2019
Conference article  Open Access

OpenAIRE's DOIBoost - Boosting Crossref for Research

La Bruzzo S., Manghi P., Mannocci A.

Microsoft academic graph  Scholarly communication  Unpaywall  Open science  ORCID  Data integration  Data science  Crossref 

Research in information science and scholarly communication strongly relies on the availability of openly accessible datasets of scholarly entities metadata and, where possible, their relative payloads. Since such metadata information is scattered across diverse, freely accessible, online resources (e.g. Crossref, ORCID), researchers in this domain are doomed to struggle with (meta)data integration problems, in order to produce custom datasets of often undocumented and rather obscure provenance. This practice leads to waste of time, duplication of efforts, and typically infringes open science best practices of transparency and reproducibility of science. In this article, we describe how to generate DOIBoost, a metadata collection that enriches Crossref with inputs from Microsoft Academic Graph, ORCID, and Unpaywall for the purpose of supporting high-quality and robust research experiments, saving times to researchers and enabling their comparison. To this end, we describe the dataset value and its schema, analyse its actual content, and share the software Toolkit and experimental workflow required to reproduce it. The DOIBoost dataset and Software Toolkit are made openly available via Zenodo.org. DOIBoost will become an input source to the OpenAIRE information graph.

Source: IRCDL 2019 - Italian Research Conference on Digital Libraries, pp. 133–143, Pisa, Italy, 31/01/2019, 01/2/2019

Publisher: Springer, Cham, Heidelberg, New York, Dordrecht, London, CHE



Back to previous page
Projects (via OpenAIRE)

OpenAIRE-Advance
OpenAIRE Advancing Open Scholarship


OpenAIRE
BibTeX entry
@inproceedings{oai:it.cnr:prodotti:402418,
	title = {OpenAIRE's DOIBoost - Boosting Crossref for Research},
	author = {La Bruzzo S. and Manghi P. and Mannocci A.},
	publisher = {Springer, Cham, Heidelberg, New York, Dordrecht, London, CHE},
	doi = {10.1007/978-3-030-11226-4_11},
	booktitle = {IRCDL 2019 -  Italian Research Conference on Digital Libraries, pp. 133–143, Pisa, Italy, 31/01/2019, 01/2/2019},
	year = {2019}
}