2022
Conference article  Open Access

Outlier dimensions that disrupt transformers are driven by frequency

Puccetti G., Rogers A., Drozd A., Dell'Orletta F.

Large Language Models  Mechanistic interpretability  Natural Language Processing 

While Transformer-based language models are generally very robust to pruning, there is the recently discovered outlier phenomenon: disabling only 48 out of 110M parameters in BERT-base drops its performance by nearly 30% on MNLI. We replicate the original evidence for the outlier phenomenon and we link it to the geometry of the embedding space. We find that in both BERT and RoBERTa the magnitude of hidden state coefficients corresponding to outlier dimensions correlates with the frequency of encoded tokens in pre-training data, and it also contributes to the “vertical” self-attention pattern enabling the model to focus on the special tokens. This explains the drop in performance from disabling the outliers, and it suggests that to decrease anisotropicity in future models we need pre-training schemas that would better take into account the skewed token distributions.

Publisher: Association for Computational Linguistics (ACL)



Back to previous page
BibTeX entry
@inproceedings{oai:iris.cnr.it:20.500.14243/521513,
	title = {Outlier dimensions that disrupt transformers are driven by frequency},
	author = {Puccetti G. and Rogers A. and Drozd A. and Dell'Orletta F.},
	publisher = {Association for Computational Linguistics (ACL)},
	year = {2022}
}