com Restricted | dblp.uni-trier.de Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted | xplorestaging.ieee.org Restricted


2018 Contribution to book Open Access OPEN

How data mining and machine learning evolved from relational data base to data science
Amato G., Candela L., Castelli D., Esuli A., Falchi F., Gennaro C., Giannotti F., Monreale A., Nanni M., Pagano P., Pappalardo L., Pedreschi D., Pratesi F., Rabitti F., Rinzivillo S., Rossetti G., Ruggieri S., Sebastiani F., Tesconi M.
During the last 35 years, data management principles such as physical and logical independence, declarative querying and cost-based optimization have led to profound pervasiveness of relational databases in any kind of organization. More importantly, these technical advances have enabled the first round of business intelligence applications and laid the foundation for managing and analyzing Big Data today.Source: A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, edited by Sergio Flesca, Sergio Greco, Elio Masciari, Domenico Saccà, pp. 287–306, 2018
DOI: 10.1007/978-3-319-61893-7_17

See at: Archivio della Ricerca - Università di Pisa Open Access | ISTI Repository Open Access | academic.microsoft.com Restricted | arpi.unipi.it Restricted | dblp.uni-trier.de Restricted | link.springer.com Restricted | link.springer.com Restricted | link.springer.com Restricted | CNR ExploRA Restricted | rd.springer.com Restricted


2018 Journal article Open Access OPEN

NDlib: a python library to model and analyze diffusion processes over complex networks
Rossetti G., Milli L., Rinzivillo S., Sirbu A., Giannotti F., Pedreschi D.
Nowadays the analysis of dynamics of and on networks represents a hot topic in the social network analysis playground. To support students, teachers, developers and researchers, in this work we introduce a novel framework, namely NDlib, an environment designed to describe diffusion simulations. NDlib is designed to be a multi-level ecosystem that can be fruitfully used by different user segments. For this reason, upon NDlib, we designed a simulation server that allows remote execution of experiments as well as an online visualization tool that abstracts its programmatic interface and makes available the simulation platform to non-technicians.Source: International Journal of Data Science and Analytics (Online) 5 (2018): 61–79. doi:10.1007/s41060-017-0086-6
DOI: 10.1007/s41060-017-0086-6
Project(s): CIMPLEX via OpenAIRE, SoBigData via OpenAIRE

See at: International Journal of Data Science and Analytics Open Access | ISTI Repository Open Access | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | International Journal of Data Science and Analytics Restricted | CNR ExploRA Restricted


2018 Journal article Open Access OPEN

Boosting Ride Sharing With Alternative Destinations
De Lira V. M., Perego R., Renso C., Rinzivillo S., Times V. C.
People living in highly populated cities increasingly experience decreased quality of life due to pollution and traffic congestion. With the objective of reducing the number of circulating vehicles, we investigate a novel approach to boost ride-sharing opportunities based on the knowledge of the human activities behind individual mobility demands. We observe that in many cases the activity motivating the use of a private car (e.g., going to a shopping mall) can be performed in many different places. Therefore, when there is the possibility of sharing a ride, people having a pro-environment behavior or interested in saving money can accept to fulfill their needs at an alternative destination. We thus propose activity-based ride matching (ABRM), an algorithm aimed at matching ride requests with ride offers, possibly reaching alternative destinations where the intended activity can he performed. By analyzing two large mobility datasets extracted from a popular social network, we show that our approach could largely impact urban mobility by resulting in an increase up to 54.69% of ride-sharing opportunities with respect to a traditional destination-oriented approach. Due to the high number of ride possibilities found by ABRM, we introduce and assess a subsequent ranking step to provide the user with the topk most relevant rides only. We discuss how ABRM parameters affect the fraction of car rides that can he saved and how the ranking function can be tuned to enforce pro-environment behaviors.Source: IEEE transactions on intelligent transportation systems (Print) 19 (2018): 2290–2300. doi:10.1109/TITS.2018.2836395
DOI: 10.1109/tits.2018.2836395
Project(s): MASTER via OpenAIRE

See at: ISTI Repository Open Access | ZENODO Open Access | IEEE Transactions on Intelligent Transportation Systems Open Access | IEEE Transactions on Intelligent Transportation Systems Restricted | IEEE Transactions on Intelligent Transportation Systems Restricted | ieeexplore.ieee.org Restricted | IEEE Transactions on Intelligent Transportation Systems Restricted | CNR ExploRA Restricted | IEEE Transactions on Intelligent Transportation Systems Restricted


