2016
Journal article  Open Access

Detection and characterization of ship targets using CryoSat-2 altimeter waveforms

Gómez-Enri J., Scozzari A., Soldovieri F., Coca J., Vignudelli S.

CryoSat-2 SIRAL  Q  Satellite radar altimetry  Ship detection  altimeter waveforms  SAR altimetry  Science  General Earth and Planetary Sciences  ship detection 

This article describes an investigation of the new possibilities offered by SAR altimetry compared with conventional altimetry in the detection and characterization of non-ocean targets. We explore the capabilities of the first SAR altimeter installed on the European Space Agency satellite CryoSat-2 for the detection and characterization of ships. We propose a methodology for the detection of anomalous targets in the radar signals, based on the advantages of SAR/Doppler processing over conventional altimetry. A simple metric is proposed for the automatic detection and separation of ship targets; additional geometric considerations are introduced, to assess the compatibility between the structures detected and the actual location and characteristics of the ships observed. A test-case is presented with multiple targets that are confirmed as large vessels cruising in the proximity of a CryoSat-2 track crossing the Alboran Sea (Western Mediterranean). The presence and position of these ships at the time of satellite passage have been corroborated by the data retrieved from the Automatic Information System database. A principal motive for this research is the future altimetry missions that will provide global SAR coverage (e.g., Sentinel-3). This methodology may complement the existing tracking systems, with particular reference to the capability of compiling global statistics based on freely available data.

Source: Remote sensing (Basel) 8 (2016): 193. doi:10.3390/rs8030193

Publisher: Molecular Diversity Preservation International, Basel


5. Lambert, G.I.; Jennings, S.; Hiddink, J.; Hintzen, N.T.; Hinz, H.; Kaiser, M.J.; Murray, L.G. Implications of using alternate methods of Vessel Monitoring System (VMS) data analysis to describe fishing activities and impacts. ICES J. Mar. Sci. 2012, 69, 682-693. [CrossRef]
6. Crisp, D.J. The State-of-the-Art in Ship Detection in Synthetic Aperture Radar Imagery. Defence Science and Technology Organization (DSTO), 2004. Available online: http://dspace.dsto.defence.gov.au/ dspace/bitstream/1947/3354/1/DSTO-RR-0272%20PR.pdf (accessed on 20 January 2016).
7. Vachon, P.W.; English, R.A.; Wolfe, J. Validation of RADARSAT-1 vessel signatures with AISLive data. Can. J. Remote Sens. 2007, 33, 23-26. [CrossRef]
8. Corbane, C.; Najman, L.; Pecoul, E.; Demagistri, L.; Petit, M. A complete processing chain for ship detection using optical satellite imagery. Int. J. Remote Sens. 2010, 31, 5837-5854. [CrossRef]
9. An, W.; Xie, C.; Yuan, X. An improved iterative censoring scheme for CFAR ship detection with SAR imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4585-4595.
10. Wang, C.; Jiang, S.; Zhang, H.; Wu, F.; Zhang, B. Ship detection for high-resolution SAR images based on feature analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 119-123. [CrossRef]
11. Yang, G.; Li, B.; Ji, S.; Gao, F.; Xu, Q. Ship detection from optical satellite images based on sea surface analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 641-645. [CrossRef]
12. Tournadre, J. Signatures of lighthouses, ships, and small islands in altimeter waveforms. J. Atmos. Ocean. Technol. 2007, 24, 1143-1149. [CrossRef]
13. Tournadre, J. Anthropogenic pressure on the open ocean. The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett. 2014, 41, 7924-7932. [CrossRef]
14. Raney, R.K. The delay/Doppler radar altimeter. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1578-1588. [CrossRef]
15. Cotton, P.D. SAMOSA State of Art Assessment Report; European Space Agency: Paris, France, 2008.
16. Abulaitijiang, A.; Andersen, O.B.; Stenseng, L. Coastal sea level from inland CryoSat-2 interferometric SAR altimetry. Geophys. Res. Lett. 2015, 42, 1841-1847. [CrossRef]
17. Grid Processing On-Demand. Available online: https://gpod.eo.esa.int (accessed on 9 September 2015).
18. Dinardo, S. Guidelines for the SAR (Delay-Doppler) L1b Processing; European Space Agency: Paris, France, 2013.
19. Smith, W.H.F.; Scharroo, R. Waveform aliasing in satellite radar altimetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1671-1682. [CrossRef]
20. ESRIN-ESA. CryoSat Product Handbook; European Space Agency: Paris, France, 2012.
21. Scagliola, M. CryoSat Footprints; SAR-CRY2-TEN-6331; European Space Agency: Paris, France, 2013.
22. Guardian Rescue. Available online: http://www.guardianrescue.co.uk/link-to-ship-finder-ais.php (accessed on 11 September 2015).
23. Marine Traffic. Available online: http://www.marinetraffic.com (accessed on 1 September 2015).
24. Scozzari, A.; Gómez-Enri, J.; Vignudelli, S.; Soldovieri, F. Understanding target-like signals in coastal altimetry: Experimentation of a tomographic imaging technique. Geophys. Res. Lett. 2012, 39. [CrossRef]
25. Tournadre, J.; Boy, F.; Dinardo, S. Detection of ships and icebergs using Delay Doppler altimetry. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 2-5 June 2015.

Metrics



Back to previous page
BibTeX entry
@article{oai:it.cnr:prodotti:364864,
	title = {Detection and characterization of ship targets using CryoSat-2 altimeter waveforms},
	author = {Gómez-Enri J. and Scozzari A. and Soldovieri F. and Coca J. and Vignudelli S.},
	publisher = {Molecular Diversity Preservation International, Basel  },
	doi = {10.3390/rs8030193},
	journal = {Remote sensing (Basel)},
	volume = {8},
	pages = {193},
	year = {2016}
}