2025
Conference article  Open Access

Explainable AI in time-sensitive scenarios prefetched offline explanation model

Russo F. M., Metta C., Monreale A., Rinzivillo S., Pinelli F.

Explainability, Trustworthy AI, Machine learning, Artificial intelligence. 

As predictive machine learning models become increasingly adopted and advanced, their role has evolved from merely predicting outcomes to actively shaping them. This evolution has underscored the importance of Trustworthy AI, highlighting the necessity to extend our focus beyond mere accuracy and toward a comprehensive understanding of these models’ behaviors within the specific contexts of their applications. To further progress in explainability, we introduce poem, Prefetched Offline Explanation Model, a model-agnostic, local explainability algorithm for image data. The algorithm generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations suitable for time-sensitive scenarios. Leveraging an existing local algorithm, poem infers factual and counterfactual rules from data to create illustrative examples and opposite scenarios with an enhanced stability by design. A novel mechanism then matches incoming test points with an explanation base and produces diverse exemplars, informative saliency maps and believable counterexemplars. Experimental results indicate that poem outperforms its predecessor abele in speed and ability to generate more nuanced and varied exemplars alongside more insightful saliency maps and valuable counterexemplars.

Source: LECTURE NOTES IN COMPUTER SCIENCE, vol. 15244 - Proceedings, Part II, pp. 167-182. Pisa, Italy, 14-16/10/2024

Publisher: Springer


Metrics



Back to previous page
BibTeX entry
@inproceedings{oai:iris.cnr.it:20.500.14243/525168,
	title = {Explainable AI in time-sensitive scenarios prefetched offline explanation model},
	author = {Russo F.  M. and Metta C. and Monreale A. and Rinzivillo S. and Pinelli F.},
	publisher = {Springer},
	doi = {10.1007/978-3-031-78980-9_11},
	booktitle = {LECTURE NOTES IN COMPUTER SCIENCE, vol. 15244 - Proceedings, Part II, pp. 167-182. Pisa, Italy, 14-16/10/2024},
	year = {2025}
}

TANGO
It takes two to tango: a synergistic approach to human-machine decision making

XAI
Science and technology for the explanation of AI decision making

SoBigData-PlusPlus
SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics


OpenAIRE