2018 Conference article Open Access OPEN

MOBILITY ATLAS BOOKLET: AN URBAN DASHBOARD DESIGN and IMPLEMENTATION
Gabrielli L., Rossi M., Giannotti F., Fadda D., Rinzivillo S.
The new data sources give the possibility to answer analytically the questions that arise from mobility manager. The process of transforming raw data into knowledge is very complex, and it is necessary to provide metaphors of visualizations that are understandable to decision makers. Here, we propose an analytical platform that extracts information on the mobility of individuals from mobile phone by applying Data Mining methodologies. The main results highlighted here are both technical and methodological. First, communicating information through visual analytics techniques facilitates understanding of information to those who have no specific technical or domain knowledge. Secondly, the API system guarantees the ability to export aggregates according to the granularity required, enabling other actors to produce new services based on the extracted models. For the future, we expect to extend the platform by inserting other layers. For example, a layer for measuring the sustainability index of a territory, such as the ability of public transport to attract private mobility or the index that measures how many private vehicle trips can be converted into electrical mobility.Source: 3rd International Conference on Smart Data and Smart Cities, SDSC 2018, pp. 51–58, Delft, Netherlands, 04-05/10/2018
DOI: 10.5194/isprs-annals-iv-4-w7-51-2018

See at: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Open Access | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Open Access | ISTI Repository Open Access | CNR ExploRA Open Access | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Open Access | ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences Open Access | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences Open Access


2018 Contribution to conference Restricted

NDlib: A Python Library to Model and Analyze Diffusion Processes over Complex Networks
Rossetti G., Milli L., Rinzivillo S.
Nowadays the analysis of dynamics of and on networks represents a hot topic in the Social Network Analysis playground. To support students, teachers, developers and researchers we introduced a novel framework, named NDlib, an environment designed to describe diffusion simulations. NDlib is designed to be a multi-level ecosystem that can be fruitfully used by different user segments. Upon NDlib, we designed a simulation server that allows remote execution of experiments as well as an online visualization tool that abstracts its programmatic interface and makes available the simulation platform to non-technicians.Source: The Web Conference, pp. 183–186, 23-27 April 2018
DOI: 10.1145/3184558.3186974
Project(s): SoBigData via OpenAIRE

See at: academic.microsoft.com Restricted | arpi.unipi.it Restricted | arxiv.org Restricted | dblp.uni-trier.de Restricted | dl.acm.org Restricted | dl.acm.org Restricted | CNR ExploRA Restricted


2017 Journal article Open Access OPEN

Never drive alone: boosting carpooling with network analysis
Guidotti R., Nanni M., Rinzivillo S., Giannotti F., Pedreschi D
Carpooling, i.e., the act where two or more travelers share the same car for a common trip, is one of the possibilities brought forward to reduce traffic and its externalities, but experience shows that it is difficult to boost the adoption of carpooling to significant levels. In our study, we analyze the potential impact of carpooling as a collective phenomenon emerging from people׳s mobility, by network analytics. Based on big mobility data from travelers in a given territory, we construct the network of potential carpooling, where nodes correspond to the users and links to possible shared trips, and analyze the structural and topological properties of this network, such as network communities and node ranking, to the purpose of highlighting the subpopulations with higher chances to create a carpooling community, and the propensity of users to be either drivers or passengers in a shared car. Our study is anchored to reality thanks to a large mobility dataset, consisting of the complete one-month-long GPS trajectories of approx. 10% circulating cars in Tuscany. We also analyze the aggregated outcome of carpooling by means of empirical simulations, showing how an assignment policy exploiting the network analytic concepts of communities and node rankings minimizes the number of single occupancy vehicles observed after carpooling.Source: Information systems (Oxf.) 64 (2017): 237–257. doi:10.1016/j.is.2016.03.006
DOI: 10.1016/j.is.2016.03.006
Project(s): PETRA via OpenAIRE

See at: ISTI Repository Open Access | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | CNR ExploRA Restricted | Information Systems Restricted


2017 Report Open Access OPEN

ISTI Young Research Award 2017
Barsocchi P., Basile D., Candela L., Ciancia V., Delle Piane M., Esuli A., Ferrari A., Girardi M., Guidotti R., Lonetti F., Moroni D., Nardini F. M., Rinzivillo S., Vadicamo L.
The ISTI Young Researcher Award is an award for young people of Institute of Information Science and Technologies (ISTI) with high scientific production. In particular, the award is granted to young staff members (less than 35 years old) by assessing the yearly scientific production of the year preceding the award. This report documents procedure and results of the 2017 edition of the award.Source: ISTI Technical reports, 2017

See at: ISTI Repository Open Access | CNR ExploRA Open Access


2017 Conference article Restricted

NDlib: Studying network diffusion dynamics
Rossetti G., Milli L., Rinzivillo S., Sirbu A., Pedreschi D., Giannotti F.
Nowadays the analysis of diffusive phenomena occurring on top of complex networks represents a hot topic in the Social Network Analysis playground. In order to support students, teachers, developers and researchers in this work we introduce a novel simulation framework, NDlib. NDlib is designed to be a multi-level ecosystem that can be fruitfully used by different user segments. Upon the diffusion library, we designed a simulation server that allows remote execution of experiments and an online visualization tool that abstract the programmatic interface and makes available the simulation platform to non-technicians.Source: Data Science and Advanced Analytics (DSAA), pp. 155–164, Tokyo, Japan, 9/10/2017
DOI: 10.1109/dsaa.2017.6
Project(s): CIMPLEX via OpenAIRE, SoBigData via OpenAIRE

