2021
Journal article  Open Access

Integration of multiple resolution data in 3D chromatin reconstruction using ChromStruct

Caudai C., Zoppè M., Tonazzini A., Merelli I., Salerno E.

HI-C data  CHIP-seq  Chromatin conformation capture  RNA-seq  Chromatin conformation  CTCF CHIA-PET data  Article  bayesian statistics  chromatin conformation capture  chromatin conformation 

The three-dimensional structure of chromatin in the cellular nucleus carries important information that is connected to physiological and pathological correlates and dysfunctional cell behaviour. As direct observation is not feasible at present, on one side, several experimental techniques have been developed to provide information on the spatial organization of the DNA in the cell; on the other side, several computational methods have been developed to elaborate experimental data and infer 3D chromatin conformations. The most relevant experimental methods are Chromosome Conformation Capture and its derivatives, chromatin immunoprecipitation and sequencing techniques (CHIP-seq), RNA-seq, fluorescence in situ hybridization (FISH) and other genetic and biochemical techniques. All of them provide important and complementary information that relate to the three-dimensional organization of chromatin. However, these techniques employ very different experimental protocols and provide information that is not easily integrated, due to different contexts and different resolutions. Here, we present an open-source tool, which is an expansion of the previously reported code ChromStruct, for inferring the 3D structure of chromatin that, by exploiting a multilevel approach, allows an easy integration of information derived from different experimental protocols and referred to different resolution levels of the structure, from a few kilobases up to Megabases. Our results show that the introduction of chromatin modelling features related to CTCF CHIA-PET data, histone modification CHIP-seq, and RNA-seq data produce appreciable improvements in ChromStruct's 3D reconstructions, compared to the use of HI-C data alone, at a local level and at a very high resolution.

Source: Biology (Basel) 10 (2021): 338. doi:10.3390/biology10040338

Publisher: MDPI, Basel


Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:452856,
	title = {Integration of multiple resolution data in 3D chromatin reconstruction using ChromStruct},
	author = {Caudai C. and Zoppè M. and Tonazzini A. and Merelli I. and Salerno E.},
	publisher = {MDPI, Basel },
	doi = {10.3390/biology10040338},
	journal = {Biology (Basel)},
	volume = {10},
	pages = {338},
	year = {2021}
}