See at: academic.microsoft.com Restricted | core.ac.uk Restricted | dblp.uni-trier.de Restricted | Archivio della Ricerca - Università di Pisa Restricted | ieeexplore.ieee.org Restricted | CNR ExploRA Restricted | xplorestaging.ieee.org Restricted


2016 Journal article Open Access OPEN

Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics
Andrienko N., Andrienko G., Rinzivillo S.
A spatially abstracted transportation network is a graph where nodes are territory compartments (areas in geographic space) and edges, or links, are abstract constructs, each link representing all possible paths between two neighboring areas. By applying visual analytics techniques to vehicle traffic data from different territories, we discovered that the traffic intensity (a.k.a. traffic flow or traffic flux) and the mean velocity are interrelated in a spatially abstracted transportation network in the same way as at the level of street segments. Moreover, these relationships are consistent across different levels of spatial abstraction of a physical transportation network. Graphical representations of the flux-velocity interdependencies for abstracted links have the same shape as the fundamental diagram of traffic flow through a physical street segment, which is known in transportation science. This key finding substantiates our approach to traffic analysis, forecasting, and simulation leveraging spatial abstraction. We propose a framework in which visual analytics supports three high-level tasks, assess, forecast, and develop options, in application to vehicle traffic. These tasks can be carried out in a coherent workflow, where each next task uses the results of the previous one(s). At the 'assess' stage, vehicle trajectories are used to build a spatially abstracted transportation network and compute the traffic intensities and mean velocities on the abstracted links by time intervals. The interdependencies between the two characteristics of the links are extracted and represented by formal models, which enable the second step of the workflow, 'forecast', involving simulation of vehicle movements under various conditions. The previously derived models allow not only prediction of normal traffic flows conforming to the regular daily and weekly patterns but also simulation of traffic in extraordinary cases, such as road closures, major public events, or mass evacuation due to a disaster. Interactive visual tools support preparation of simulations and analysis of their results. When the simulation forecasts problematic situations, such as major congestions and delays, the analyst proceeds to the step 'develop options' for trying various actions aimed at situation improvement and investigating their consequences. Action execution can be imitated by interactively modifying the input of the simulation model. Specific techniques support comparisons between results of simulating different "what if" scenarios.Source: Information systems (Oxf.) 57 (2016): 172–194. doi:10.1016/j.is.2015.08.007
DOI: 10.1016/j.is.2015.08.007
Project(s): CIMPLEX via OpenAIRE, PETRA via OpenAIRE, SoBigData via OpenAIRE

See at: Information Systems Open Access | City Research Online Open Access | ISTI Repository Open Access | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Information Systems Restricted | Fraunhofer-ePrints Restricted | CNR ExploRA Restricted | Information Systems Restricted | Information Systems Restricted


2016 Report Open Access OPEN

ISTI young research award 2016
Barsocchi P., Candela L., Ciancia V., Dellepiane M., Esuli A., Girardi M., Girolami M., Guidotti R., Lonetti F., Malomo L., Moroni D., Nardini F. M., Palumbo F., Pappalardo L., Pascali M. A., Rinzivillo S.
The ISTI Young Researcher Award is an award for young people of Institute of Information Science and Technologies (ISTI) with high scientific production. In particular, the award is granted to young staff members (less than 35 years old) by assessing the yearly scientific production of the year preceding the award. This report documents procedure and results of the 2016 edition of the award.Source: ISTI Technical reports, 2016

See at: ISTI Repository Open Access | CNR ExploRA Open Access


2016 Report Open Access OPEN

ProgettISTI 2016
Banterle F., Barsocchi P., Candela L., Carlini E., Carrara F., Cassarà P., Ciancia V., Cintia P., Dellepiane M., Esuli A., Gabrielli L., Germanese D., Girardi M., Girolami M., Kavalionak H., Lonetti F., Lulli A., Moreo Fernandez A., Moroni D., Nardini F. M., Monteiro De Lira V. C., Palumbo F., Pappalardo L., Pascali M. A., Reggianini M., Righi M., Rinzivillo S., Russo D., Siotto E., Villa A.
ProgettISTI research project grant is an award for members of the Institute of Information Science and Technologies (ISTI) to provide support for innovative, original and multidisciplinary projects of high quality and potential. The choice of theme and the design of the research are entirely up to the applicants yet (i) the theme must fall under the ISTI research topics, (ii) the proposers of each project must be of diverse laboratories of the Institute and must contribute different expertise to the project idea, and (iii) project proposals should have a duration of 12 months. This report documents the procedure, the proposals and the results of the 2016 edition of the award. In this edition, ten project proposals have been submitted and three of them have been awarded.Source: ISTI Technical reports, 2016

See at: ISTI Repository Open Access | CNR ExploRA Open Access